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Abstract: Robots of the future are going to exhibit increasingly human-like and
super-human intelligence in a myriad of different tasks. They are also likely going
to fail and be incompliant with human preferences in increasingly subtle ways.
Towards the goal of achieving autonomous robots, the robot learning community
has made rapid strides in applying machine learning techniques to train robots
through data and interaction. This makes the study of how best to audit these
algorithms for checking their compatibility with humans, pertinent and urgent. In
this paper, we draw inspiration from the AI Safety and Alignment communities
and make the case that we need to urgently consider ways in which we can best
audit our robot learning algorithms to check for failure modes, and ensure that
when operating autonomously, they are indeed behaving in ways that the human
algorithm designers intend them to. We believe that this is a challenging problem
that will require efforts from the entire robot learning community, and do not
attempt to provide a concrete framework for auditing. Instead, we outline high-
level guidance and a possible approach towards formulating this framework which
we hope will serve as a useful starting point for thinking about auditing in the
context of robot learning.
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1 Introduction

While recent progress in robot learning has achieved significant growth in terms of being able to
perform complex manipulation, locomotion, and navigation tasks with minimal hand-designed con-
trollers and very little expert supervision [1, 2, 3, 4], deployment-specific considerations like safety,
ethics, and compliance have not received their fair share of attention. Training robots to solve tasks
with machine learning algorithms has the benefit of not requiring exact specification of the desired
behavior, but instead providing data of how that behavior should look like or an objective function
that optimizes for the desired behavior. Reinforcement learning (RL) and imitation learning (IL) are
two broad classes of algorithms for robot learning, that differ with respect to the type of supervision:
whether a reward function is provided, or examples of demonstrations from an expert.

Despite offering several benefits in terms of flexibility, machine learning approaches offer either
very weak or no guarantees on the type of behavior a trained model might be expected to exhibit
during deployment. In particular, for deep networks, generalization bounds based on distribution
shift are largely trivial and strong guarantees are limited to restricted problem settings and simple
architecture designs [5, 6, 7, 8]. Due to these limitations, it is very difficult to understand how
accurately would the trained models align with their intended behavior. In the broader context of
general AI systems, this is often termed the AI Safety and Alignment problem [9, 10].

Based on the limitations above, in this paper, we make the case that since robot learning involves
applying machine learning algorithms to solve control problems, we need a systematic way to audit
trained models prior to deploying them in real-world applications. We motivate the necessity of
auditing under two lenses: safety and compliance. Safe behavior can be defined as guarantees on the
robot behavior that prevent catastrophic failures from happening to the robot and those interacting
with it, including humans and inanimate objects. Since the goal of developing intelligent robots is
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to help humans by co-existing with them, we need to determine how compliant are the robots with
social norms and human preferences.

In the next sections, we motive the problems of safety and compliance by grounding them in prior
work, and then describe a possible approach for developing the audit framework for robot learning
based on these considerations.

2 Safety
In the control theory literature, there are provable safety guarantees for control algorithms, for ex-
ample through Hamilton-Jacobi Reachability based methods [11, 12]. Other works have provided
safety and stability guarantees for RL based control problems under structural assumptions about
the environment dynamics, safety structures, or access to user demonstrations [13, 14, 15]. Some
other approaches have provided safety guarantees for RL without additional assumptions, but they
typically satisfy the safety constraints only at convergence or have finite but non-zero failures during
training [16, 17, 18].

Although there have been some prior works in safety for robot learning, like the ones above, the
issues of safety have received far less attention from the community compared to ways in which
task performance is maximized. Most of the prior approaches study safe RL for control under a
constrained optimization problem where the constraints are simple checks on failures of the agent,
for example the agent falling down on the ground. As documented in [18, 17], safety and task
performance are sometimes at odds with each other especially when safety is enforced in the form
of constraints the agent must respect during training. Hence, it is unlikely that safe behaviors would
emerge automatically while trying to optimize a task-specific reward function.

As a simple example, consider a robot learning to pick and place a cup of water on the table. The task
objective is usually such that the agent is rewarded for placing the cup in the desired location, but
this doesn’t prevent the agent from spilling water from the cup on the table and damaging potential
electronic equipments on the table. One type of desired behavior from a safety perspective would be
to do something for the sake of safety: in this scenario for example, the robot might push aside the
electronics before trying to move the cup. Such commonsense reasoning comes naturally to humans,
but it is tricky to determine safety objectives and constraints that would lead to such desirable safe
behaviors.

The above example is a type of behavioral safety that we would want the autonomous agents to ex-
hibit. We believe this would require moving beyond the formulation of safety as simple constraints
and fixed objective functions, to human-in-the-loop settings, where humans can continuously pro-
vide interactive feedback to the robot [19, 20].

3 Compliance
Generally speaking, compliance refers to adhering to a rule, policy, or specification. When we train
machine learning algorithms, compliance with human preferences is an implied desiderata - we
expect the trained algorithm to behave according to the objective function we specified for training,
and the objective function in turn is expected to be a proxy for the preferences of the algorithm
designer. There are two broad challenges: optimizing with respect to a specified objective function,
and designing the objective function in the first place.

Most of the machine learning community is focused on addressing the first problem and coming up
with better ways to optimize either through an improved learning algorithm, or through better neural
network architectures. This is usually not an issue because for a large number of supervised learning
problems, like classification with cross-entropy loss, or unsupervised learning problems, like image
generation with pixel-reconstruction error, the objectives work reasonably well in achieving the
desired outcome. In sequential decision problems like learning to play games via reinforcement
learning for example, the reward function is usually defined by the rules of the game itself and
doesn’t require manual designing [21]. However, when we move away from these settings into
complex real-world robot control problems, it becomes increasingly unclear how the reward function
should be designed [22, 23].

For example, for a task like a robot grasping a cup of water and moving it across the table to hand
it to a person, the reward function for RL is unclear. Previous works have manually created dense
reward functions based on some intuitions about the different stages of the process [24]. Some
works have specified the reward to be +1 when the task is complete and 0 otherwise - the so-called
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sparse reward function [25]. Other approaches have sought to use human demonstrations in order to
encourage the robot to learn to match the demonstrations directly (behavior cloning based methods)
or learn a possible reward function from demonstrations and perform RL with the learned reward
function [26, 27, 28].

Irrespective of the approach adopted in the previous example, it is not possible to guarantee that the
objective function indeed corresponds to what we as the algorithm designers want from the robot. In
particular, if we specify the objective incorrectly, we are likely to get vastly different and potentially
catastrophic outcomes from the one we desire [29, 30]. For example, the robot might learn to grasp
the cup and bring it to the person but drop it instead of smoothly handing it over. In order words, we
might obtain a trained robot that is not compliant with our preferences.

4 Auditing Robot Learning algorithms

In light of safety and compliance considerations, we believe it is important to develop rigorous audit
frameworks for robot learning that test specific failure modes of the system before deployment. To
formalize the audit problem, we would come up with specifications that we want the robot to satisfy
and under different controlled variations of the environment and tasks, test whether the specifica-
tions are satisfied. The outlined approach is inspired by prior work in auditing machine learning
models [31]. A key desiderata for the specification is to encode human preferences about what is
safe vs. unsafe and what is compliant vs. uncompliant behavior. So, the audit framework must
involve a human-in-the-loop.

Based on studies in the AI Alignment literature [32, 33], purely didactic objective functions, where
the human specifies an order which the robot must optimize its behavior for, leads to unintended
consequences. This is because humans are themselves not adept in distilling their preferences into a
crisp statement for a perfect objective function, so the objective being specified to the robot is likely
imperfect. To mitigate this, instead of the human specifying an objective offline for the robot to
optimize for, learning should be an iterative process of interaction between the human and the robot.

We analyze the audit framework by decomposing it into three parts: verification, verified training,
and deployment. For ease of description, we assume RL as the policy training approach.

Verification. Consider a pool of humans, H that forms the set of auditors. Let T denote the set of
tasks we want the robot to accomplish, with each task Ti ∈ T being specified with a proxy reward
function Ri. Given task Ti specified by the auditors H, the robot executes a sequence of actions
at ∈ A at every time-step, in states st ∈ S, by receiving rewards rt ∼ Ri(st, at) and stops (for
example by executing a STOP action) when it considers the task is complete. We will talk about
training in the next subsection, here we consider that training has completed, and the robot is being
verified for its behavior.

The human auditors H inspect temporal chunks of the robot’s trajectory and mark each chunk with
a 3or a 7. A 3denotes that the chunk is both safe and compliant, whereas a 7denotes that the chunk
is either unsafe or uncompliant. An aggregate over all the auditors in H can be used to determine
whether each chunk is 3or 7. Now, an aggregate over the chunks for the trajectory can be done to
determine to what extent the entire trajectory is both safe and compliant - for example by reporting
the fraction of 3and 7over the entire trajectory. The same is repeated for each task in T .

Verified Training. In addition to verifying whether the specifications by human auditors are sat-
isfied, we can also train the robots such that the specifications are likely to be satisfied in the first
place. In this case, the training algorithm involves the human auditorsH in the loop. Let us assume
each temporal chunk to be ∆t such that after every ∆t interval, the human auditors aggregate a 3or
7for that part of the robot’s trajectory. For simplicity, let T just consists of one task T informed by
a proxy reward function R specified initially.

The human auditors influence the training process of the robot by altering the reward function. We
assume that the auditors have a bag of proxy-reward functions {R̂j} that can be swapped with the
current reward function that the robot is operating with. If the auditors determine a temporal chunk
∆t of the robot’s trajectory {(st, at, rt)}tx+∆t

t=tx to be either unsafe or uncompliant, then the reward
function Ri is swapped with R̂ ∈ {R̂j} and the process is repeated for each chunk ∆t. In order to
avoid problems with the policy being improperly optimized due to a changing reward function, ∆t

could be a sufficiently long interval of time.
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Figure 1: Illustration of the audit framework with verified training and deployment phases. The robot is
initially assigned a proxy reward function Ri to optimize for solving task Ti. The human auditors H ob-
serve a temporal chunk ∆t of the robot’s trajectory {(st, at, rt)}tx+∆t

t=tx and determine whether it is either
unsafe/uncompliant (7) or not (3). If it is marked 7, then the reward function Ri is swapped with R̂ ∈ {R̂j}
and the process is repeated for each chunk ∆t. After this verified training phase, in the final verification phase,
the entire trajectory of the robot for each task is marked with 3or 7for each chunk, and the aggregate fraction
is reported in a specification sheet. The S.D. is over differ humans in the set H. When deploying the robot, it is
accompanied by the specification sheet, so that the end-user can determine in which tasks to use the robot and
where to not use it.

An additional desiderata in this setup could be that the robot maintains a distribution over the pa-
rameters of the reward function R to take into account that R would change during training through
human-intervention, and optimizes an ensemble of policies by sampling different reward functions
from this distribution. When R changes to some R̂, the distribution would be maintained over this
new reward function.

Deployment. After verified training, followed by a final verification step for all tasks, the auditors
would make a specification sheet that lists each task Ti ∈ T and the fraction of 3and 7for them

3
3+7

. When the robot is finally deployed, it would be accompanied by this specification sheet to help
the end-user determine, in which tasks to use the robot and where to avoid using it.

5 Discussion
In this paper, we proposed the problem of auditing robot learning algorithms under the lens of
safety and compliance and provided high-level ideas about a possible approach to designing an
audit framework. Through this paper, our main objective is to communicate the importance and
immediate relevance of problems studied in the AI safety and AI alignment communities, to robot
learning. Since the robots we are developing are becoming increasingly intelligent and autonomous,
we must devise formal approaches to audit these robots for ensuring they are safe to interact with
and their behaviors are compatible with human preferences.

We would like to emphasize that the description in section 3 as is would not lead to a practical
framework, for a number of reasons, and these open up a lot of avenues for research in this direction.
First and foremost, it is impractical to assume that humans would be available to babysit the robot
during training, for hours and in some cases even days, while intervening at appropriate times with
a modified reward function. So it is imperative to come up with a scheme, where the intervention
frequency with humans is minimized and parts of the framework are more automated. Second, a
changing reward function is likely to present optimization challenges for policy learning with RL.
To mitigate this and alleviate issues with catastrophic forgetting of neural network policies, works
in continual learning could be useful.

Third and most importantly, the set of human auditors need to come up with a reasonable set of
reward functions that can be used to replace the current reward function that the robot is optimizing
the policy with. These reward functions which for example could be differently parameterized or
have completely different functional forms from each other, reflect the imperfect distillation of the
human’s preferences. So, it is important to make the switch in reward functions when the behavior
observed is undesirable, instead of letting the robot operate with a fixed offline reward function.

We believe that our paper and the ideas we presented would lead to increased synergy between
the AI safety/alignment and robot learning communities, and serve as a starting point for formal
frameworks in auditing robot learning.
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