
S.T.O.R.M: An Integrated Framework for Fast Joint
Space Model-Predictive Control for Reactive

Manipulation (Supplementary Material)

Mohak Bhardwaj1,2, Balakumar Sundaralingam1, Arsalan Mousavian1, Nathan Ratliff1,

Dieter Fox1,2, Fabio Ramos1,3, Byron Boots1,2

1NVIDIA 2University of Washington 3 University of Sydney

1 Cost Function Design

1.0.1 Reaching Goal Poses

Given the desired and current Cartesian poses for the end-effector wXg,
wXee ∈ SE(3) respectively

in the world frame w, we compute a task-space cost term that penalizes their distance

ĉpose(
wXee,

wXg) = ||α1(I − wR>g
wRee)||2 + ||α2(

wR>g
wdee − wR>g

wdg)||2 (1)

where wRt,
wRg are the rotation and translation part of the goal pose Xg , and wdt,

wdg are the
rotation and translation part of the current end-effector pose. The weight vectors α1, α2 ∈ R3 allow
us to weigh errors in different directions and orientations with respect to each other and can be set to
different values to obtain qualitatively different behavior such as partial pose reaching or enforcing
partial pose constraints. For example, we can set a high weight in α2 along a desired axes to maintain
the goal orientation throughout the motion of the robot as we demonstrate in our experiments.

1.0.2 Stopping for Contingencies

The finite horizon of MPC makes it myopic to events that can occur far out in the future, especially
in dynamic environments. Thus, it is desirable to ensure that the robot can safely stop within the
horizon in reaction to events that might be observed at timestep H − 1. We encode this behavior by
computing a time varying velocity limit θ̇max ∈ RH for every timestep in the horizon based on the
maximum acceleration of the robot θ̈max (or a user-specifed maximum acceleration) and the time
available until H − 1. This means the joint velocity of the robot must allow it to come to a stop
at the end of the horizon by applying the max acceleration. Any state that exceeds this velocity is
penalized by a cost which is expressed as

θ̇max = Su(1)θ̈maxdt ĉstop(θ̇t) =

{
||θ̇max,t − |θ̇|||2 if θ̇max,t − |θ̇| > 0.0

0, otherwise
(2)

where Su(1) is an upper triangular matrix filled with 1.

1.0.3 Joint Limit Avoidance

Given minimum and maximum limits on joint state θmin, θmax respectively, we penalize the joint
state θt only if it exceeds a safety threshold defined by a kjl ratio of its full range.

θ̂min = θmin + kjl(θmax − θmin) θ̂max = θmax − kjl(θmax − θmin)

ĉjoint(θt) =


||θt − θ̂min||2 if θt < θ̂min

||θ̂max − θt||2 else if θt > θ̂max

0 otherwise
(3)

where θ̂min, θ̂max adds a safety threshold from the actual bounds of the robot. In our experiments,
we chose kjl = 0.1.

5th Conference on Robot Learning (CoRL 2021), London, UK.

1.0.4 Avoiding Cartesian Local Minima

The manipulability score describes the ability of the end-effector to achieve any arbitrary velocity
from a given joint configuration. It measures the volume of the ellipsoid formed by the kinematic
Jacobian which collapses to zero at singular configurations. Thus, to encourage the robot to optimize
control policies that avoid future kinematic singularities, we employ a cost term that penalizes small
manipulability scores [1, 2]

ĉmanip(θt) =

{
1.0−

√
J(θt)J(θt)>, if

√
J(θt)J(θt)> < km

0.0, otherwise
(4)

where we choose km = 0.05 based on values obtained by Haviland and Corke [3] for the Franka
Panda robot.

1.0.5 Self Collision Avoidance

Computing self-collision between the links of the robot has previously shown to be computationally
expensive, especially when we want to compute for many joint configurations [4, 5]. Hence, similar
to previous approaches [4, 5], we train a neural network that predicts the closest distance 1 between
the links of the robot given a joint configuration (θ). One difference in our approach is the use of
positional encoding (i.e.,[sin(θ), cos(θ)]) as we found this to improve the accuracy of the distance
prediction [6]. Our network (which we call jointNERF) has three layers with [256, 128, 64] neurons
and ReLU activations. We compute a cost term as shown below,

ĉself-coll(θt) = max(0, jointNERF(θt)) (5)

1.0.6 Environment Collision Avoidance

Safe operation in unstructured environments requires a tight coupling between perception and con-
trol for collision avoidance. General gradient-based trajectory optimization and MPC approaches [7]
rely on either known object shapes or pre-computed signed distance fields that provide gradient in-
formation for optimization. However, our sampling-based approach can handle discrete costs and
as such we explore collision avoidance without using signed distance. We specifically use a learned
collision checking function from Danielczuk et al. [5] that operates directly on raw pointcloud data.
The method classifies if an object pointcloud pcl is in collision or not with the pointcloud pcenv
given the object’s pose X l. The cost can be written as,

ĉcoll(pcl, pcenv, X l) =

{
1, if collision,
0, otherwise.

(6)

Finally our running cost function is given by

ĉ(xt, ut) = αpĉpose + αsĉstop + αj ĉjoint + αmĉmanip + αc(ĉself-coll + ĉcoll) (7)

In our experiments we chose large values for αj = 100.0 and αcoll = 1000 to enforce joint and
collision avoidance constraints. For pose reaching, αp = [150.0, 20.0] was used with smaller value
on orientation as it only needs to be maintained at the goal. For enforcing orientation constraints
while reaching goals, however, αp = [100.0, 100.0] was chosen.

2 Real-Time Control Implementation

We implemented our MPC pipeline using PyTorch [8] with manipulator forward kinematics adapted
from the open-source implementation provided by Sutanta et al. [9] and all cost terms and update
equations implemented in a batched fashion. Further, multiprocessing is used to run MPC in a
seperate process to avoid latency issues. Table 1 shows a timing comparison of our system running
on a Titan RTX GPU against leading manipulator control approaches in literature.

1Distance is positive when two links are penetrating and negative when not colliding.

2

Robot PC

Control + Perception
PC

Franka Panda

Torque Control

1000 Hz StateTorque  
command

Intel RealSense Point cloud

MPC Process

Joint command

State

Filtered  
state

Command  
buffer

ROS MPC Node

Filtered 
point  
cloud

1000 Hz

100 Hz

Figure 1: The compute graph shows the flow of information between the different components in our approach.

Table 1: Control Latency of methods that can handle collision avoidance in high dimensional systems is
tabulated here. A more thorough description is available in Sec. 3.

Method Latency (ms) Horizon
OSC [10, 11, 3, 4] 1-17 1
Motion Planning [12, 13, 14] 140-1000 N/A
Custom Chip Motion Planning [15] 1 N/A
Gradient MPC [16, 17, 18] 20 - 140 ≤16
Sampling MPC [5] 100 40

Ours 10 30

2.1 Franka Panda Control System

The desired acceleration θ̈dt command from MPC is evaulated at 100Hz and integrated forward to
obtain desired joint position (θdt) and joint velocity θ̇dt commands respectively. These commands are
sent to a custom low-level torque controller that computes desired torque commands at 1000Hz to
control the Franka robot,

τfft =M(θt)θ̈
d
t + C(θt)θ̇t +Kp(θ

d
t − θt) +Kd(θ̇

d
t − θt) (8)

where M(θ) and C(θ̇) are the inertia and coriolis force matrices respectively provided by
libfranka and Kp,Kd are gains for the position and velocity errors respectively. Fig. 1 shows
the overall architecture of the control system.

2.2 State Estimation and Perception

We found the noise in the joint state read from libfranka, especially in joint velocities, to be
prohibitive for precise control with MPC. In order to circumvent this issue we implemented a joint
state filter that first predicts the state based on the previous commanded joint acceleration and then
uses an exponential moving average filter to incorporate sensor readings.

For our perception setup, we use an Intel Realsense D455 Depth Camera placed at a fixed location
in the workspace with a known camera-to-robot transform to obtain depth data in the form of point
clouds. The raw point cloud is filtered to remove all the points lying inside the robot body to obtain
the scene point cloud. The robot URDF is used to sample points along the robot body to create a
robot point cloud. Both these point clouds are fed as input to SceneCollisionNet [5] for computing
the collision cost in Eq. 6. Since we only consider static scenes for the purposes of this work, the
scene pointcloud is computed once at the start of the run. For dynamic scenes, the pointcloud would
need to be processed in real-time. We defer this to future work.

3

3 Related Work

Perception driven feedback control on high dimensional systems is a large field of research with sev-
eral existing approaches [19]. Operation Space Controllers (OSC) are some of the fastest algorithms
available for feedback control, with methods achieving control latency of 1-2 ms [10, 11, 3, 4]. How-
ever OSC methods rely heavily on a higher level planner for avoiding local minima (e.g.,obstacles).

A more global approach has been explored by reformulating standard motion planning methods to
do feedback control via online replanning [20, 12, 13, 14, 15]. However most of these methods run
at a slow rates on high dimensional systems, with control latencies between 140ms and 1000ms [20,
12, 13, 14]. Murray et al. [15] researched leveraging a custom chip to do fast parallel collision
checking and use this with a PRM style planner to replan at 1ms for reaching Cartesian Poses in a
semi-structured environment. Their chip based collision checker uses a complete pointcloud of the
environment obtained by placing many cameras in the environment and combining their pointclouds.
This is an highly unrealistic setting for real world manipulation in unstructured environments.

In the realm of Model predictive control approaches, only gradient based joint space MPC meth-
ods have shown to work on real manipulation systems as their control latency is in an acceptable
range (20ms - 125ms) for feedback control [16, 17, 18]. Ishihara et al. [18] explore two stage hierar-
chical ILQR for fast MPC on a humanoid robot. Their two stage approach enables a very low control
latency of 20ms. Erez et al. [17] explore ILQR on humanoid robots leveraging a simulator for the
dynamics model. Fishman et al. [16] use gradient based MPC for finding trajectories for a manip-
ulator while simultaneously predicting user intent in a human robot interaction setting. They solve
the optimization problem leveraging Levenberg-Marquardt at a control latency of 140ms. Hogan
and Rodriguez [21] explore gradient based MPC in the task space for planar non-prehensile manip-
ulation leveraging a learned mode switcher to switch between different dynamic models. They are
able to obtain a control latency of 5ms as their dynamic models are smooth.

Sampling-based methods have a rich history in MPC. Model-Predictive Path Integral Control
(MPPI) [22] is one of the leading sampling-based MPC approaches that has shown great perfor-
mance on real-world aggressive off-road autonomous driving by leveraging learned models [23] and
GPU acceleration [24]. Wagener et al. [25] analyze MPC algorithms from the perspective of online
learning and show connections between different methods such as Cross-Entropy method (CEM)
and MPPI and have also demonstrated control rates of 40Hz with 1200 samples and a horizon of 2.5
seconds for off-road driving using GPU acceleration.

However, in the context of manipulation, sampling-based control in joint space has only been ex-
plored by optimizing in the joint position space without considering velocity and acceleration lim-
its [5, 26, 27]. Danielczuk et al. [5] learn a collision classifier and do online replanning in joint
space leveraging an inverse kinematic function to get a goal joint configuration and find straight
line paths in joint space to reach the goal while avoiding collisions. Their approach doesn’t handle
different task spaces directly in the form of cost functions and also has a much larger control latency
of 1000 ms. Hyatt et al. [26, 27] compare sampling based MPC with gradient based MPC on large
dimensional robots with piecewise linear functions. They show that sampling based MPC can run at
200Hz (5ms) even with large number of dimensions due to it’s parallelizability on the GPU. How-
ever, they do not explore collision avoidance or task space cost terms in their approach and leave it
for future work. Pinneri et al. [28] provide a method for adding correlated noise to action samples in
Cross-Entropy Method to reduce the number of particles required for obtaining good performance
on high-dimensional control tasks. However, their multi-threaded CPU implementation is unable to
achieve real-time performance. Their experiments are also limited to simulation with access to true
dynamics.

Sampling based optimization has also been used for motion planning in high dimensional sys-
tems [29, 30, 31]. Kalakrishnan et al. [29] formulate planning as a stochastic trajectory optimization
problem and plan over the joint position space to reach Cartesian positions while orientation con-
straints on the end-effector. They structure their co-variance matrix based on the finite difference
matrix to sample delta joint positions that start and stop at 0 with a smooth profile in between.
This sampling along with projecting the weighted action through this matrix, pushes the optimiza-
tion towards a smooth trajectory for execution on the real robot. Kobilarov [30, 31] explored using
cross-entropy optimization for motion planning and showed global convergence in very tight envi-
ronments on quadrotors and simple planar environments.

4

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
x (m)

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

y
(m

)

start end goal tray

Figure 2: Trajectories of ball in tray frame for 10 different episodes of the dynamic balancing task. At the start
of each episode the robot starts from the home configuration and the ball is placed at an arbitrary location on
the tray by the human operator. Our control framework is able to achieve a median error of 3.9 cm. Note that
due to perception errors, sometimes the center of the ball is detected to be outside the tray when near the edge.

4 Further Experimental Details

4.1 Dynamic Object Balancing

Experimental Setup: In this task, the real Franka Panda robot is required to balance a ball on tray
grasped by the parallel jaw gripper. Every episode starts with the ball placed at an arbitrary location
on the tray with the robot trying to center the ball without dropping it. Each episode lasts for 30
seconds after which the ball is placed at an arbitrary location by the human user. The position of
the ball is measured at 30Hz using perception system that uses the RGBD input from a RealSense
camera. The ball is detected from the RGB images using a blob-tracker and the corresponding depth
is queried from the aligned depth image. The camera intrinsics are then used to compute the 3D
coordinates. Fig. 3 shows a snapshot of the robot performing the task.

Ball Dynamics: We use a simple kinematic model of rolling on plane under accelera-
tion due to gravity to predict the future positions and velocities of the ball in the frame
of the tray given the end effector positions and orientations obtained from our arm model.
In this simplified model, we do not explicitly account for friction or perform any sys-
tem identification. In order to predict the future states of the ball given accelerations,
we can leverage our tensorized forward model and maintain a high control frequency.

Figure 3: Snapshot of Ball Bal-
ancing Task

Let the state of the ball in world frame (as input by the perception
system) be denoted by

xwball = [x, y, z] ẋwball = [ẋ, ẏ, ż]

Further, let the gravity vector in world frame be denoted by gw.
From forward kinematics, we can calculate the homogeneous trans-
form of the end effector with respect to world frame as

Tw
ee =

(
Rw

ee dwee
0 1

)

5

Table 2: Comparison of STORM with baselines on pose reaching. Reported values are median across 5 poses
excluding the first pose which was unreachable by MMC. Max Joint Velocity is the maximum velocity achieved
throughout the run.

Method Pos. Error Quat. Error Joint Path Length EE Path Length Max Joint Vel
(mm) (%) (rad) (m) (rad/s)

RRTCONNECT 0.5328 0.054 3.4527 1.0086 1.3547
RRTSTAR 0.3433 0.0393 1.7967 0.7626 0.7626
MMC 0.0661 0.00267923 2.3394 0.74351317 0.268
Ours 4.822 0.4619 3.41792 1.087688 1.2701

Given a batch of such end-effector poses (obtained from our tensorized arm model rollouts), we can
calculate the accelerations due to gravity of the ball in the end effector frame as gee = RwT

ee g
w and

ẍeeobj =
[
geex , g

ee
y , 0

]
. Here, we made the assumption that the ball does not lose contact with the plate

which is reasonable at lower speeds. Similarly, the position and velocity of the ball in end effector
frame are calculated as xeeball = Tw−1

ee ∗ xwball and ẋeeball = RwT
ee ∗ ẋwball with ẋeeball[2] = 0. Finally,

given the initial state and a batch of acceleration inputs in the end effector frame, we can simply
employ our tensorized kinematic model to predict the future states of the ball.

Analysis: Fig. 2 shows a superimposed plot of the (x,y) trajectories ball with respect to the tray
frame for 10 different episodes of the experiment. We observe that, even with our highly biased
model and noise due to perception and state estimation, our MPC framework is able to achieve a
median error of 3.9 cm in positioning the ball at the center of the tray. Moreover, the robot did not
drop the ball in any episode. This experiment demonstrates the efficacy of MPC in correcting for
model bias while maintaining reactivity and handling complex task constraints. In future work, we
wish to leverage machine learning in the form of dynamics models and terminal Q-functions for
MPC to achieve even better accuracy. An exciting extension of the task is to combine it with goal
position reaching and handling multiple objects.

4.2 Reaching Cartesian Poses

Figure 4: We show the robot try-
ing to reach a very hard orienta-
tion Sec. 4.2. The MMC base-
line is unable to reach this pose
and continuously enters states
of self collision due to its in-
ability to account for collision
avoidance while both MPPI and
MOVEIT! baselines are able to
reach the pose.

We test the accuracy and path length of Cartesian pose reaching
by selecting a sequence of six hard poses for the robot to reach.
We compare against baseline sampling based planners RRTCON-
NECT and RRTSTAR using MOVEIT! and, Manipulability Motion
Control [3], an operation space controller. In these experiments,
the MOVEIT! and MMC baselines use the position and velocity
controllers provided by franka ros and libfranka respec-
tively which have been extensively tuned and verified for accuracy.
Hence, MMC represents the best accuracy achievable by a feed-
back controller.

One of these poses requires a large change in the end-effector’s ori-
entation as shown in Fig. 4. We found that MMC was unable to
handle this pose and would repeatedly result in self collisions owing
to its local nature and no consideration of self-collision avoidance,
whereas both STORM and MOVEIT! baselines are able to reach
the it. For the other poses, we found the accuracy of STORM to
be worse than the baselines (shown in Table 2) although the path
lengths and max joint velocities are comparable. Even though our
method obtains millimeter level accuracy, the performance is lim-
ited by the lower level controller which was not tuned extensively.
As future work, we intend to further tune and improve the lower
level controller to overcome these issues.

6

4.3 SceneCollisionNet Training

For the current experiments, we used a pre-trained SceneCollisionnet
model (https://github.com/NVlabs/SceneCollisionNet) provided by the authors of [5]. The
model was trained for table-top environments which is appropriate for our setting as well.

5 Ablation Studies

We performed extensive quantitative ablation studies for individual components of our system for the
reaching task in simulation. We also present qualitative demonstrations of dynamic obstacle avoid-
ance and effect of horizon on our website https://sites.google.com/view/manipulation-mpc/further-
experimental-results.

5.1 Effect of Number of Particles

First, we study the effect of number of trajectories sampled per iteration of optimization (or particles)
on the controller performance in simulation. For this experiment, 10 end-effector pose targets were
used that require significant changes in orientation. Each episode is 700 timesteps long after which
the manipulator is reset to the base orientation. The horizon is kept constant at 30 timesteps and all
cost function weights are also fixed.

5.1.1 Position Accuracy

The box plot in Fig. 5a shows the median (solid line) with confidence interval (box) of position
errors in the last 50 timesteps of every episode as a function of changing number of particles. We
chose the last 50 timesteps to show the convergence of the controller to the goal. From the plot it can
be seen that, increasing number of particles the controller is able to achieve more accurate median
error with a tighter confidence interval.

5.1.2 Orientation Accuracy

The box plot in Fig. 5b shows the median (solid line) with confidence interval (box) of quaternion
errors in the last 50 timesteps of every episode as a function of changing number of particles. Our
framework achieves a confidence interval over quaternion errors within 5

5.1.3 Jerk

The box plot in Fig. 5c shows the median (solid line) with confidence interval (box) of the jerk in
the robot motion over all the timesteps and episodes. Our sampling strategy generates smooth (low
jerk) motions even with 200 particles.

5.1.4 Maximum Joint Velocity

Fig. 5d demostrates that with increasing number of particles, our B-spline sampling strategy is able
to ramp up the robot’s joint velocity while maintaining low jerk.

5.2 Cost Terms

We study the effect of different cost terms on the controller performance. We test the constraint-
based self collision and joint limit avoidance terms and behavior-based manipulability and stop
costs.

5.2.1 Self-Collision Cost

For this experiment, we chose 5 end effector target poses that are in collision with the robot and
report the number of timesteps the robot spent in self collision. Table 3 shows that when the self
collision cost is used, the robot never enters a state of self collision at the cost of not reaching the
goal pose.

7

https://github.com/NVlabs/SceneCollisionNet
https://sites.google.com/view/manipulation-mpc/further-experimental-results
https://sites.google.com/view/manipulation-mpc/further-experimental-results

100 200 500
Number of particles

0

1

2

3

4

5

6

Po
sit

io
n

Er
ro

r (
cm

)

(a) Median position error with confidence bounds
as a function of number of particles.

100 200 500
0

2

4

6

8

10

Qu
at

er
ni

on
 E

rro
r (

%
)

(b) Median quaternion error with confidence
bounds as a function of number of particles.

100 200 500
Number of particles

0

5

10

15

20

Je
rk

 M
ag

ni
tu

de
 (r

ad
/s

3)

(c) Jerk in robot motion as a function of number
of particles.

100 200 500
Number of particles

0.8

0.9

1.0

1.1

1.2

1.3

1.4

M
ax

 Jo
in

t V
el

oc
ity

 (r
ad

/s
)

(d) Maximum joint velocity reached for different
number of particles.

Figure 5: Results for ablation study for number of sampled particles in MPPI.

Weight Number of Self Collisions
0 2730

50 0
500 0

1000 0
5000 0

Table 3: Number of timesteps spent in self colli-
sion for changing weight on self collision cost

Weight Number of Joint Limits Violations
0 1624

50 218
100 49
500 0

1000 0

Table 4: Number of timesteps spent in joint limit
violation for changing weight on joint limit cost

5.2.2 Joint Limit Avoidance Cost

For testing joint limit avoidance 10 end-effector targets with 500 particles were used with a varying
weight on the joint limit cost. Table 4 shows that as the weight on the joint limit avoidance cost is
increased, the number of violations steadily decreases, going to zero for a large weight of 500 and
above.

5.2.3 Manipulability Cost

The manipulability cost acts as a regularizer to keep the manipulator away from singular config-
urations. The box plots in Fig. 6a and Fig. 6b show the median value with confidence bounds of
the position and orientation errors over the last 50 timesteps in 10 different pose reaching runs. We
chose the last 50 timesteps and not just the last timestep to test the convergence to the goal. Here we
see that as the weight on the manipulability cost is increased, the pose reaching accuracy improves.
However, after a certain threshold, the manipulability cost interferes with pose reaching and the po-
sition accuracy decreases. Maintaining high manipulability allows the robot to reach different end
effector orientations accurately.

8

0 10 30 50
Manipulability Weight

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Po
sit

io
n

Er
ro

r (
cm

)

(a) Median position error with con-
fidence bounds as a function of ma-
nipulability cost weight.

0 10 30 50
Manipulability Weight

1

2

3

4

5

Qu
at

er
ni

on
 E

rro
r (

%
)

(b) Median quaternion error with
confidence bounds as a function of
manipulability cost weight.

0 25 50 75 100 125 150 175 200
Timestep

0

20

40

60

80

Po
sit

io
n

Er
ro

r (
cm

)

weight=0
weight=10
weight=50
weight=100

(c) Position error over time for
changing stop cost weight. Higher
weight avoids oscillation near goal.

Figure 6: Results for ablation study for behavior based manipulability and stop costs.

pseudo-random+comb halton+comb
0

2

4

6

8

10

12

14

Qu
at

er
ni

on
 E

rro
r (

%
)

(a) 100 particles .

pseudo-random+comb halton+comb
0

1

2

3

4

Qu
at

er
ni

on
 E

rro
r (

%
)

(b) 500 particles

Figure 7: Median quaternion error with confidence bounds for psedurandom and Halton sampling with 100
and 500 particles

5.2.4 Stop Cost

The stop cost penalizes joint velocities that are too high for the robot to safely stop within horizon
based on a maximum acceleration threshold. An important consequence of this term is that it allows
the robot to smoothly stop at the goal even with a short horizon. We demonstrate this effect in the
plot in Fig. 6c where a lower weight on the stop cost leads to undesirable oscillations near the goal.

5.3 Sampling Strategy

5.3.1 Pseudo-random vs Halton Sampling

Halton Sampling is a Quasi Monte-Carlo method that provides better coverage of the action space as
compared to pseudo-random sampling that exhibits and undesired clustering of samples. We study
the improvement gain by using Halton sampling in a low particle regime. The plots in Fig. 7 show
the quaternion errors achieved by pseudo random and Halton samples with 100 and 500 particles
respectively. With lesser number of particles, pseudo-random sampling with comb filter is unable to
achieve a quaternion error with a confidence interval within 5% whereas Halton sampling achieves
less than 5% quaternion error with both 100 and 500 particles.

5.3.2 Comb Filtering v/s B-Splines

Fig. 9 shows a comparison of using comb filtering versus bsplines in conjunction with Halton sam-
pling. Comb filtering smoothens out the sampled trajectories using user defined filtering coefficients.
In order to ensure smooth (low jerk) motions a very strong filtering is required which prevents the
robot from ramping up this velocity. Fitting B-Splines to sampled actions is able to ensure smooth
acceleration profiles which allows the robot to smoothly ramp up the velocity but comes at the price
of reduced pose accuracy. However, since our sampling strategy allows us to arbitrarily mix differ-
ent kinds of trajectories, we create and test a hybrid sampling strategy (denoted as ”mixed”) with

9

halton+comb halton+bspline mixed
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Po
sit

io
n

Er
ro

r (
cm

)

(a) Position Error
halton+comb halton+bspline mixed

0

2

4

6

8

Qu
at

er
ni

on
 E

rro
r (

%
)

(b) Quaternion Error
halton+comb halton+bspline mixed

1.1

1.2

1.3

1.4

1.5

1.6

M
ax

 Jo
in

t V
el

oc
ity

 (r
ad

/s
)

(c) Max Joint Velocity

Figure 8: Results for the comparison of pose reaching accuracy and max joint velocity achieved for different
smoothing techniques in conjunction with Halton sampling.

(a) Timing benchmark of learned
versus baseline self-collision.

(b) Timing benchmark of ten-
sorized GPU model against CPU
baseline as a function of horizon
with 500 particles.

(c) Timing benchmark of ten-
sorized GPU model against CPU
baseline as a function of number of
particles with horizon of 30 steps.

Figure 9: Timing benchmarks of different key components

a ratio of 0.6 and 0.4 of B-Spline and comb filtering. This provides comparable accuracy to comb
filtering while also achieving high joint velocities.

5.4 Timing Benchmarks

5.4.1 Learned v/s Baseline Self Collision Detection

We quantify the computational gains obtained by using a learned self collision detector. In Fig. 9a
we present a timing benchmark for an increasing batch size of query configurations. The learned
function is over 40x faster on average than baseline self collision detection that uses forward kine-
matics to compute link poses and calculates minimum distance between them. Further, the learned
self-collision detector maintains a very low latency of 0.4-0.6ms even for large batch sizes.

5.4.2 Speedup from Tensorized Forward Model on GPU

The timing benchmark in Fig. 9b and Fig. 9c show the computational gains from our tensorized
GPU implementation of forward model versus a CPU baseline for varying horizon and number of
particles used in MPC respectively. Fig. 9b shows that our model is over 5x faster than CPU baseline
for different horizons with 500 particles. In Fig. 9c, we can see that the our model maintains similar
latency for increasing number of particles owing to it being completely tensorized.

References
[1] C. A. Klein and B. E. Blaho. Dexterity measures for the design and control of kinematically

redundant manipulators. The international journal of robotics research, 6(2):72–83, 1987.

[2] N. Vahrenkamp, T. Asfour, G. Metta, G. Sandini, and R. Dillmann. Manipulability analysis.
In 2012 12th ieee-ras international conference on humanoid robots (humanoids 2012), pages
568–573. IEEE, 2012.

[3] J. Haviland and P. Corke. A purely-reactive manipulability-maximising motion controller.
arXiv e-prints, pages arXiv–2002, 2020.

10

[4] D. Rakita, B. Mutlu, and M. Gleicher. RelaxedIK: Real-time Synthesis of Accurate and Fea-
sible Robot Arm Motion. In Proceedings of Robotics: Science and Systems, Pittsburgh, Penn-
sylvania, June 2018. doi:10.15607/RSS.2018.XIV.043.

[5] M. Danielczuk, A. Mousavian, C. Eppner, and D. Fox. Object rearrangement using learned
implicit collision functions. arXiv preprint arXiv:2011.10726, 2020.

[6] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. In European Conference on
Computer Vision, pages 405–421. Springer, 2020.

[7] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin, J. A.
Bagnell, and S. S. Srinivasa. Chomp: Covariant hamiltonian optimization for motion planning.
The International Journal of Robotics Research, 32(9-10):1164–1193, 2013.

[8] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. 2019.

[9] G. Sutanto, A. Wang, Y. Lin, M. Mukadam, G. Sukhatme, A. Rai, and F. Meier. Encod-
ing physical constraints in differentiable newton-euler algorithm. volume 120 of Proceedings
of Machine Learning Research, pages 804–813, The Cloud, 10–11 Jun 2020. PMLR. URL
http://proceedings.mlr.press/v120/sutanto20a.html.

[10] A. Dietrich, T. Wimbock, A. Albu-Schaffer, and G. Hirzinger. Reactive whole-body control:
Dynamic mobile manipulation using a large number of actuated degrees of freedom. IEEE
Robotics & Automation Magazine, 19(2):20–33, 2012.

[11] C.-A. Cheng, M. Mukadam, J. Issac, S. Birchfield, D. Fox, B. Boots, and N. Ratliff. Rmpflow:
A computational graph for automatic motion policy generation. In International Workshop on
the Algorithmic Foundations of Robotics, pages 441–457. Springer, 2018.

[12] L. G. Torres, A. Kuntz, H. B. Gilbert, P. J. Swaney, R. J. Hendrick, R. J. Webster, and R. Al-
terovitz. A motion planning approach to automatic obstacle avoidance during concentric tube
robot teleoperation. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 2361–2367. IEEE, 2015.

[13] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime motion planning
using the rrt. In 2011 IEEE International Conference on Robotics and Automation, pages
1478–1483. IEEE, 2011.

[14] K. V. Alwala and M. Mukadam. Joint sampling and trajectory optimization over graphs for
online motion planning. arXiv preprint arXiv:2011.07171, 2020.

[15] S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. D. Konidaris. Robot motion planning on
a chip. In Robotics: Science and Systems, 2016.

[16] A. Fishman, C. Paxton, W. Yang, D. Fox, B. Boots, and N. Ratliff. Collaborative Behavior
Models for Optimized Human-Robot Teamwork. arXiv e-prints, art. arXiv:1910.04339, Oct.
2019.

[17] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, and E. Todorov. An integrated sys-
tem for real-time model predictive control of humanoid robots. In 2013 13th IEEE-RAS
International Conference on Humanoid Robots (Humanoids), pages 292–299, 2013. doi:
10.1109/HUMANOIDS.2013.7029990.

[18] K. Ishihara, T. D. Itoh, and J. Morimoto. Full-body optimal control toward versatile and agile
behaviors in a humanoid robot. IEEE Robotics and Automation Letters, 5(1):119–126, 2019.

11

http://dx.doi.org/10.15607/RSS.2018.XIV.043
http://proceedings.mlr.press/v120/sutanto20a.html
http://dx.doi.org/10.1109/HUMANOIDS.2013.7029990
http://dx.doi.org/10.1109/HUMANOIDS.2013.7029990

[19] D. Kappler, F. Meier, J. Issac, J. Mainprice, C. G. Cifuentes, M. Wüthrich, V. Berenz, S. Schaal,
N. Ratliff, and J. Bohg. Real-time perception meets reactive motion generation. IEEE Robotics
and Automation Letters, 3(3):1864–1871, 2018. doi:10.1109/LRA.2018.2795645.

[20] A. Kuntz, C. Bowen, and R. Alterovitz. Fast anytime motion planning in point clouds by
interleaving sampling and interior point optimization. In Robotics Research, pages 929–945.
Springer, 2020.

[21] F. R. Hogan and A. Rodriguez. Reactive planar non-prehensile manipulation with hybrid model
predictive control. The International Journal of Robotics Research, 39(7):755–773, 2020.

[22] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou. Aggressive driving with
model predictive path integral control. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 1433–1440. IEEE, 2016.

[23] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou.
Information theoretic mpc for model-based reinforcement learning. In 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 1714–1721. IEEE, 2017.

[24] G. Williams, A. Aldrich, and E. A. Theodorou. Model predictive path integral control: From
theory to parallel computation. Journal of Guidance, Control, and Dynamics, 40(2):344–357,
2017.

[25] N. Wagener, C.-A. Cheng, J. Sacks, and B. Boots. An online learning approach to model
predictive control. 2019.

[26] P. Hyatt, C. S. Williams, and M. D. Killpack. Parameterized and gpu-parallelized real-time
model predictive control for high degree of freedom robots. arXiv preprint arXiv:2001.04931,
2020.

[27] P. Hyatt and M. D. Killpack. Real-time nonlinear model predictive control of robots using a
graphics processing unit. IEEE Robotics and Automation Letters, 5(2):1468–1475, 2020.

[28] C. Pinneri, S. Sawant, S. Blaes, J. Achterhold, J. Stueckler, M. Rolinek, and G. Mar-
tius. Sample-efficient cross-entropy method for real-time planning. arXiv preprint
arXiv:2008.06389, 2020.

[29] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. Stomp: Stochastic trajec-
tory optimization for motion planning. In 2011 IEEE International Conference on Robotics
and Automation, pages 4569–4574, 2011. doi:10.1109/ICRA.2011.5980280.

[30] M. Kobilarov. Cross-entropy randomized motion planning. In Robotics: Science and Systems,
volume 7, pages 153–160, 2012.

[31] M. Kobilarov. Cross-entropy motion planning. The International Journal of Robotics Re-
search, 31(7):855–871, 2012.

12

http://dx.doi.org/10.1109/LRA.2018.2795645
http://dx.doi.org/10.1109/ICRA.2011.5980280

	1 Cost Function Design
	1.0.1 Reaching Goal Poses
	1.0.2 Stopping for Contingencies
	1.0.3 Joint Limit Avoidance
	1.0.4 Avoiding Cartesian Local Minima
	1.0.5 Self Collision Avoidance
	1.0.6 Environment Collision Avoidance

	2 Real-Time Control Implementation
	2.1 Franka Panda Control System
	2.2 State Estimation and Perception

	3 Related Work
	4 Further Experimental Details
	4.1 Dynamic Object Balancing
	4.2 Reaching Cartesian Poses
	4.3 SceneCollisionNet Training

	5 Ablation Studies
	5.1 Effect of Number of Particles
	5.1.1 Position Accuracy
	5.1.2 Orientation Accuracy
	5.1.3 Jerk
	5.1.4 Maximum Joint Velocity

	5.2 Cost Terms
	5.2.1 Self-Collision Cost
	5.2.2 Joint Limit Avoidance Cost
	5.2.3 Manipulability Cost
	5.2.4 Stop Cost

	5.3 Sampling Strategy
	5.3.1 Pseudo-random vs Halton Sampling
	5.3.2 Comb Filtering v/s B-Splines

	5.4 Timing Benchmarks
	5.4.1 Learned v/s Baseline Self Collision Detection
	5.4.2 Speedup from Tensorized Forward Model on GPU

