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Abstract

Recent work by Jacot et al. (2018) has shown that training a neural network of any
kind with gradient descent is strongly related to kernel gradient descent in function
space with respect to the Neural Tangent Kernel (NTK). Empirical results in (Lee
et al., 2019) demonstrated high performance of a linearized version of training
using the so-called NTK regime. In this paper, we show that the large depth limit
of this regime is unexpectedly trivial, and we fully characterize the convergence
rate to this trivial regime.

1 Introduction

The Neural Tangent Kernel (Jacot et al., 2018), a.k.a the NTK, has been the main focus of a growing
number of works aiming to understand the inductive bias of Deep Neural Networks (DNNs). To cite
a few, Bietti and Mairal (2019); Karakida et al. (2018); Yang (2019); Arora et al. (2019); Bietti and
Bach (2021). In the so-called NTK regime (infinite width), the whole training procedure is reduced
to a linear model given by the first order Taylor expansion of the output function near its initialization
value. It was shown in Lee et al. (2019), that such simple models could surprisingly achieve high
performance. However, most experiments with NTK regime were conducted on shallow networks
and have not sufficiently covered DNNs.

NTK regime (Infinite width) for DNNs. The infinite width limit of the NTK for different architec-
tures was studied by Yang (2019), who introduced a tensor framework that allows the derivation of
recursive formulas for the NTK.

Information propagation. In parallel, information propagation in infinite width DNNs has been
studied in several works (Hayou et al., 2019; Lee et al., 2018; Schoenholz et al., 2017; Yang and
Schoenholz, 2017a; Poole et al., 2016) where the authors identify a set of hyper-parameters known as
the Edge of Chaos (EOC) and activation functions ensuring a deep propagation of the information
carried by the input. This ensures that the network output does not ‘forget’ the input information as
the depth grows. In this paper, we show that this has a direct impact on the NTK.

Contributions. There have been few attempts to understand the large depth limit of the NTK regime
Xiao et al. (2020); Huang et al. (2020); Bietti and Bach (2021); however, none of these works have
characterized the limiting NTK and more importantly the exact convergence rate of the NTK to this
limiting kernel. The closest work is Huang et al. (2020) where the authors considered a scaled version
of ResNet with ReLU and proved an upper bound on the convergence rate of order O( polylogL

L ). In
this paper, we improve this result in many ways: we prove that the convergence to the limiting NTK
happens with a rate of Θ(log (L)L−1) for different architectures and activation functions. Note that
for NTK regime, the lower bound is more important as it ensures a sub-exponential convergence rate
of the NTK to its trivial limiting kernel(e.g. constant). We also show that the large depth behaviour of
the NTK is initialization-sensitive; in particular, we prove that for FFNNs, we obtain an exponential
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convergence rate if the initialization is not on the EOC (this is a generalization of Xiao et al. (2020)),
which is not the case with ResNet.

2 Neural Networks and Neural Tangent Kernel

2.1 Setup and notations

Consider a neural network model consisting of L layers of widths (nl)1≤l≤L, n0 = d is the input
dimension, and let θ = (θl)1≤l≤L be the flattened vector of weights and bias indexed by the layer’s
index, and p be the dimension of θ. The output f of the neural network is given by some mapping
s : RnL → Ro of the last layer yL(x); o being the dimension of the output (e.g. number of classes
for a classification problem). For any input x ∈ Rd, we thus have f(x, θ) = s(yL(x)) ∈ Ro. We
denote by θt the value of θ at training time (step) t and ft(x) = f(x, θt). Let D = (xi, zi)1≤i≤N
be the dataset, and let X = (xi)1≤i≤N , Z = (zj)1≤j≤N be the sequences of inputs and outputs
respectively. We assume that there is no collinearity in the input dataset X , i.e. for all x, x′ ∈ X and
α ∈ R, x′ 6= αx. We also assume that X ⊂ E where E ⊂ Rd is a compact set.
The NTK is defined as the o× o dimensional kernel satisfying for all x, x′ ∈ Rd

KL
θt(x, x

′) = ∇θf(x, θt)∇θf(x′, θt)
T =

L∑
l=1

∇θlf(x, θt)∇θlf(x′, θt)
T ∈ Ro×o.

The NTK regime (Infinite width). For a fully connected feedforward neural network, Jacot et al.
(2018) proved that KL

θt converges pointwise to a kernel KL(depends only on L) for all t < T when
min{n1, n2, ..., nL} → ∞, where T is a constant. In this limit, for the quadratic loss, ft is given by a
simple linear model

ft(x) = f0(x) + γ(x,X )(I − e−
1
N
K̂Lt)(Z − f0(X )), (1)

where K̂L = KL(X ,X ) and γ(x,X ) = KL(x,X )(K̂L)−1. Hereafter, we refer to f∞ by the "NTK regime".
For the cross-entropy loss, Lee et al. (2019) introduced some approximations to obtain the NTK regime. These
approximations are implemented in Novak et al. (2020).

Scale invariance. f∞ is scale invariant in the sense that it does not change if we scale the kernel by some
depth dependent scalar since for any aL > 0,

γ(x,X ) = KL(x,X )(K̂L)−1 = (KL(x,X )/aL)(K̂L/aL)−1. (2)

Thus, studying the NTK regime with kernel KL is equivalent to studying the NTK regime with any scaled kernel
KL/aL. In Theorems 1 and 2, we study scaled kernels to mitigate an exploding kernel effect in the limit of
large depth, as the NTK regime solution remains unchanged.

Generalization in the NTK regime. As observed in Du et al. (2019), the convergence rate (w.r.t time) of
ft to f∞ (infinite training time) is given by the smallest eigenvalue of K̂L. If K̂L becomes singular in the large
depth limit, then the performance of NTK regime decreases and might even be trivial. Notice also that we can
write ft(x)− f0(x) =

∑N
i=1 aiK

L(xi, x) for some a1, ..., aN ∈ R, i.e. the ‘residual’ ft − f0 belongs to the
Reproducing Kernel Hilbert space of the KL.

3 Asymptotic Neural Tangent Kernel regime

In this section, we characterize the behaviour of KL as L goes to∞. We prove that KL converges to a kernel
K∞ (which is trivial) with an initialization-and-architecture-dependent convergence rate.

3.1 Deep NTK of a FeedForward Neural Network (FFNN)

Consider an FFNN of depth L, widths (nl)1≤l≤L, weights wl and bias bl. For some input x ∈ Rd, the forward
propagation using the NTK parameterization (similar to Jacot et al. (2018)) is given by

y1
i (x) =

σw√
d

d∑
j=1

w1
ijxj + σbb

1
i , yli(x) =

σw√
nl−1

nl−1∑
j=1

wlijφ(yl−1
j (x)) + σbb

l
i, l ≥ 2. (3)
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We initialize the model randomly with wlij , b
l
i

iid∼ N (0, 1), whereN (µ, σ2) denotes the normal distribution of
mean µ and variance σ2. In the limit of infinite width, the neurons (yli(.))i,l converge to Gaussian processes
(Neal, 1995; Lee et al., 2018; Matthews et al., 2018; Hayou et al., 2019; Schoenholz et al., 2017). Hereafter,
we denote by ql(x, x′) the covariance between yl1(x) and yl1(x′) (yl1 can be replaced by any yli since (yli)i are
i.i.d. See appendix 3 for a comprehensive review of the signal propagation theory). We define the correlation
cl(x, x′). For the first layer, we have q1(x, x′) = σ2

b +
σ2
w
d
x · x′. For ε ∈ (0, 1), we define the set Bε by:

FFNN : Bε = {(x, x′) ∈ Rd : c1(x, x′) ≤ 1− ε},

and we assume that there exists ε > 0, such that for all x 6= x′ ∈ X , (x, x′) ∈ Bε.

Edge of Chaos (EOC). Given an input x, we denote by ql(x) the variance of yl(x). The asymptotic behaviour
of ql(x) was studied in Lee et al. (2018), Schoenholz et al. (2017), and Hayou et al. (2019). Under general
regularity conditions, ql(x) converges to a point q(σb, σw) > 0 independent of x. The asymptotic behaviour
of the correlation cl(x, x′) between yl(x) and yl(x′) for any two inputs x and x′ is driven by the choice of
(σb, σw); Schoenholz et al. (2017) showed that if σ2

wE[φ′(
√
q(σb, σw)Z)2] < 1, where Z ∼ N (0, 1), then

cl(x, x′) converges to 1 exponentially quickly; this is called the ordered phase. If σ2
wE[φ′(

√
q(σb, σw)Z)2] > 1

then cl(x, x′) converges to c < 1, which is then referred to as the chaotic phase. The authors define the EOC
as the set of parameters (σb, σw) that satisfy σ2

wE[φ′(
√
q(σb, σw)Z)2] = 1. The EOC was studied in (Hayou

et al., 2019) where the authors showed that the correlation converges to 1 with a polynomial rate (see Section 3
in the appendix). The following proposition establishes that any initialization on the Ordered or Chaotic phase,
leads to a trivial limiting NTK as L becomes large.

Proposition 1 (NTK with Ordered/Chaotic Initialization). Let (σb, σw) be either in the ordered or in the chaotic
phase. Then, there exist λ > 0 such that for all ε ∈ (0, 1), there exists γ > 0 such that

sup
(x,x′)∈Bε

|KL(x, x′)− λ| ≤ e−γL.

The proof of Proposition 1 relies on the asymptotic analysis of the second moment of the gradient. We refer the
reader to Section 5 in the appendix for more details.
Proposition 1 show that KL becomes trivial exponentially quickly w.r.t deph. In this case, the NTK regime
yields trivial performance, i.e. no better than that of a random classifier. Empirically, we find that with depth
L = 30, the NTK training fails when the network is initialized on the Ordered phase ??????????(Section ??).
In the next theorem, we show that the NTK explodes in the limit of large depth when the network is initialized on
the EOC. Leveraging our remark on the scale invariance property of the NTK (see Eq. (2)), we show that a scaled
version of the kernel converges with a polynomial rate to the degenerate kernel, meaning that the infinite-depth
NTK regime is also trivial in this case, although the convergence is much slower. The notation g(x) = Θ(m(x))
means there exist two constants A,B > 0 such that Am(x) ≤ g(x) ≤ Bm(x).

Theorem 1 (NTK on the EOC). Let (σb, σw) be on the EOC and K̃L = KL/L. We have that

sup
x∈E
|K̃L(x, x)− K̃∞(x, x)| = Θ(L−1).

Moreover, there exists λ ∈ (0, 1) such that for all ε ∈ (0, 1)

sup
(x,x′)∈Bε

∣∣K̃L(x, x′)− K̃∞(x, x′)
∣∣ = Θ(log(L)L−1), where,

• K̃∞(x, x′) =
σ2
w‖x‖ ‖x

′‖
d

(1− (1− λ)1x 6=x′) with λ = 1/4, for φ = ReLU.
• K̃∞(x, x′) = q(1− (1− λ)1x 6=x′) where q > 0 is a constant and λ = 1/3, for φ = Tanh.

We refer the reader to Section 1 in the appendix for the proof details. Theorem 1 shows that the EOC initialization
yields a polynomial convergence rate (w.r.t L) of K̃L to K̃∞. This is important knowing that K̃∞ is trivial
and brings hardly any information on x. Indeed, the convergence rate of K̃L to K̃∞ is Θ(log(L)L−1). This
means that as L grows, the kernel K̃ with EOC is still much further from the trivial kernel K̃∞ compared to the
Ordered/Chaotic initialization. Thus, the EOC alleviates the curse of depth for NTK regime. However, as shown
in table 1, NTK regime fails for very deep networks (L = 300).

3.2 Residual Neural Networks (ResNet)

Another important feature of DNNs, which is known to be highly influential, is their architecture. For residual
networks, the next theorem shows that for any σw > 0, the NTK of a ResNet explodes (exponentially) as L
grows. However, a normalized version K̄L = KL/αL of the NTK of a ResNet will always have a polynomial
convergence rate to a limiting trivial kernel.
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Table 1: Test accuracy on CIFAR10 dataset after 100 training epochs for L ∈ {3, 30} and 160 epochs for
L = 300. V-ResNet is a ResNet with Fully Connected blocks.

NTK regime SGD Training

EOC Ordered EOC Ordered

L=3
FFNN-ReLU 48.13±0.10 48.45±0.14 55.13±0.23 54.10±0.12
FFNN-Tanh 48.32±0.15 48.10±0.10 56.13±0.34 54.10±0.23
CNN-ReLU 49.11±0.16 42.76±3.32 60.23±0.45 59.05±0.15
V-ResNet 47.82±0.73 48.01±0.20 54.40±0.24 54.28±0.33

L=30
FFNN-ReLU 48.32±0.10 — 56.10±0.41 —
FFNN-Tanh 48.40±0.12 — 57.39±0.08 —
CNN-ReLU 48.42±0.10 — 75.39±0.31 —
V-ResNet — — 57.09±0.47 58.13±0.18

L=300
FFNN-ReLU — — 30.25±3.23 —
FFNN-Tanh — — 58.25±0.43 —
CNN-ReLU — — 76.25±0.21 —
V-ResNet — — 58.87±0.44 59.25±0.10

Theorem 2 (NTK for ResNet). Consider a ResNet satisfying

yl(x) = yl−1(x) + F(wl, yl−1(x)), l ≥ 2, (4)

where F is a dense layer (Eq. (3)) with ReLU activation. Let KL
res be the corresponding NTK, and K̄L

res =

KL
res/αL (Normalized NTK) with αL = L(1 +

σ2
w
2

)L−1. Then, we have

sup
x∈E
|K̄L

res(x, x)− K̄∞res(x, x)| = Θ(L−1).

Moreover, there exists a constant λ ∈ (0, 1) such that for all ε ∈ (0, 1)

sup
x,x′∈Bε

∣∣K̄L
res(x, x

′)− K̄∞res(x, x′)
∣∣ = Θ(log(L)L−1),

where K̄∞res(x, x
′) =

σ2
w‖x‖ ‖x

′‖
d

(1− (1− λ)1x 6=x′).

The proof techniques used in Theorem 2 are similar to those used in the proof of theorem 1. Details are provided
in the appendix.

Theorem 2 shows that the NTK of a ReLU ResNet explodes exponentially w.r.t L. However, the normalized
kernel K̄L

res = KL
res(x, x

′)/αL converges to a limiting kernel K̄∞res at the exact polynomial rate Θ(log(L)L−1)
for all σw > 0. This suggests that ResNet act by default as an FFNN that is initialized on the EOC. However,
K̄L
res converges to a trivial kernel, which means that, even with ResNet, the performance of the NTK regime will

decrease as we increase the depth, although it happens with a polynomial rate. Table 1 shows the performance of
the NTK regime versus standard SGD training on CIFAR10. While the NTK regime fails with L = 300 for both
Ordered/EOC initializations, it yields non-trivial performance when initialized on the EOC with L = 30, which
is not the case with an Ordered phase. With ResNet, the performance is similar for both initializations which
confirms the results of theorem 2. However, for all initializations schemes, NTK regime fails for L = 300 while
standard SGD training succeeds.

We now leverage the previous results to obtain the asymptotic behaviour of the spectrum of the kernels studied
in Theorems 1, 2 and Proposition 1, on the unit sphere Sd−1 = {x ∈ Rd : ‖x‖2 = 1}. On the sphere Sd−1, all
of these kernels (namely KL for FFNN on the Ordered/Chaotic phase, K̃L for FFNN on the EOC, and K̄L

res for
ResNets) are dot-product kernels, i.e. for any of these kernels, denoted by κL, there exists a function gL such
that κL(x, x′) = gL(x · x′) for all x, x′ ∈ Sd−1 (we refer the reader to appendix 3 for more details). This type
of kernels is known to be diagonalizable on the sphere Sd−1 and its eigenfunctions are the so-called Spherical
Harmonics of Sd−1. Many concurrent results have observed this fact Geifman et al. (2020); Cao et al. (2020);
Bietti and Bach (2021). In the next proposition, we leverage the results of Section 3 to study the aforementioned
kernels from a spectral perspective.
Proposition 2 (Spectral decomposition on Sd−1). Let κL be either, KL for an FFNN with L layers initialized
on the Ordered phase (Proposition 1), K̃L for an FFNN with L layers initialized on the EOC (Theorem 1), or
K̄L
res for a ResNet with L Fully Connected layers (Theorem 2). Then, for all L ≥ 1, there exists (µLk )k≥ such

that for all x, x′ ∈ Sd−1

κL(x, x′) =
∑
k≥0

µLk

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′).
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Figure 1: Normalized eigenvalues ofKL on the 2D sphere for an FFNN with different initializations, activations,
and depths. (Red and Green lines are identical in the upper left figure. )

(Yk,j)k≥0,j∈[1:N(d,k)] are spherical harmonics of Sd−1, and N(d, k) is the number of harmonics of order k.

Moreover, we have that 0 < µ∞0 = lim
L→∞

µL0 <∞, and for all k ≥ 1, lim
L→∞

µLk = 0.

The proof of Proposition 2 is based on a result from spectral theory analysis. The limiting eigenvalues are
obtained by a simple application of the dominated convergence theorem.

Proposition 2 shows that in the limit of large L, the kernel κL becomes close to the trivial kernel κ∞ (x, x′) 7→
µ∞0 Y0,0(x)Y0,0(x′), where Y0,0 is the constant function in the spherical harmonics class. Therefore, in the limit
of infinite depth, the RKHS of the kernel κL is reduced to the space of constant functions, confirming that the
NTK regime is trivial in this limit (recall that f∞ − f0 is in the RKHS of κL). Fig 1 illustrates this deterioration
of the spectrum as the depth increases. Notice that with EOC, the deterioration happens with a much slower rate,
which is expected from theorems 1 and 2.

4 Conclusion and Limitations

In this paper, we have shown that the infinite depth limit of the NTK regime is trivial and cannot explain the
performance of DNNs. However, this convergence is initialization dependent. These findings add to a recent line
of research which shows that the infinite width approximation of the NTK does not fully capture the training
dynamics of DNNs (Chizat and Bach, 2018; Ghorbani et al., 2019; Huang and Yau, 2020; Hanin and Nica,
2019).

5



References
Arora, S., S. Du, W. Hu, , Z. Li, and R. Wand (2019). Fine-grained analysis of optimization and generalization

for overparameterized two-layer neural networks. ICML.

Bietti, A. and F. Bach (2021). Deep equals shallow for reLU networks in kernel regimes. In International
Conference on Learning Representations.

Bietti, A. and J. Mairal (2019). On the inductive bias of neural tangent kernels. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Advances in Neural Information Processing
Systems, Volume 32, pp. 12893–12904. Curran Associates, Inc.

Cao, Y., Z. Fang, Y. Wu, D. Zhou, and Q. Gu (2020). Towards understanding the spectral bias of deep learning.
arXiv prePrint 1912.01198.

Chizat, L. and F. Bach (2018). A note on lazy training in supervised differentiable programming. arXiv preprint
arXiv:1812.07956.

Du, S., J. Lee, H. Li, L. Wang, and X. Zhai (2019). Gradient descent finds global minima of deep neural
networks. ICML.

Geifman, A., A. Yadav, Y. Kasten, M. Galun, D. Jacobs, and R. Basri (2020). On the similarity between the
laplace and neural tangent kernels. NeurIPS.

Ghorbani, B., S. Mei, T. Misiakiewicz, and A. Montanari (2019). Linearized two-layers neural networks in high
dimension. arXiv preprint arXiv:1904.12191.

Hanin, B. and M. Nica (2019). Finite depth and width corrections to the neural tangent kernel. arXiv preprint
arXiv:1909.05989.

Hayou, S., A. Doucet, and J. Rousseau (2019). On the impact of the activation function on deep neural networks
training. ICML.

Huang, J. and H. Yau (2020). Dynamics of deep neural networks and neural tangent hierarchy. ICML.

Huang, K., Y. Wang, M. Tao, and T. Zhao (2020). Why do deep residual networks generalize better than deep
feedforward networks? – a neural tangent kernel perspective. ArXiv preprint, arXiv:2002.06262.

Jacot, A., F. Gabriel, and C. Hongler (2018). Neural tangent kernel: Convergence and generalization in neural
networks. 32nd Conference on Neural Information Processing Systems.

Karakida, R., S. Akaho, and S. Amari (2018). Universal statistics of Fisher information in deep neural networks:
Mean field approach. arXiv preprint arXiv:1806.01316.

Lee, J., Y. Bahri, R. Novak, S. Schoenholz, J. Pennington, and J. Sohl-Dickstein (2018). Deep neural networks
as Gaussian processes. 6th International Conference on Learning Representations.

Lee, J., L. Xiao, S. Schoenholz, Y. Bahri, J. Sohl-Dickstein, and J. Pennington (2019). Wide neural networks of
any depth evolve as linear models under gradient descent. NeurIPS.

Lillicrap, T., D. Cownden, D. Tweed, and C. Akerman (2016). Random synaptic feedback weights support error
backpropagation for deep learning. Nature Communications 7(13276).

MacRobert, T. (1967). Spherical harmonics: An elementary treatise on harmonic functions, with applications.
Pergamon Press.

Matthews, A., J. Hron, M. Rowland, R. Turner, and Z. Ghahramani (2018). Gaussian process behaviour in wide
deep neural networks. 6th International Conference on Learning Representations.

Neal, R. (1995). Bayesian learning for neural networks. Springer Science & Business Media 118.

Novak, R., L. Xiao, J. Hron, J. Lee, A. A. Alemi, J. Sohl-Dickstein, and S. S. Schoenholz (2020). Neural tangents:
Fast and easy infinite neural networks in python. In International Conference on Learning Representations.

Poole, B., S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli (2016). Exponential expressivity in deep
neural networks through transient chaos. 30th Conference on Neural Information Processing Systems.

Schoenholz, S., J. Gilmer, S. Ganguli, and J. Sohl-Dickstein (2017). Deep information propagation. 5th
International Conference on Learning Representations.

6



Xiao, L., Y. Bahri, J. Sohl-Dickstein, S. S. Schoenholz, and P. Pennington (2018). Dynamical isometry and a
mean field theory of cnns: How to train 10,000-layer vanilla convolutional neural networks. ICML 2018.

Xiao, L., J. Pennington, and S. Schoenholz (2020). Disentangling trainability and generalization in deep neural
networks. In Proceedings of the 37th International Conference on Machine Learning, pp. 10462–10472.

Yang, G. (2019). Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760.

Yang, G. (2020). Tensor programs iii: Neural matrix laws. arXiv preprint arXiv:2009.10685.

Yang, G. and S. Schoenholz (2017a). Mean field residual networks: On the edge of chaos. Advances in Neural
Information Processing Systems 30, 2869–2869.

Yang, G. and S. Schoenholz (2017b). Mean field residual networks: On the edge of chaos. In Advances in neural
information processing systems, pp. 7103–7114.

7


	Introduction
	Neural Networks and Neural Tangent Kernel
	Setup and notations
	Asymptotic Neural Tangent Kernel regime
	Deep NTK of a FeedForward Neural Network (FFNN)
	Residual Neural Networks (ResNet)
	Conclusion and Limitations

	Proof techniques
	The infinite width limit
	Forward propagation
	Warmup: Results from the theory of signal propagation in DNNs
	Notation
	Some results from the information propagation theory
	A technical lemma for the derivation of uniform bounds





