
Supplementary Materials

I. ARCHITECTURE DETAILS

A. Model architectures

In our model architecture we use exclusively feed-forward fully connected neural networks. Functions φs and φa used by all
our architectures are MLPs with layers φs : (inputSize, 256), (256, 256) and φa : (256, 4) respectively. We use tanh activations
after every layer except for the last layer of φa which has no activation.

B. Mean embeddings

The neighbor encoder ψη has layers (inputSize, 256), (256, 256) with tanh activations after each layer.

C. Attention

• ψe: (inputSize, 256), (256, 256) with tanh activations following each layer.
• ψh: (256, 256), (256, 256) with tanh activations following each layer.
• ψα: (512, 256), (256, 256), (256, 1) with tanh activations following the first and second layer.

II. HYPERPARAMETERS

A. Reward function

All reward coefficients except for collision penalty are multiplied by dt, which is equal to 0.01 in our experiments since we
use control frequency of 100Hz. This creates a reward scheme independent of control frequency, i.e. agents receive the same
reward for the same actions regardless of dt. For each collision, we only apply collision penalty on the first timestep that
collision is detected. Therefore, collision penalty is independent of dt.

Coefficient name Symbol Value
Position reward αpos 1.0 ∗ dt
Collision penalty αcol 5.0
Smooth proximity penalty αprox 10.0 ∗ dt
Angular velocity penalty αω 0.1 ∗ dt
Motor thrusts penalty αf 0.05 ∗ dt
Rotation penalty (penalizes high pitch & roll) αrot 1.0 ∗ dt

TABLE I: Reward function coefficients.

B. Training algorithm

Learning rate 10−4

Discount γ 0.99
Policy initialization Xavier uniform (Glorot and Bengio [1])
Optimizer Adam (Kingma and Ba [2])
Optimizer settings β1 = 0.9, β2 = 0.999, ε = 10−6

Gradient norm clipping 5.0

Rollout length T 128
Batch size, samples 1024
Number of training epochs 1

TABLE II: Hyperparameters for the training algorithm, APPO.



III. TRAINING DETAILS

We train on a single 36-core server with four RTX2080Ti GPUs. A typical experiment includes four parallel training runs, each
starting from different random weight initializations. The training system [3] collects experience using 144 parallel processes,
and allocates one GPU per trained policy to execute inference and backpropagation. Additionally, each experience collection
process runs simulation in 4 independent environments with N = 8 drones in each, which amounts to 144× 4× 8 = 4608
quadrotors modeled simultaneously. The drones are trained in an episodic setting, each episode lasting 16 seconds of subjective
time. With physics integration frequency of 200Hz and control frequency of 100Hz, this amounts to 3200 physics steps and
1600 drone actions per episode. The training system reaches a throughput of 6.1× 104 samples per second and trains four
policies on 109 samples each in under 19 hours. Thus a single training session amounts to roughly 15 months of simulated
quadrotor flight. This highlights the importance of the fast simulated environment since collecting the equivalent amount of
experience in the real world would be prohibitive.

IV. PHYSICAL DEPLOYMENT

A. Ablation study

Due to the physical constraints imposed by Crazyflie 2.0, we needed to simplify our policies to meet the runtime and memory
requirements of the platform. To this end, we conducted an ablation study over deep sets policies with smaller self-encoder
and neighbor encoder, since deep sets architecture is more computationally efficient compared to our attention-based model.
Specifically, we ablated over the following architecture sizes:

• φs : (inputSize, 32), (32, 32) ψn : (inputSize, 16), (16, 16)
• φs : (inputSize, 32), (32, 32) ψn : (inputSize, 8), (8, 8)
• φs : (inputSize, 16), (16, 16) ψn : (inputSize, 8), (8, 8)

Where φs is the self encoder and ψn is the neighbor encoder. All other hyperparameters, training procedure, and other aspects
of the networks are kept the same as in simulation. Since all three models demonstrated comparable performance (albeit inferior
to bigger models we used in the simulation), we chose the smallest of the three architectures, the 16x8 deep sets model.
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Fig. 1: Ablation study over smaller deep sets network architectures. In the legend, 16x8 corresponds to the model with the hidden size 16 for
the self encoder and hidden size 8 for the neighbor encoder. Likewise, 32x16 and 32x8 correspond to models with hidden size 32 in the
self-encoder and 16 and 8 respectively in the neighbor encoder.

B. Experiment details

We conducted experiments on four training scenarios from simulation: same static goal, same dynamic goal, swap goals, , and
dynamic geometric formations. The first two scenarios are based on four drones and the last two scenarios are based on eight
drones. A video of the results of these experiments has been included in our website.

C. Physical baseline comparison

We repeated the "swap goals" experiment with an algorithm from [4]: a PID controller combined with Buffered Voronoi Cells
for generating safe regions around the quadrotors. Figure 2 demonstrates the significant difference between the behavior of two
methods. Our neural controller quickly reacts to the change in target position, reaching speeds up to 4 m/s and acceleration up
to 7 m/s2. Spikes on the velocity plot show that it takes only 1-1.5 seconds to react to the two goal swapping events. Controller
in [4] is a lot more conservative: the drones slowly drift to their targets at 1 m/s and each times the goals are swapped it takes
the controller several seconds to complete the maneuver.

https://sites.google.com/view/swarm-rl
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Fig. 2: "Goal Swap" physical experiment. (Left) Our policy: the quadrotors reach high velocity and acceleration to quickly react to the
changes in target positions. (Right) PID + Buffered Voronoi Cells: The quadrotors take longer to complete the task and use much more
conservative maneuvering.
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