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Abstract: Natural language provides an accessible and expressive interface to
specify long-term tasks for robotic agents. However, non-experts are likely to
specify such tasks with high-level instructions, which abstract over specific robot
actions through several layers of abstraction. We propose that key to bridging
this gap between language and robot actions over long execution horizons are
persistent representations. We propose a persistent spatial semantic representation
method, and show how it enables building an agent that performs hierarchical
reasoning to effectively execute long-term tasks. We evaluate our approach on
the ALFRED benchmark and achieve state-of-the-art results, despite completely
avoiding the commonly used step-by-step instructions. https://hlsm-alfred.
github.io/
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1 Introduction

Mobile manipulation in a home environment requires addressing multiple challenges, including
exploration and making long-term inference about actions to perform. In addition to reasoning,
robots require an accessible, yet sufficiently expressive interface to specify their tasks. Natural
Language provides an intuitive mechanism for task specification, and coupled with advances in
automated language understanding, is increasingly applied to embodied agents [e.g., 1-11].

In this paper, we study the problem of learning to map high-level natural language instructions
to low-level mobile manipulation actions in an interactive 3D environment [12]. Existing work
largely studies language tightly aligned to the robot actions, either using single-sentence instruc-
tions [e.g., 1, 2, 5, 9] or sequences of instructions [13—18]. In contrast, we focus on high-level
instructions, which provide more efficient human-robot communication, but require long-horizon
reasoning across layers of abstraction to generate actions not explicitly specified in the instruction.

Robust reasoning about manipulation goals from unrestricted high-level natural language instruc-
tions has a variety of open challenges. Consider the instruction secure two discs in a bedroom safe
(Figure 1). The robot must first locate the safe in the bedroom. It then needs to distribute the actions
entailed by secure to two objects (two discs), each requiring a distinct sequence of actions, but tar-
geting the same safe. It is also required to map the verb secure to its action space. In parallel, the
robot must address mobile manipulation challenges, and often can only identify required actions as
it observes and manipulates the world (e.g., if the safe needs to be opened).

We propose to construct and continually update a spatial semantic representation of the world from
robot observations (Figure 2). Similar to widely used map representations [19-22], we retain the spa-
tial properties of the environment, allowing the robot to navigate and reason about relations between
objects, as required to accomplish its task. We propose the Hierarchical Language-conditioned
Spatial Model (HLSM), a hierarchical approach that uses our spatial representation as a long-term
memory to solve long-horizon tasks. HLSM consists of a high-level controller that generates sub-
goals, and a low-level controller that generates sequences of actions to accomplish them. In our
example (Figure 1), the sequence of subgoals is (pick up a CD, open the safe, put the CD in the safe,
...), each requiring a sequence of actions. The spatial representation allows selecting subgoals that
use previously observed objects outside of the agent’s view, or to decide about needed exploration.

We evaluate our approach on the ALFRED [12] benchmark and achieve state-of-the-art results
without using the low-level instructions used by previous work [16—18, 23], neither during training
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Figure 1: Illustration of the task and our hierarchical formulation. The agent receives a high-level task in
natural language. It needs to map RGB images to navigation and manipulation actions to complete the task.

nor at test-time. This paper makes three key contributions: (a) a modular representation learning
approach for the problem of mapping high-level natural language task descriptions to actions in a
3D environment; (b) a method for utilizing a spatial semantic representation within a hierarchical
model for solving mobile manipulation tasks; and (c) state-of-the-art performance on the ALFRED
benchmark, even outperforming all approaches that use detailed sequential instructions.

2 Related Work

Natural language has been extensively studied in robotics research, including with focus on instruc-
tion [1, 24], reference resolution [25], question generation [26—28], and dialogue [4, 29, 30]. Most
work in this area has considered either synthetic instructions of relatively simple goals [7, 31-33], or
natural language instructions where all intermediate steps are explained in detail [5, 12—14, 34-38].
In contrast, we focus on high-level instructions, which are more likely in home environments [39].

Representation of world state, action history, and language semantics plays a central role in robot
systems and their algorithm design. Symbolic representations have been extensively studied for in-
struction following agents [1-4, 19, 20, 39-45]. While they simplify the symbol grounding problem
and enable robustness, the ontologies on which they rely on are laborious to scale to new, unstruc-
tured environments and language. Representation learning presents an alternative by learning to
map observations and language directly to actions [5, 8, 9, 11, 13, 34]. World state and language
semantics are represented with vectors [13] or by memorizing past observations [8, 17]. Modelling
improvements have enabled these approaches to achieve good performance on complex navigation
tasks [7, 9, 11, 13, 14, 37], a success that has not yet translated to mobile manipulation [12, 46, 47].

We propose integrating a semantic voxel map state representation within a hierarchical repre-
sentation learning system. Similar semantic 2D maps have been successfully used in naviga-
tion [7, 8, 48, 49] and more recently even in mobile manipulation instruction-following tasks [23].
We extend these maps to 3D and show state-of-the-art results on a challenging mobile manipulation
benchmark. Our map design is related to sparse metric, topological and semantic maps [10, 19—
21, 50] that have enabled grounding symbolic instruction representations. Our map does not impose
a topological structure or require reasoning about object instances, instead modelling a distribution
over semantic classes for every voxel.

3 Problem Definition

Let A be the set of agent actions, and S the set of world states. Given a natural language
instruction L and an initial state so € S, the agent’s goal is to generate an execution = =
(so,a0, 81,01, ..,5T,ar), where a; € A is an action taken by the agent at time ¢, s; € S is
the state before taking a;, and s;+1 = 7 (8¢, a;) under environment dynamics 7 : S x A — S.
The state s; is defined by the environment layout and the poses and states of all objects and the
agent. The agent does not have access to the state s;, but only to an observation o;. An observation
or = (It, Py, vf , L) includes a first-person RGB camera image I;, the agent’s pose P;, a one-hot
encoding of the object class the agent is holding vy, and the instruction L.The task is considered
successful if all goal-conditions corresponding to the task L are true at the final state sp. Partial
success is measured as the fraction of goal-conditions that have been achieved.

The ALFRED dataset includes sets of seen and unseen environments. The set
of actions A = Ay, U Ajyg includes parameter-free navigation actions Ap,, =
{MOVEAHEAD, ROTATELEFT, ROTATERIGHT}  and interaction  actions Ay =
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Figure 2: Model architecture consisting of an observation model, high-level controller (), and low-level
controller (7). The observation model updates the semantic voxel map state representation from RGB obser-
vations. 7% predicts the next subgoal given the instruction and the map. 7 outputs a sequence of actions to
achieve the subgoal. The semantic voxel map is visualized in the middle with agent position illustrated as a
black pillar, ans the current sugoal argument mask in yellow. Other colors are different segmentation classes.
Saturated voxels are observed in the current timestep.

{P1CKUP, PUT, TOGGLEON, TOGGLEOFF, OPEN, CLOSE, SLICE} parameterized by a binary
mask that identifies the object of the interaction in the agent’s current first-person view. We compute
P; and v; using dead-reckoning from RGB observations and actions.

4 Hierarchical Model with a Persistent Spatial Semantic Representation

We model the agent behavior with a policy 7 that maps an instruction L and the observation o, at
time ¢ to an action a;. The policy 7 is made of an observation model F' and two controllers: a
high-level controller 7 and a low-level controller w". The observation model builds a spatial state
representation §; that captures the cumulative agent knowledge of the world at time ¢. §; is used by
both 7# for high-level long-horizon task planning, and 7 for near-term reasoning, such as object
search, navigation, collision avoidance, and manipulation. Figure 2 illustrates the policy.

The high-level controller 7 computes a probability over subgoals. A subgoal g is a tuple

(type, arg®, arg™), where type € Ajy, is an interaction type (e.g., OPEN, PICKUP), arg® is
the semantic class of the interaction argument (e.g., SAFE, CD), and argM is a 3D mask identifying
the location of the argument instance. In ALFRED, each interaction action in the set A;,; corre-
sponds to a subgoal type. When predicting the k-th subgoal at time ¢, 77 considers the instruction
L, the current state representation 8;, and the sequence of past subgoals (g;, );<x. During inference,
we sample from 7. Unlike arg max, sampling allows the agent to re-try the same or different
subgoal incase of a potentially random failure (e.g., if a MUG was not found, pick up a CUP).

The low-level controller 7% is given the subgoal g, as its goal specification at time t. At every
timestep j > ¢, 7° maps the state representation 5; and subgoal gj, to an action a;, until it outputs
one of the stop actions: apasgs or apatr, to indicate successful or failed subgoal completion.

The execution flow is as follows. At time ¢ = 0 the initial observation oy is received. At each
timestep, we update the state representation $; using the observation model. If there is no currently
active subgoal, we sample a new subgoal g, from 77, and then sample an action a; from 7. If a; is
apass, we increment subgoal counter k. If it is apagr,, we discard the current subgoal k. We repeat
sampling subgoals and actions until an executable action a, is sampled. We execute a;, increment
the timestep ¢, and receive the next observation o;. The episode ends when the subgoal gsTop is
sampled or the horizon 7,,, is exceeded. Algorithm 1 in Appendix A.4 describes this process.

4.1 State Representation

The state representation §; at time ¢ captures the agent’s current understanding of the state of the
world, including the locations of objects observed and the agent’s relation to them. The state repre-
sentation is a tuple (V;%, V.9, vy, P;). The semantic map V;> € [0, 1]X*Y*ZxC 5 a 3D voxel map
that for every position indicates which of the ¢ € [1, C] object classes are present in the voxel. The



observability map V,° € {0,1}**Y*Z is a 3D voxel map that indicates whether the corresponding
position has been observed. The inventory vector vtS € {0,1}¢ indicates which of the C' object
classes the agent is currently holding. The agent pose P; = (z,y,wp,w,) is specified by the 2D
position (z, y), pitch angle wy,, and yaw angle w,.

We also compute 2D state affordance features AFFORD(3;) € [0,1]7***Y in a top-down view that
represent each position with one or more of seven affordance classes {pickable, receptacle,
togglable, openable, ground, obstacle, observed}. Each [AFFORD(3;)](r4,,) = 1.0 if at
least one of the voxels at position (z, y) has affordance class 7, otherwise it is zero. AFFORD(S;) is
suited for object class agnostic reasoning, for example predicting a pose to pick up an object. !

4.2 Observation Model

The observation model F'(§;_1, 0¢, gr.) updates the state representation with new observations. It
considers the current subgoal gj, to actively acquire information relevant to g;. The computation of
F consists of three steps: perception, projection, accumulation.

Perception Step We predict semantic segmentation I;° and depth map I” from the RGB observation
I;. We use neural networks pre-trained in the ALFRED environment. The semantic segmentation
[1%] (u,v) is a distribution over C object classes at pixel (u,v). The depth map [I](, ) is a binned
distribution over B bins.”> We also heuristically compute a binary mask M} that indicates which
pixels have confident depth readings. We allow more confidence slack in pixels that correspond
to the current subgoal argument argtc according to I;°. Appendix A.3 provides further details.
We use perception models based on the U-Net [51] architecture, but our framework supports other,
potentially more powerful models as well (e.g. [52, 53]).

Projection Step We use a pinhole camera model to convert depth I” and segmentation I’ to a
point cloud that represents each image pixel (u,v) with a 3D position (x,y,2) € RX*Y*Z and
a semantic distribution /%] (,, ). We use argmaxp(I7) to compute the 3D positions, and discard
points at pixels (u,v) when the binary mask value is [M{](, ,) = 0. We construct a discrete

semantic voxel map ‘A/ts € [0, 1]X¥*¥Y*x2xC 'where X, Y, and Z are the width, height, and length.
The value at each voxel [V,%] (. , ..

[1%](u,v) across all points (u, v) within the voxel. We additionally compute a binary observability

map Vto € {0,1}X*Y*Z that indicates the voxels observed at time t. A voxel is observed if it
contains points, or if a ray cast from the camera through the voxel centroid has expected depth
greater than the distance from the camera to the centroid.

is the element-wise maximum of the segmentation distributions

Accumulation Step We integrate Vts and Vto into a persistent state representation:
S _ 1S {0 s 0 0 o {0

Ve =Ve x Ve + V2 x (1=-V7) Vi =max(ViZ,, V7). (D

This operation updates each voxel with the most recent semantic distribution, while retaining the

values of all voxels not visible at time ¢. The output of the observation model is the spatial state
representation §; = (V,°, V.2 v, P;). The inventory v; and pose P; are taken directly from o;.

4.3 High-level Controller (71)

At timestep ¢, when invoked for the k-th time, the input to 7H is the instruction L, the sequence
of past subgoals (g;);<k, and the current state representation §;. The output is the next subgoal
gr. = (type,, argy , arg). Figure 3 illustrates the high-level controller architecture.

Input Encoding We encode the text L using a pre-trained BERT [54] model that we fine-tune
during training. We use the CLS token embedding as the task embedding ¢*. We encode the
state representation §; to account for classes of all observed objects, and the object that the agent is
holding: ¢*(8;) = [v{; max(, , »)(V;%)], where max(, , . is a max-pooling operation over spatial
dimensions and [-; -] denotes concatenation. We compute the representations of previous subgoals as
(REPR(g;))"—}, where REPR(g;) is the sum of a sinusoidal positional encoding [55] of index i and

"We assume a known mapping between object semantic classes and affordance classes.
*We use B uniformly spaced depth bins {0, Ap,2Ap, ..., (B —1)Ap}, where Ap is a depth resolution.
We suggest A p should be less than 50% of the voxel size. We used voxels with edge length 0.25m.
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Figure 3: Illustration of the high-level controller 77 (Section 4.3).

learned embeddings for type; and arg{. We process this sequence with a two-layer Transformer
autoregressive encoder [55] to compute (¢? )f;ol. We take ¢7_, as the subgoal history embedding
vector. We additionally encode the argument mask information arg? from the subgoal history in
an integer-valued subgoal history tensor Hj,_y € N¥XX*Y where [Hj,_1](; ;) is the number of

times an interaction action type 7 was performed at 2D position (z, y) in the birds-eye view:
k—1

Hilra = max([arg; J(z,.) - ()
1=0...k—1
arg,t-C:T
Subgoal Prediction We concatenate the three representations hy; .y = [oL; ¢5; 7_,]. We use a

densely connected multi-layer perceptron [56] to predict two distributions P(type; | h ) and
P(argf | type,, h x)), from which we sample a subgoal type type, and argument class arg .

The remaining component of the subgoal is the action argument mask arg)?. Let [V;°] be a

(aref))
voxel map that only retains the object information for objects of class argkC in the semantic map
V,5. We refine it to identify a single object instance. We compute a birds-eye view representation:

= [AFFORD(4;); Hy_1; maX([Vt J(argg)) ® Teype, ] G

where AFFORD(S;) is a birds-eye view state affordance feature map (Section 4.1) and Liype, is a
one-hot encoding of type,.* Finally, we compute the 3D argument mask arg)? € [0, 1]X <Y *Z:

arg!! = REFINER(EGOTRANSFORM(Xy, P,), o) | 4)

where EGOTRANSFORM(x, P;) transforms the map x to the agent egocentric pose P;, REFINER
is a neural network based on the LingUNet architecture [36], and ¢’ is the language embedding.
The refined arg)! is a [0, 1]-valued 3D mask that identifies the instance of the interaction argument
object. If the object is believed to be unobserved, then arg’ contains all zeroes. The controller
output is the subgoal g; = (type,,arg{,arghl).

4.4 Low-level Controller (%)

The low-level controller 77 is conditioned on the most recent subgoal g = (type,,arg$ ,argl).
At time ¢, it maps the state representation $; to an action a;. It combines engineered and learned
components. Appendix A.6 provides the implementation details. The controller 7% invokes
a set of procedures: NavigateTo, SampleExplorationPosition, SampleInteractionPose,
and InteractMask. Their invokation follows a pre-specified execution flow across multiple
timesteps. First, we perform a 360° rotation to observe the nearby environment. If no ob-
jects of type argkc are observed, we explore the environment by sampling a position (x,y) =
SampleExplorationPosition(§;), navigating there using the procedure NavigateTo(z,y, $;),
and performing a 360° rotation. We repeat exploration until a voxel in Vts contains the class argkc
with >50% probability. To interact with an object, we sample an interaction pose (z, Yy, wy,wp) =
SampleInteractionPose($, g ), invoke NavigateTo(x,y, §;) to reach the position (x,y), and
then rotate according to yaw and pitch angles (w,,w,). Finally, we generate the egocentric interac-
tion mask mask; = InteractMask(3;, arg)), and output the interaction action (type,,, mask;).

3® denotes multiplication of a X x Y tensor with a K -dimensional vector to obtain a K x X X Y tensor.
[; -; -] denotes channel-wise concatenation.



All procedures use the spatial representation 5;. NavigateTo navigates to a goal position us-
ing a value iteration network (VIN) [57] that reasons over obstacle and observability maps from
5¢. SampleExplorationPosition samples positions on the boundary of observed space in 3.
SampleInteractionPose uses a learned neural network NAVMODEL to predict a distributon of
poses from which the interaction g; will likely succeed. InteractMask uses the segmentation
image I;7 and the 3D argument mask arg to compute the first-person mask of the target object.

5 Learning

The policy contains four learned models: the segmentation and depth networks, %7, and the navi-
gation model NAVMODEL used by 7%. We train all four networks independently using supervised
learning. We assume access to a training dataset D = {(L(), =20 ))}jyle of high-level natural lan-

guage instructions L(/) paired with demonstration execution Z() in a set of seen environments.

Each execution =) is a sequence of states and actions <5(()j ), aéj ), ey sgz ), a(Tj )>. We denote Np
the total number of states in dataset D, and N the total number of subgoals.

We process D into three datasets. The perception dataset DF = {([I]®), [IP]® [15]@} N7 in-
cludes RGB images [I](?) with ground truth depth [I”](*) and segmentation [I°](?). The subgoal

dataset D9 = {(L®), §§i)7 <gj(l)>§:o)}fvf1 contains natural language instructions (%), state repre-
sentations §§i) at the start of k-th subgoal execution, and sequences of the first k£ subgoals (g(i)> ;‘?:0

j
extracted from (). The navigation dataset DV = {(5(), g PM)}NF consists of state rep-

resentations §(), subgoals ¢(¥), and agent poses P() at the time of taking the interaction action

corresponding to subgoal ¢(*). The state representations () in datasets D9 and D are constructed
using the observation model (Section 4.2), but using ground-truth depth and segmentation images.

We train the perception models on D and the 7/ on D9 to predict the k-th subgoal by optimizing
cross-entropy losses. We use DV to train the navigation model NAVMODEL by optimizing a cross-
entropy loss for positions and yaw angles, and an L2 loss for the pitch angle.

6 Experimental Setup

Environment, Data, and Evaluation We evaluate our approach on the ALFRED [12] benchmark.
It contains 108 training scenes, 88/4 validation seen/unseen scenes, and 107/8 test seen/unseen
scenes. There are 21,023 training tasks, 820/821 validation seen/unseen tasks, and 1533/1529 test
seen/unseen tasks. Each task is specified with a high-level natural language instruction. The goal
of the agent is to map raw RGB observations to actions to complete the task. ALFRED also pro-
vides detailed low-level step-by-step instructions, which simplify the reasoning process. We do
not use these instructions for training or evaluation. We collect a training dataset of language-
demonstration pairs for learning (Section 5). To extract subgoal sequences, we label each inter-
action action a; = (type,, mask,) and any preceding navigation actions with a single subgoal of
type = type,. We compute the subgoal argument class arg” and 3D mask arg? labels from the
first-person mask mask;, and ground truth segmentation and depth. Completing a task requires sat-
isfying several goal conditions. Following the common evaluation [58, 59], we report two metrics.
Success rate (SR) is the fraction of tasks for which all goal conditions were satisfied. Goal condition
rate (GC) is the fraction of goal-conditions satisfied across all tasks.

Systems We compare our approach, the Hierarchical Language-conditioned Spatial Model (HLSM)
to others on the ALFRED leaderboard that only use the high-level instructions. At the time of
writing, the only such published approach is HiTUT [47], an approach that uses a flat BERT [54]
architecture to model a hierarchical task structure without using a spatial representation. See Ap-
pendix A.2 for a detailed comparison. We also compare to approaches that use the step-by-step
instructions, which puts our method at a disadvantage. Of these, LAV [60] also imposes a hierarchi-
cal task structure and uses pre-trained depth and segmentation models, but without using a spatial
state representation.

Additionally, we perform ablations and study sensory oracles. To study the observation model, we
compare to using sensory oracles for ground truth depth, ground truth segmentation, and both. We
report high-level controller ablations that remove the subgoal encoder, language encoder, and state
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Figure 4: Qualitative results showcasing successes and failures of our approach. Top row: snapshots of every
interaction action taken during a successful task. Action argument masks are overlaid in red over the RGB
images. The white numbers are timesteps. Middle-right: illustration of a non-fatal perception error. Middle-
left: illustration of a fatal perception error. The agent incorrectly interprets the reflection on the alarm clock as
an obstacle, causing the agent (blue star) to believe that the path to the goal (green star) is blocked off. This is
reflected in the navigation value function computed by the value iteration network (VIN) [57], where black cells
are obstacles with value —1. White cell is the goal with value 1. Bottom-left: grounding failure. The agent
wrongly picks up the cup instead of a bowl. Predicted subgoals are shown in green. Bottom-right: high-level
controller and percepton failure. 7% predicts the wrong subgoal argument class (CD instead of EGG). The
segmentation model then mistakes the vase for a CD.

representation encoder as used for predicting subgoal type type,, and argument class argg, while
still using the state representation §; to predict the subgoal argument mask arg,ICVI . We also study a
low-level controller ablation that removes the exploration procedure.

7 Results

Table 1 shows test and validation results. Our approach achieves state-of-the-art performance across
both seen and unseen environments in the setting with only high-level instructions. We achieve
10.04% absolute (98.1% relative) improvement in SR on the test unseen split, and 11.53% absolute
(62.6% relative) improvement in SR on the test seen split compared to HITUT G-only.

Our approach performs competitively even when compared to approaches that also use the low-level
step-by-step instructions. We achieve 4.84% absolute (31.4% relative) improvement in SR on the test
unseen split compared to ABP [61]. On the test seen split, our approach performs reasonably well,
however ABP [61] and LWIT [18] perform better, reflecting potentially stronger scene overfitting.

Tables 2 and 3 show development results. We performed five runs of the full HLSM model on
the validation unseen data and found the sample standard deviation of the success rate is 1.1%
(absolute). All other results are from a single-evaluation runs. Ground truth depth alone (+ gt
depth) does not significantly affect performance. Ground truth segmentation (+ gt seg) provides
6.6%/16.4% absolute improvement in seen/unseen scenes. Using both (+ gt depth, gt seg) provides
11.1%/21.9% absolute improvement and narrows the seen/unseen gap from 11.3% to 0.5%. This
points to perception being the main bottleneck in generalization to unseen scenes.

We report high-level controller 7/ input encoder ablations. The poor performance without the
language encoder reflects task difficulty. Zeroing the input to the subgoal history encoder (but
keeping position encodings) does not significantly affect performance, showing that knowing the
index of the current subgoal in addition to the state representation is often sufficient. Not using
the state representation for predicting subgoal type and argument class gives mixed results in seen



Test Validation

Method Seen Unseen Seen Unseen
SR GC SR GC SR GC SR GC
Low-level Sequential Instructions + High-level Goal Instruction
SEQ2SEQ [12] 3.98 9.42 0.39 7.03 370  10.00 0.00 6.90
MOCA [46] 22.05 28.29 530 14.28 19.15 285 3.78 13.4
E.T. [17] 28.77 36.47 5.04 15.01 3378 4248 3.17  13.12
E.T. + synth. data [17] 38.42 45.44 8.57 18.6 46.59 52.82 732 20.87
LWIT [62] 30.92 45.44 942 20091 33.70 43.10 9.70  23.10
HITUT[47] 21.27  29.97 13.87 20.31 2524  34.85 1244 2371
ABP [61] 44.55 51.13 1543 24776 4293 5045 12.55 25.19
High-level Goal Instruction Only
HITUT G-only[47] 18.41 2527 10.23  20.27 13.63 21.11 11.12  17.89
LAV [60] 13.35 23.21 638 17.27 12.7 234 - -
HLSM (Ours) 2994 41.21 20.27 30.31 29.63 38.74 18.28 31.24

Table 1: Test results. Test seen/unseen and validation seen/unseen splits. Top section approaches use sequential
step-by-step instructions. The bottom section uses only high-level instructions. Best results using only high-
level instructions and using both types of instructions are highlighted.

Validation Validation
Method Seen Unseen Task Type Seen Unseen
SR GC SR GC SR GC SR GC
HLSM 296 383 183 312 Overall 29.6 38.7 183 312
+gtdepth 29.6 405 201337 mine 468 590 366 599
+ gt depth, gt seg. 40.7 504 402 522 .
+ gt seg. 362 470 347 478 Pick & Place 57.0 57.0 348 348
Stack & Place  13.0 27.0 44 143
w/o language enc. 0.9 8.6 0.2 7.5 Clean & Place  25.0 39.5 113 258
w/o subg. hist. enc. 29.4  38.5 16.6 29.2 Cool & Place 17.5 338 14.8 39.6
w/o state repr enc. 30.0 40.6 18.9 30.8 Heat & Place 9.3 29.1 00 17.0
w/o exploration 322 424 18.1 313 Pick2 & Place 347 519 180 347
Table 2: Development results on validation split. Per- Table 3: Performance breakdown per
formance of our full approach, with perception oracles, task type on the validation split.

a perception ablation, 77 ablations, and 77 ablations

and unseen scenes, but without a significant difference in performance. Therefore, predicting the
sequence of subgoal types and argument classes (i.e., what to do) is at times possible without spatial
reasoning, while grounding the subgoal (i.e., where to do it) requires spatial information. Removing
random exploration from 7% does not significantly affect unseen performance.

Figure 4 illustrates the model behavior, showing both successes and common failures. The main
failures in valid unseen scenes are due to (1) perception errors that result in missing or extraneous
obstacles or picking up wrong objects; (2) insufficiency of random exploration (e.g., not searching
inside cabinets); (3) navigation model errors (e.g., blocking objects from opening); (4) subgoal
prediction errors (e.g., picking up wrong objects); and (5) lack of state-aware multi-step planning
and backtracking. More qualitative results are available in Appendix A.10.

8 Discussion and Limitations

We showed that a persistent spatial semantic representation enables a hierarchical model to achieve
state-of-the-art performance on a challenging instruction-following mobile manipulation task. The
main performance bottlenecks include long-horizon exploration, perception generalization to un-
seen environments, and low-level motion planning for continuous collision avoidance. In terms of
learning, incorporating reinforcement learning to train 7%, 7, and observation model F' jointly
could improve robustness. We defined the interface to 7% to be faithful to skills available on phys-
ical robots, but the exact implementation of 7% is not the focus of our work. Physical deployment
would require changes to 7, and study on robustness to errors in continuous environments, such as
localization or motion uncertainty.
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A Appendix

A.1 Frequently Asked Questions

Are the ALFRED sequential instructions needed during training? The sequential step-
by-step instructions are not needed neither during training, nor at test-time.

What has to be done to apply this approach to a real robot? The observation model,
high-level controller, state representation, and the interface to the low-level controller to-
gether constitute our contribution and are intended to generalize to physical robots. Deploy-
ment on a real robot would require an implementation of the low-level controller designed
for continuous motion in cluttered environments, and an implementation of the ALFRED
interface to enable execution of manipulation actions such as PICKUP and TOGGLEON.
Such physical robot capabilities are subject of ongoing research [63, 64].

Does this simulated environment result constitute progress towards real-world ca-
pabilities? Real-robot operation is the long-term motivation of this work and has been
carefully considered in the design of the representation and the approach. However, we
do not claim to execute high-level natural language mobile manipulation instructions from
raw vision on real robots in unseen environments. To date, such capabilities haven’t been
demonstrated even in simulated environments, such as ALFRED. Even in this scenario,
though our method achieves better results than existing work, it can still only solve 18.28%
of problems in unseen environments.

Would the system scale to physically larger environments? The main bottleneck towards
scaling to larger environments is the memory constraint of the semantic memory. While
our implementation is likely restricted to interior scenes when using commodity hardware,
follow-up work could address this, perhaps using multi-scale representations such as Oc-
tress [65, 66].

How are the state dynamics modeled? Are they assumed to be known or are they
learned? The GOTO procedure in the low-level controller is based on a value-iteration
network that utilizes a deterministic grid-navigation dynamics model on the internal rep-
resentation, which is a crude approximation of the dynamics of the ROTATELEFT, RO-
TATERIGHT, MOVEAHEAD navigation commands. Other than that, the dynamics of the
environment are assumed to be completely unknown to the agent, and are not explicitly
learned or modeled.

How would localization uncertainty affect the approach? Our representation approach
assumes a reliable robot pose estimate. Precisely studying the effects of pose errors would
require integration into a system for continuous environments. Intuitively, voxels further
away are affected by pose errors more, but may better tolerate it due to being used mainly
to decide navigation goals. Voxels close to the agent require more precision as they are
used for object instance mask generation, but would be less affected by pose errors. Our
voxel map uses a relatively coarse 25cm resolution.

Which model was used to obtain test results? The full HLSM model was evaluated
on the test set, even though the model without state representation encoding input to the
high-level controller performed better in unseen environments on the validation set.

Why does the ablation without state representation encodings perform better in un-
seen environments? In unseen environments, the semantic segmentation is erroneous due
to the generalization gap, resulting in state encodings that contain errors. This may affect
perfromance of the high-level controller that was trained on data with perfect segmentation,
and thus with perfect state encodings.

What is the benefit of sampling the subgoals instead of attempting execution from
most to least likely in order? There are two types of subgoal execution failures: sys-
tematic and random. An example of a systematic failure is the selection of an incorrect
subgoal. For example, TOGGLEON(FLOORLAMP) would fail if a FLOORLAMP does not
exist in the environment. An example of a random failure is the low-level controller sam-
pling an interaction pose for which the interaction fails (e.g., Figure 4, row 1, timestep
272). A next-best approach would alleviate a systematic failure, but a sampling approach
alleviates both: the systematic failures by trying different subgoals, and random failures by
potentially sampling the same subgoal multiple times.
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A.2 Extended Related Work

Grounding High-level Language to Actions in Robetics In order for natural language human-
robot interfaces to be useful and widely adopted in practice, they should support instructions that
are as brief as possible while still being informative of the task, i.e., that adhere to Grice’s maxim
of quantity [67]. Following such high-level instructions requires bridging the gap from high-level
language to long sequences of low-level actions. This is commonly achieved using temporal abstrac-
tion, where subgoals or options abstract over sequences of low-level actions, reducing the effective
time horizon of the problem. Most work on instruction following in robotics utilizes temporal ab-
straction [1, 3, 10, 20, 21, 33, 36, 39, 42, 44, 68].

Various methods explicitly model correspondences between linguistic constituents in a symbolic
instruction representation, environment percepts in the world model, and subgoals (behavior prim-
itives) [1, 3, 20, 24, 39, 69]. This requires the instruction to at least mention each subgoal, and
precludes instructions that omit intermediate goals that are expected to be inferred. This limitation
can be overcome by directly mapping from language to reward specifications [45, 70-72] or post-
conditions [39], and then using a planner [39] or learning a task-specific policy [71, 72] to solve
for the sequence of actions. Both are difficult in practice. Planning requires a compact, symbolic
environment representation with an underlying ontology that is hard to construct for unstructured
environments, such as the household environment studied in this work. Policy learning is computa-
tionally expensive, and poorly adapts to novel tasks specified in natural language in real-time.

Recently, methods that map language and observations directly to actions using neural networks
have seen rising popularity and success on simulated [8, 13, 14, 38, 73-75] and real-robot [9, 11,
15] navigation, as well as simulated manipulation [5] tasks. Simulated mobile manipulation is a
promising next frontier [12, 46, 47]. Representation learning approaches avoid planning, by using
a direct sequence-to-sequence formulation and a data-driven approach that theoretically permits
mapping arbitrarily terse input text to arbitrarily long action sequences that potentially include any
necessary intermediate steps not explicitly mentioned in the text. In practice, however, most research
has focuses on relatively detailed step-by-step instructions, sometimes using modelling tools such as
attention [13, 17] and progress monitoring [37] to leverage the sequential nature of the instructions.

We learn to follow high-level instructions in an interactive mobile manipulation 3D environment.
To bridge the gap between language and actions, we use temporal abstraction, where the high-level
controller predicts subgoals that abstract over sequences of actions, and the low-level controller gen-
erates actions to fulfil each subgoal. The controllers rely on a spatial-semantic state representation to
enable reasoning about what subgoals make progress towards the high-level task, and what actions
make progress towards the specific subgoal, given all past sensory observations. The persistent rep-
resentation enables operation over long time horizons. Using a shared world representation for both
the high- and low-level controllers reduces representation engineering effort and error accumulation
typically associated with pipeline approaches.

Semantic Maps for Language Grounding in Robotics The idea of building maps that combine
spatial and semantic information [19, 50, 76-79] and using them for following natural language in-
structions [7, 9, 10, 20, 21, 49] has a long history in robotics. Common approaches can be classified
into sparse topological and dense grid-based maps.

Walter et al. [19] introduced a sparse semantic graph that combines pose, semantic, and topo-
logical information, extracted from sensory observations and speech descriptions along a route.
Hemachandra et al. [50] added a spatial map layer, and fused language with other sensory modal-
ities. Hemachandra et al. [20] used these representations for grounding natural language route in-
structions. More recently, Patki et al. [21] extended this framework to build compact world models
specific to the input instruction, and Patki et al. [10] enabled supporting previously unseen environ-
ments. This class of sparse topological maps are well suited for probabilistic language grounding
from symbolic representations.

Dense grid-based 2D semantic maps are suited for downstream processing using learned neural
network modules, and have been used in modular neural network approaches for language ground-
ing [8, 9, 23, 48, 49]. Saha et al. [23] used a grid-based spatial representation and a map filtering
method, showing promising early results on a subset of the ALFRED dataset. We extend this line
of work to 3D voxel maps, add explicit tracking of occupancy and observability, and maintain the
representation through time to facilitate grounding high-level language over long time horizons. Our
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dense representation has a number of advantages. First, it is easy to build in real-time from RGBD
data using segmentation models and geometric operations. Second, it captures structures found in
indoor environments, such as L-shaped countertops or kitchen islands with sinks that are hard to
represent topologically. Third, it encodes spatial object relationships without requiring an ontology
of spatial relations, or even tracking of object instances. The main limitation of our approach is a
memory footprint that scales with the physical size of the environment, making it less suited for
outdoor or field applications. Follow-up work could address this limitation, for example by using
multi-scale representations such as octrees [65, 66].

Detailed comparison to HiITUT We provide a detailed technical comparison between our approach
and HiTUT [Hierarchical Task Learning from Language Instructions with Unified Transformers and
Self-Monitoring; 47], our main point of comparison.

Both our approach and HiTUT use a hierarchical task decomposition of goals into sequences of
subgoals, and subgoals into sequences of actions. The set of subgoals assumed by our approach
and HiTUT have differences. HITUT has an additional subgoal GOTO(LOCATION), while we view
any navigation as a means to an end of a manipulation subgoal, and therefore do not have an ex-
plicit GOTO subgoal. HiTUT additionally has subgoals for CLEAN and HEAT, (e.g., CLEAN(OBJ)
usually abstracts over the sequence PUT(SINK), TOGGLEON(FAUCET), TOGGLEOFF(FAUCET),
P1cKUP(OBY)), while our high-level policy would have to predict this entire sequence.

In terms of the model architecture, we use a hierarchical model with high-level and low-level con-
trollers to mimic the task structure. In contrast, HITUT uses a flat transformer model to jointly
solve high-level subgoal planning and low-level action prediction. One of their main contributions
is showing how a flat transformer model can be used to model a hierarchical task structure. The
benefit of our hierarchical model decomposition in combination with a shared spatial state represen-
tation is its ability to solve low-level navigation and manipulation problems with specialized mod-
ules, while avoiding the representational error accumulation and representation engineering issues
typically associated with modular pipeline approaches.

In terms of inference, HiTUT and our approach both sample subgoals one at a time, dynamically
responding to changes in environment and execution. Both approaches perform backtracking to
previous subgoals upon subgoal failure.

In terms of perception, our approach requires a pre-trained segmentation model, while HiTUT re-
quires a pre-trained object detection model to generate object entity information that is fed into the
transformer.

A.3 Observation Model Details
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Figure 5: Illustration of the U-Net architecture used in the depth and segmentation networks.
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At time ¢, during the perception step, we predict first-person semantic segmentation I, and depth
IP from the observation o; = (I, P;,v;, L), from the RGB image I; with neural network models
pre-trained in the ALFRED environment. Each pixel [I;%],, . at coordinates (u, v) is a distribution
over C object classes. Likewise, [I” J(u,v) is a distribution over B uniformly spaced depth bins
{0,Ap,2Ap,...,(B=1)Ap}, where Ap is a depth resolution. In early experiments, we observed
that A p should be less than 50% of the voxel size. We use Ap = 0.1m, B = 50, and voxel size of
0.25m. We also heuristically compute a binary mask M/ that indicates which pixels have confident
depth readings. We allow more confidence slack in pixels that correspond to the current subgoal
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argument arg¢ according to I;’. The mask M/ is used in the projection step to discard points
(z,y, 2) that correspond to pixels (u,v) for which [M?], ,y = 0. The mask computation is:

MP = (WoolIP] < er E[IP]) V (WoolI] < 2 E[IP]) A ([I]]rge > 0.5)) )

arg;

where Woo[I”] is the width of the 90% confidence interval at each pixel, E[I/] is the expected depth
at each pixel, and [I} ]arg,c is a 0-1 valued segmentation mask of the class of the current subgoal
argument. We set the hyperparameters ¢c; = 0.3 and co = 1.0 to allow higher depth uncertainty for

points corresponding to the subgoal argument.

If the agent is currently holding an object (i.e. >, [[v{](;)] > 0), we also discard points closer than
0.7m to the camera to make sure that the object in the agent inventory does not get added to the
voxel map.

We use custom models based on the U-Net architecture [51] for depth and segmentation networks.
The architecture is illustrated in Figure 5. It consists of a cascade of five downscale blocks fol-
lowed by five upscale blocks with skip-connections. Each block includes two convolutions, two
leakyReLU activations, and an instance normalization layer. The upscale blocks contain a 2x spatial
upscaling operation. We found that training a separate network for depth and segmentation worked
better than sharing one network for both tasks.

A.4 Model Execution Flow

Algorithm 1 Execution Flow
Input: Instr. L, Horizon Thq4-

I: go,1,2...,8—1 < null

2: k<« 1

3: Observe initial og.
4: fort=0,1,2,... H do
5: §t %F(s?t_l,ot,gk)
6.
7
8
9

do
if gr = null then
gk ~ 7TH(L7 St, <gz‘>i<k)
if gr = gstopr then

10: End episode

11: atNWL(gk,ét)
12: if a; = apass then
13: k< k+1

14: if a; = ara1L then
15: gr < null

16:  while a; € {araiL, apass}
17:  Perform a., observe o;y1

18: End episode

Algorithm 1 describes the execution flow. At time ¢ = 0 the initial observation oy is received. At
each timesep, we update the state representation §; (Line 5). If needed, we sample a new subgoal
gy from 7 (Line 8), and then sample an action a; from 7l If a; is apags, wWe increment subgoal
counter k (Line 13). If it is apa1r,, We discard the current subgoal &k (Line 15). We repeat Lines 8-15
until an executable action a; is sampled. We execute a;, receive the next observation (Line 17), and
proceed to the next timestep. The episode ends when the subgoal gsTop is sampled (Line 10) or the
horizon T, is exceeded (Line 18).

A.5 High-Level Controller Details

Subgoals are predicted periodically. Let g, = (type,, argkc, arg)!) be the k-th subgoal predicted
at time ¢. Predicting the subgoal type type; and the argument class argkc is described in the
main paper (Section 4.3). This section provides further details of REFINER, the model we use to
generate arg). The mask refiner REFINER has four inputs:* (a) a spatial feature map x;?° €

[0, 1JV*W>L oriented in the agent egocentric reference frame; (b) [V;%](arge) € [0,1]W 757 a

*Errata: Equation 4 in the main paper is missing [V;°] oy and P; arguments to the REFINER.

(argy;
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Figure 6: Illustration of the LingUNet architecture used for as part of REFINER within the high-level con-
troller 77, and as part of the navigation model NAVMODEL within the low-level controller. The conditional
convolutions parameters are computed during the network forward pass.

P

.

3D mask indicating all voxels that contain objects of class argkc in the voxel map V,%; (c) the
agent’s pose P;; and (d) a vector representation of the instruction ¢”. It outputs a 3D mask arg) €
[0, 1] *L>xH that identifies the subgoal argument object. Formally, the computation is:?

REFINER (x{7°, [V}°] (argC)> Pty or) = ©

ego

ALLOTRANSFORM(LINGUNET,, (x{*, "), P) ® [V,*] (arge)

where ALLOTRANSFORM transforms a spatial 2D map from an egocentric to the global reference
frame, and LINGUNET,, is a language-conditioned image-to-image encoder-decoder [36]. The
architecture of LINGUNET,,, is illustrated in Figure 6.

A.6 Low-Level Controller Details

We describe the implementation of each of the low-level controller procedures. This implementation
is not the focus of this paper, and could be improved or replaced with other algorithms. Some of the
procedures cause actions in the AI2Thor environment, others simply process data to pass between
procedures.

The procedures are NavigateTo, SampleExplorationPosition, SampleInteractionPose,
and InteractMask. The low-level controller receives the subgoal g, and follows a pre-specified
execution flow across multiple timesteps to complete it. The execution flow (Figure 7) con-
sists of an exploration and interaction phase. In the exploration phase, we perform a 360° ro-
tation by generating a sequence of three ROTATELEFT actions to observe the environment and
add information to the semantic map. If the semantic map indicates that no object of type
argg, the action argument, is observed, we explore the environment by sampling a position
x,y) = SampleExplorationPosition(8;), navigating there using NavigateTo(z,y, §;), and
performing another 360° rotation. We repeat this process until a voxel in V;° contains the class
argg with >50% probability, at which point we move on to the interaction phase. In the inter-
action phase, we sample an interaction pose (z,y,w,,wp,) = SampleInteractionPose(3:, gi),
invoke NavigateTo(z,y,$:) to reach the position (x,y), and rotate according to yaw and
pitch angles (wy,wp). Finally, we generate the egocentric interaction action mask mask; =
InteractMask(§;, arg)), and execute the interaction action (type,,mask;) in the ALFRED en-
vironment. We output apass or aparr, depending if the interaction action has succeeded, and pass
control back to the high-level controller to sample the next subgoal.

—~

A.6.1 NavigateTo Procedure

At time ¢, the NavigateTo procedure maps a 2D navigation goal position (x, y) and the state repre-
sentation ; to one of the actions: {ROTATELEFT, ROTATERIGHT, MOVEAHEAD, agtop }. We im-
plement it with a Value Iteration Network [VIN; 57] that solves a 2D grid-MDP to predict navigation
actions using fast GPU-accelerated convolution and max-pooling operations. The VIN parameters
are pre-defined, and not learned. Other motion planners such as A* could be used as well.

3® is an operation that multiplies a W x L matrix by a W x L x H tensor to obtain a W x L x H tensor
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Figure 7: Illustration of the low-level controller execution flow, showing the order in which procedures are

Apass

NavigateTo
END

Afail

used to complete a subgoal g

Current Heading VIN Action AI2Thor Action

WEST ROTATELEFT

North NORTH MOVEAHEAD
EAST or SOUTH ROTATERIGHT

NORTH ROTATELEFT

East EAST MOVEAHEAD
SOUTH or WEST ROTATERIGHT

EAST ROTATELEFT

South SOUTH MOVEAHEAD
WEST or NORTH ROTATERIGHT

SOUTH ROTATELEFT

West WEST MOVEAHEAD
NORTH or EAST ROTATERIGHT

Table 4: Mapping from VIN actions to AI2Thor actions.

The VIN is defined by a state-space SV%", action space A", transition function 77" : SVin x
Avin 3 8vin g reward function RV™™ : SV x AV —s AV and terminal state set MY, At
each timestep ¢, VIN performs value iteration to compute the Q-function Q%" : SV x A" — R
that estimates the expected sum of future discounted rewards for taking action a?"" € A" in state
sYm € SV, and thereafter following a greedy policy: a?™™ = arg max,vine gvin Q(sV™", a¥"),
i > t. We implement the state space SV'™ as a 2D grid of shape WV x H""". Each state sV
is tagged with three 0-1 valued attributes: OBSTACLE, UNOBSERVED, GOAL. At each timestep
t, we set the values of state attributes according to the most recent state representation s; and
current navigation goal (x,%). States s°™" with occupied voxels in the height range [0,1.75m)]
are tagged OBSTACLE(s""") = 1, otherwise OBSTACLE(s"""") = (. States with all voxels un-
observed are tagged UNOBSERVED(s"™) = 1, otherwise UNOBSERVED(s"") = 0. The state
at the goal position is tagged GOAL(s”"") = 1, for all others GOAL(s""") = 0. The action
space is AV = {NORTH, EAST, SOUTH, WEST, STOP}. The transition function encodes epsilon-
greedy grid navigation dynamics: (1) the action NORTH moves the agent one state north and
likewise for other actions, and (2) with probability ¢ = 8% a random transition to a neighbor-
ing state occurs. Visiting any terminal state s’ € MY'™ or executing the action STOP ter-
minates the episode. Terminal states are all states tagged with attributes OBSTACLE and GOAL,
MY = [gvin ¢ Svin | (OBSTACLE(s"™) > 0.5) A (GOAL(s"™) > 0.5)}.

The reward function assigns different rewards for visiting states with different attributes:
RV (sV™ q""™) = —0.9 - OBSTACLE(s""") + 1.0 - GOAL(s""™)
—0.02 - UNOBSERVED(5""") + 0.001 - Lgvin_grop - (7)

OBSTACLE states receive reward —0.9, GOAL states receive reward 1.0, and UNOBSERVED states
receive reward —(.02. Taking the STOP action in any state gives reward 0.001, which has the effect
of the agent stopping in unsolvable cases. We use the VIN iteratively for N " iterations, and predict
an action @™ = arg max,vin e goin (QV¥" (sV1", a¥"""). We map from the VIN action a’*" to a single
valid AI2Thor navigation action using a deterministic mapping (Table 4).
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A.6.2 SampleExplorationPosition

The SampleExplorationPosition procedure maps a state representation S, to a discrete 2D po-
sition p**Plore = (. 4/). Let P, be the set of 2D positions corresponding to voxel centroids in the
voxel map along the horizontal axes, and the ground set P, as the set of all unoccupied positions
that have the class FLOOR or RUG in at least one voxel. A position is unoccupied if all voxels in the
height range [0, 1.75m)] are free of obstacles. We define a frontier set Py as the set of all positions
‘P4 for which at least one immediately neighboring position contains zero observed voxels. If Py is

non-empty, we sample the position pP1*¢ uniformly at random from P;. Otherwise, we sample
pe*Plere uniformly at random from P,

A.6.3 SamplelnteractionPose

The SampleInteractionPose procedure maps the state representation S; and subgoal g, =
(type,,arg{,arg)) to a pose P = (z,y,wy,w,), where (z,y) is a discrete 2D position, w,
is the agent yaw angle, and w,, is the agent camera pitch angle. The pose is predicted such that upon
reaching it, the interaction action of type type, is likely to succeed on the object of class arg$ at
location identified by the mask arg?.

We use a neural network model NAVMODEL to predict expected pitch E(w,|z, y; gk, §;) and a
distribution P(z, y, wy|gk, §:), factored as:

P(.’E, Y, wy|gk7 gt) = P(wy|ma Y5 9k, §t)P(x7 y|gka §t) (8)
The network NAVMODEL is based on the LingUNet architecture (Figure 6):

NAVMODEL(8:, gr,) =
LINGUNET(AFFORD(3; ), LINEAR([LUT (type,,); LUTc (argl)])) , (9)

where AFFORD is an affordance feature map (Section 4.1), LINEAR is a linear layer with bias, LUT
and LUT¢ are embedding lookup tables, and [-; -] is a vector concatenation.

To sample a pose P, we first sample a position (x,y) ~ P(x,y|gk, §;), then sample a yaw angle
wy ~ P(wy|x,y; gk, 5+), and finally lookup a pitch angle w, = E(wp |z, y; gk, 5¢).

A.6.4 InteractionMask

The InteractionMask procedure maps a state representation 3; = (V,°, V.0 v?, P;), the most
recent RGB observation I;, the most recent predicted segmentation I, and a subgoal g =
(typey,argl,arg)) to a 0-1 valued mask mask; € [0, 1]7*W that identifies the interaction ob-
ject in the first-person view observation. The interaction mask mask; is in the format expected by
ALFRED. Formally, it is computed in three steps:

mask;' = [I]]uge (10)
mask” = PINHOLECAM(arg) , P;) (11)
mask; = maskg4 -maskf} , (12)

where PINHOLECAM projects the 0-1 valued 3D voxel map argﬁ/[ to the agent’s camera plane
according to the pose P;. The mask maské4 is an egocentric 0-1 valued mask that identifies all objects
of class arg{ in the image I;. The mask? is an egocentric 0-1 valued mask that identifies the voxels
argy!. For each pixel (u,v), the value [mask!](,,,) is the maximum of all values [argp'] ;) Over
voxels with coordinates (x, y, z) that the ray cast from the camera through the pixel (u, v) intersects
with. The final mask mask; is a 0-1 valued mask that identifies not only the correct object class, but
also the correct instance according to the voxel mask arg]k” .

A.7 Additional Learning Details
A.7.1 Observation Model Learning
Data As described in Section 5, we use a perception dataset D¥ for training depth and segmentation

models. The dataset DT = {([I]®), [IP]® [15]} X" includes RGB images [I]®”) with ground
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Figure 8: Examples of images produced with our AUGMENT procedure. The top row shows raw RGB im-
ages from ALFRED. The bottom row shows images generated by our segmentation-aware data augmentation

method. Objects like walls, sinks, floors, and furniture randomly change color, while the apple and the spoons
do not.

truth depth [IP]® and segmentation [I°](*). The ground truth depth [I”](*) at each pixel (u,v) is
a distribution [I” ]EZL v)) OVer B depth bins, where 100% of the probability mass is assigned to the

bin containing the reference depth value. The ground truth segmentation [I1°](*) is likewise at each
pixel (u, v) a one-hot vector indicating the object class that pixel belongs to.

Data Augmentation The ALFRED dataset consists of 108 different training scenes, where each
scene has a fixed furniture and light fixtures. Observations are highly correlated within each scene,
which greatly reduces the effective size of the perception dataset and hurts generalization to unseen
scenes. We use a custom segmentation-aware data augmentation strategy that increases the diversity
of RGB observations.

We compute an augmented RGB image I = AUGMENT(I, I, O,) that maps the image I, ground-
truth segmentation [ 5. and a set of semantic classes O, to a new image I. O, is the set of object
classes that are likely to appear in different colors. O, includes classes like FLOOR, COUNTERTOP,
CABINET, VASE, SOAPBOTTLE, ALARMCLOCK that come in different designs and colors, but
not classes like BANANA, APPLE, SPOON that tend to have even appearance. Algorithm 2 shows
the implementation of AUGMENT. It emulates more diverse environments by applying a different
random color offset to each object class in the RGB image. Figure 8 shows examples of images
produced with this augmentation procedure.

During training, we apply AUGMENT with 50% probability to each training example. Additionally,
with 50% probability we perform a horizontal flip.

A.8 Additional Experimental Details

We collect a training dataset of language-demonstration pairs as described in Section 5. The demon-
strations in ALFRED typically navigate while looking down at the floor, likely a side-effect of the
PDDL planner that had access to the world state during data generation, and as such has no need to
explore or observe the visual environment. We modify the demonstration trajectories to get more
informative first-person observations. First, we insert four ROTATELEFT actions at the start of each
trajectory. Second, we maintain a nominal camera pitch angle of 30°during navigation, by inserting
LookDowN and LOOKUP actions before and after every interaction action. We discard trajecto-
ries for which these modifications cause failures. These modifications result in observations that are
more useful for learning and constructing our persistent spatial representation.

A.9 Hyperparameters

Table 5 shows hyperparameter values. The hyperparameters were hand-tuned on the validation
unseen split.

A.10 Additional Results

Additional qualitative results are available at: https://hlsm-alfred.github.io/.
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Algorithm 2 AUGMENT

Input: RGB Image I, ground truth segmentation J 5, set of object classes O,,.

1: I+1
2: forc € O, do
3:  » Extract a binary mask corresponding to object class ¢
4: M. + [IS](C)
5:  » Apply modifications to the image, masked by the segmentation mask M.
6: » (© multiplies a N-dimensional vector with a H x W tensor to compute a N x H x W tensor
7: > -1is an elementwise multiplication
8: if randomBernoulli(0.5) then
9: » Sample an additive color offset for class ¢ from a normal distribution.
10: » [I3isthe 3 x 3 identity matrix.
11:  a~N(T,0.05)
122 I+ I+a0M
13:  if randomBernoulli(0.5) then
14: » Sample additive gaussian noise for each pixel (u, v) for class ¢
15:  for each pixel (u,v) do
16: Ju,o ~ N(1,04)
17: [I}(u,'u) — [I](u,'u) + Gu,v - [Mc](u,v)
18:  if randomBernoulli(0.5) then
19: » Sample an multiplicative color offset for class ¢ from a normal distribution
200 m~ N(ﬁ, oml3)
21: T+ 1T -(moM,)
22: clamp image T within 0-1 bounds
23: return [

A successful example of task execution is available at: https://drive.google.com/file/d/
1APKe3cR_-v1iyU2elT5Un30w7PvkEdYs/view?usp=sharing

A failed example of task execution is available at: https://drive.google.com/file/d/1j8BJ_
ALoXGyf8a-I0kmQAg38awSWYt6f/view?usp=sharing
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Hyperparameter Value

Observation Model
Number of depth bins B 50
Depth resolution AD 0.1m
Spatial State Representation
Voxel Size 0.25m
Voxel Map Dimensions in Voxels 61 x 61 x 10
Voxel Map Dimensions in Meters 15.25m x 15.25m x 2.5m
Number of semantic classes C' 123

High-level Controller

Subgoal history encoder hidden dimension 128
Subgoal history encoder transformer layers 2
Subgoal predictor dense MLP layers 3
Subgoal predictor dense MLP hidden dimension 128
Low-level Controller
Number of VIN iterations N " 122
VIN state space size 61 x 61
Development Environment
Programming Language Python
ML and Math Library PyTorch

Table 5: Hyperparameter values.
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