
NYU Garage (Pseudo)
BN GN BN GN

Ratio target : NYU

1 : 1 84.9 87.2 87.7 86.5
3 : 1 77.8 81.1 90.6 91.7
4 : 1 76.4 79.8 92.0 92.4

10 : 1 70.3 73.4 93.6 94.7
20 : 1 66.7 67.5 94.5 95.3
200 : 1 54.6 53.9 95.3 96.1

Fraction replay NYU
10% 67.6 68.3 94.0 95.4
5% 63.6 65.0 94.9 95.9

0% (fine-tuning) 37.3 36.4 95.5 96.3

Table 4: Comparison of segmentation quality [% mIoU] on NYU!Garage between models trained
with batch normalization (BN) and models trained with group normalization (GN), under different
replay regimes.

A Appendix

Next to the content on the following pages, the supplementary material for this paper also consists of:

• summary video
• code supplement

A.1 Runtime

We conduct our experiments on 6-year-old hardware with a 8-core i7-6700K CPU and GeForce GTX
980 Ti GPU. While our implementations are not heavily optimised for runtime, we carefully select a
fast rather than precise neural network architecture. Accordingly, the segmentation of all three camera
images takes 127± 23ms. The following ICP localisation takes 529± 132 ms on our hardware (CPU
only). Given the LiDAR frequency of 5 Hz (or 200 ms per scan), the total delay from the beginning
of the scan to the localised pose is approximately 856 ms. This requires a factor 5 optimisation for
real-time deployment. After localisation, our pseudolabel generation takes 1.327± 0.127 s, most of
which is taken by the superpixel segmentation. However, this process is not time-critical since we
only produce pseudolabels from a subset of all frames.

A.2 Details on the Segmentation Training

In all our experiments we use a batch size of 10 and train the network for up to 100 epochs, using
early stopping with a patience of 20 epochs based on the validation loss. We set the learning rate
to 10�4 for the pre-training on NYU and to 10�5 for the remaining experiments, and adaptively
decrease it when the validation loss reaches a plateau. We optimize the cross-entropy loss on the
binary foreground-background labels. Our network architecture, based on Fast-SCNN [61], has a
total of 1,775,110 trainable parameters. We use group normalization [66] in all layers; we conducted
a preliminary ablation study (cf. Table 4) comparing this design choice with the alternative batch
normalization [67]. In accordance with [66], we found group normalization to be more indicated
for our transfer-learning tasks, in which the statistics of the source training data, used by batch
normalization to fit per-layer parameters [67], do not match in general those of the target domain.
This is reflected in the models trained with group normalization performing consistently better or
comparably to those trained with batch normalization, as soon as a non-negligible amount of replay
is used.

A.3 Details on Cross-Domain Forgetting

We present a detailed analysis of forgetting in terms of segmentation in Table 5 as supplementary
information to the main results presented in Table 2. With no exception, memory replay performs
better on source environments than finetuning. We note that the effect of forgetting is even stronger
on the NYU data than in the deployment environments.

For deployment into 4 subsequent domains, we present additional results to the two listed in Table
2 in Table 6. The results for this ’stage 3’ deployment show that the system scales well also to 4
consecutive environments. Interestingly, there is rarely any forgetting measurable in the localisation
results in the Garage, and also in the segmentation quality forgetting is minor. We offer the explanation
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Stage Source ! target Segmentation quality [% mIoU]
NYU Garage Construction Office
GT Pseudo GT Pseudo GT Pseudo GT

RB FT RB FT RB FT RB FT RB FT RB FT RB FT
0 Pretraining on NYU – 86.4 – (22.5) – (33.9) – (22.7) – (27.6) – (39.6) – (46.5)
1 NYU ! Garage 68.3 36.4 95.4 96.3 62.8 61.8 – – – – – – – –
1 NYU ! Construction 78.6 36.6 – – – – 77.0 79.5 48.2 48.9 – – – –
1 NYU ! Office 81.0 66.2 – – – – – – – – 69.7 70.9 53.9 51.2
2 NYU ! Garage! Construction 70.3 30.7 91.8 77.1 60.8 55.1 77.4 78.5 48.6 49.4 – – – –
2 NYU ! Garage! Office 70.9 42.7 92.8 71.7 62.6 61.0 – – – – 69.9 72.2 47.2 47.4
2 NYU ! Construction! Office 78.6 48.9 – – – – 71.3 55.9 50.3 45.4 70.3 72.2 47.6 49.4
2 NYU ! Construction! Garage 70.5 36.7 94.4 95.6 62.2 62.0 61.4 43.3 49.3 42.3 – – – –
2 NYU ! Office ! Garage 68.7 36.4 95.3 96.4 62.1 61.0 – – – – 61.2 46.9 47.8 40.2
2 NYU ! Office ! Construction 77.7 38.8 – – – – 73.1 73.0 49.9 49.1 63.4 44.7 47.5 33.3
3 NYU ! Garage ! Construction ! Office 70.9 42.4 91.5 60.4 62.4 56.9 72.1 52.3 49.9 46.1 67.4 72.6 46.6 45.9
3 NYU ! Garage ! Office ! Construction 71.4 33.0 91.7 71.2 62.7 53.1 75.5 79.1 49.3 48.9 64.6 43.6 41.6 33.2
3 NYU ! Construction ! Office ! Garage 69.4 35.0 96.3 97.2 61.1 60.6 60.6 44.2 47.2 42.5 61.2 45.6 43.7 36.3
3 NYU ! Construction ! Garage ! Office 72.0 39.9 91.8 74.6 64.7 62.2 64.1 39.4 50.4 37.2 68.9 71.5 45.2 46.3
3 NYU ! Office ! Garage ! Construction 71.2 32.8 89.9 77.9 63.2 57.2 82.0 80.2 50.3 48.2 62.7 41.7 43.9 33.8
3 NYU ! Office ! Construction ! Garage 69.2 35.0 95.9 96.9 61.7 61.6 60.3 45.6 47.5 40.7 62.3 45.6 42.3 37.6

Table 5: Evaluation of forgetting and knowledge transfer when deploying into multiple environments.
The perception system is subsequently trained on different environment and at every step evaluated on
all seen environments. Bold shows how the replay buffer (RB) prevents degradation of performance
on the datasets on which the model has previously been trained, as opposed to simple fine-tuning
(FT).

mean/median/std translation error [mm]
environment sequence method Office Construction Garage
NYU ! Garage ! Construction ! Office replay 155 / 123 / 112 100 / 71 / 90 39 / 30 / 29

finetuning 217 / 130 / 283 167 / 80 / 270 41 / 31 / 36
NYU ! Garage ! Office ! Construction replay 157 / 124 / 110 104 / 71 / 97 40 / 31 / 30

finetuning 190 / 117 / 254 98 / 71 / 86 43 / 37 / 29
NYU ! Construction ! Office ! Garage replay 176 / 137 / 123 116 / 72 / 116 39 / 31 / 29

finetuning 194 / 171 / 112 104 / 74 / 87 40 / 31 / 31
NYU ! Construction ! Garage ! Office replay 167 / 129 / 113 105 / 72 / 92 39 / 30 / 29

finetuning 145 / 114 / 130 385 / 95 / 868* 41 / 32 / 32
NYU ! Office ! Garage ! Construction replay 157 / 132 / 102 105 / 70 / 100 41 / 31 / 32

finetuning 158 / 145 / 85 112 / 82 / 92 43 / 35 / 30
NYU ! Office ! Construction ! Garage replay 170 / 142 / 114 114 / 72 / 114 42 / 32 / 32

finetuning 185 / 155 / 107 131 / 74 / 129 42 / 34 / 31

Table 6: Localisation results for the stage-3 deployments through all environments. For the segmenta-
tion quality, see Table 5.

that the garage is similar enough to both other environments such that even when training on another
environment, most of the knowledge about the garage can be kept.

A.4 Details on the Continual-Learning Ablation Study

For both distillation and EWC, we use the same learning parameters as the experiments with replay
buffers. In the following, we denote with X and M respectively an image and the corresponding
mask from the training dataset D. When X is a pseudo-label image, a pixel in M is masked if the
corresponding pixel in X has an associated pseudo-label (background/foreground) and not masked

if the corresponding pixel has unknown label; if X is an image replayed from NYU, all pixels in
X are masked. For a given stage-1 experiment (i.e., in which we deploy the model pretrained on
NYU in a new environment, cf., e.g., Tab. 5), we denote the output prediction of the model pretrained
on NYU as y0(X) and the output prediction of the current stage-1 model as y(X); to indicate the
predicted score associated to each class c 2 {b, f} (b = background, f = foreground) we write
y0(X)[c] and y(X)[c]. Finally, we denote with M(X,M) a function that maps an input image X
and its corresponding mask M to a vectorized version of X that contains only the pixels that are
masked in M.

The generic distillation loss reads as follows:

L = Lce + �Ld, (1)

where � is a hyper-parameter and Lce is the cross-entropy loss (cf. Sec. 4.4).
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ICP parameters mean/median/std translation error [mm]
Construction Office

� [rad] #NN DOF no segmentation self-improving no segmentation self-improving
1.5 10 6 488 / 183 / 999* 150 / 138 / 81 169 / 164 / 86 162 / 158 / 78
1.5 20 6 81 / 63 / 66 94 / 68 / 82
1.2 10 6 1547 / 649 / 1746* 2413 / 719 / 2923*
1.5 10 4 112 / 82 / 86 116 / 76 / 108
1.2 20 6 182 / 191 / 100 164 / 142 / 152 190 / 172 / 98 173 / 150 / 95
0.8 30 6 190 / 177 / 96 163 / 142 / 97
1.0 30 4 182 / 177 / 92 154 / 141 / 81
0.8 20 4 202 / 190 / 95 166 / 146 / 97
0.8 30 4 102 / 82 / 72 105 / 74 / 91 167 / 168 / 88 158 / 135 / 98

Table 7: Ablation of the change of ICP parameters between default (top italic) and values initially
used in office experiments (bottom italic). � is the maximum allowed angle between the normal
directions of a point in the scan and the associated point in the map. #NN is the number of nearest
neighbors used to estimate that normal direction in the scan. DOF is the number of degrees of
freedom in which to perform localisation, where 4DOF disables pitch and roll. We analyse both
slight and grave changes in parameters and find that (i) our self-improving approach is better than the
baseline for most parameter combinations, and (ii) given the runtime increase from top to bottom,
� = 1.5rad with 6DOF and 10NN is a feasible parameter choice.

For output distillation, the regularization loss Ld is a cross-entropy loss between the prediction of the
previous and the current model, masked by the input mask of each image, i.e.,

Ld = �
X

(X,M)2D

X

c2{b,f}

M(y0(X),M)[c] · log(M(y(X),M))[c]
|D| . (2)

For feature distillation, similarly to [37] we consider the features outputted by the network at a
selected layer and minimize the `2 norm between these as returned by the pre-trained model and by
the current model. In particular, we consider the layer that precedes the final classification module
in the Fast-SCNN architecture [61] and denote its output as l0(X) and l(X), respectively for the
pre-trained and for the current model. The regularization loss can therefore be expressed as:

Ld =
kl0(X)� l(X)k22

|D| . (3)

For Elastic Weight Consolidation (EWC), we adopt the original loss introduced in [29], which is of
the form:

L = Lmain + �
X

i

Fi(✓i � ✓i,0)
2, (4)

where the sum is computed over the trainable parameters ✓i and ✓i,0 respectively of the current and
of the pre-trained model, and Fi is the element on the diagonal of the Fisher information matrix
associated with the i-th parameters. Lmain represents the main loss optimized in the given task, which
in our case is the background-foreground cross-entropy loss Lce.

A.5 Localisation Parameters

In general, we run point-to-plane ICP with 3 nearest neighbors and initialise on the previously solved
pose. We apply multiple filters to the input scan, even after the semantic filtering:

• We require the scan to have at minimum 500 points (i.e., rejecting scans where the segmen-
tation classifies nearly everything as foreground).

• We subsample the scan to a maximum density of 10,000 pts/m3.
• After nearest neighbor association, we reject the 20% points that are further away from the

map.
• We reject associations where the estimated surface normals (estimated based on the 10

nearest neighbors) have a larger angle deviation than 1.5 rad.
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Figure 5: Online Learning in the office.

For initial experiments, in order to localise without segmentation and generate pseudolabels in the
very cluttered office environment, we enforced additional filters:

• We only localised in 4 degrees of freedom (x, y, z, yaw).
• We estimated normal directions based on 30 nearest neighbors and only associated points to

the map if the angle between the normals is below 0.8 rad.

These additions were used in Table 1+ and for generating the office pseuodlabels. However, our
ablation study from Table 7 shows that this is not necessary. Our final system is sufficiently robust
to the choice of localisation parameters and can improve over the baseline for most choices of
parameters.

A.6 Pseudolabel Parameters

We empirically set the distance threshold to � = 0.1m and discard superpixels with a depth variance
that surpasses 0.5m. We smooth the images with a Gaussian kernel (� = 0.2) and oversegment
them into approximately 400 superpixels with SLIC parameter compactness = 105. On the data
captured from the garage, we use a different superpixel algorithm (SCALP [68]) that we later discard
because of long runtimes. We do not notice qualitative differences between the created superpixels.
In the office environment, we increase the standard deviation threshold to 1m due to large amounts of
clutter.

To get an estimate of the quality of the pseudolabels themselves, we match frames where we have both
manual ground-truth annotations and pseudolabels. Unfortunately, we could not recover pseudolabels
for the images that were used to generate ground-truth in the office environment. When evaluating the
pseudolabels, we also ignore all pixels that are not labelled (due to high variance or no reprojected
LiDAR points in that superpixel). Therefore, the evaluation is strongly biased in favor of the
pseudolabels. We measure 68.4% mIoU on the garage pseudolabels. For the same pixels (only those
where pseudolabels are not ignored), our trained models get 64.3% mIoU. In the construction site
environment, we measure 49.5% mIoU for the pseudolabels and 54.3% mIoU for our trained model.

A.7 Additional Online Learning Runs

Additional demonstrations of online learning are shown in Figures 5 and 6.

A.8 Example of segmentation predictions

Figures 7, 8, and 9 show examples of segmentation masks produced by the network on the source
environment in the experiments with transfer from a first to a second environment. We report a

5This procedure is suggested by the skimage implementation that we use.
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Figure 6: Online Learning in the garage.

Stage Source ! target Segmentation quality [% mIoU]
NYU Garage Construction Office

GT (no mask) Pseudo GT (no mask) Pseudo GT (no mask) Pseudo GT (no mask)
RB FT RB FT RB FT RB FT RB FT RB FT RB FT

0 Pretraining on NYU – 86.4 – (22.5) – (40.3) – (22.7) – (29.4) – (39.6) – (46.3)
1 NYU ! Garage 68.3 36.4 95.4 96.3 44.5 43.3 – – – – – – – –
1 NYU ! Construction 78.6 36.6 – – – – 77.0 79.5 32.7 32.7 – – – –
1 NYU ! Office 81.0 66.2 – – – – – – – – 69.7 70.9 53.2 51.7
2 Garage! Construction 70.3 30.7 91.8 77.1 43.8 46.0 77.4 78.5 34.7 34.6 – – – –
2 Garage! Office 70.9 42.7 92.8 71.7 45.3 48.0 – – – – 69.9 72.2 52.1 50.3
2 Construction! Office 78.6 48.9 – – – – 71.3 55.9 34.7 36.4 70.3 72.2 46.6 47.5
2 Construction! Garage 70.5 36.7 94.4 95.6 43.7 44.2 61.4 43.3 33.1 31.0 – – – –
2 Office ! Garage 68.7 36.4 95.3 96.4 43.3 42.9 – – – – 61.2 46.9 46.8 42.7
2 Office ! Construction 77.7 38.8 – – – – 73.1 73.0 34.1 33.7 63.4 44.7 46.6 36.7

Table 8: While we in general evalaute segmentation quality only in the overlapping field of view
of cameras and LiDAR, this table serves as a comparison as to how Table 5 would look when
evaluating the whole camera images, including regions where the segmentation never has training
signals because pseudolabels cannot be generated. We observe similar trends also in this table, while
the results are more noisy.

selection of frames for which we have available ground-truth segmentation and show the predictions
obtained both with a model trained with simple finetuning and with one trained with replay from the
source and the pre-training datasets.

In the qualitative outputs, we observe that the models learn biases towards regions that are generally
unlabeled at training time. In particular, areas in the upper and lower part of the image are commonly
classified as foreground, and show a curvature that roughly reflects the regions in the training pseudo-
labels where information is missing due to the reprojection of the LiDAR measurements into the
camera view. This is in line with our discussion of the FoV mask, as supervision through pseudolabels
is missing in those parts of the image; indeed, the learned biases in these unobserved regions often
do not match the ground-truth class in these areas (cf., e.g., Fig. 7a, columns Ground-truth
segmentation and Prediction with replay), and the evaluation would reflect this negatively
if these areas were considered. We stress that the masked FoV region is most relevant for our
application, as it represents the overlap of camera and LiDAR scans that we aim to filter and improve
localization with. However, we also provide numbers when evaluating whole camera images instead
of FoV masks in Table 8. As expected, the results outside of the LiDAR FoV are more noisy. From
the qualitative examples and comparison with the FoV evaluation we know that this is due to wrong
biases in image regions where no pseudolabels are available.
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RGB image Ground-truth
segmentation

Ground-truth
pseudo-label

Prediction with
replay

Prediction with
fine-tuning

(a) Garage!Construction

(b) Garage!Office

Figure 7: Illustrations of (prevention of) forgetting for the parking garage as source environment.
Green is background, blue is foreground and black pseudolabels are ignored in training.
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RGB image Ground-truth
segmentation

Ground-truth
pseudo-label

Prediction with
replay

Prediction with
fine-tuning

(a) Construction!Garage

(b) Construction!Office

Figure 8: Illustrations of (prevention of) forgetting for the construction site as source environment.
Green is background, blue is foreground and black pseudolabels are ignored in training.

19



RGB Image Ground-truth
segmentation Pseudo Label Prediction with

Replay
Prediction with

Finetuning

(a) Office!Garage

(b) Office!Construction

Figure 9: Illustrations of (prevention of) forgetting for the office as source environment. Green is
background, blue is foreground and black pseudolabels are ignored in training. Images are blurred
for anonymous submission.
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RGB image Ground-truth
segmentation Prediction with replay Prediction with

fine-tuning

(a) NYU!Garage

RGB image Ground-truth
segmentation Prediction with replay Prediction with

fine-tuning

(b) NYU!Construction

RGB image Ground-truth
segmentation Prediction with replay Prediction with

fine-tuning

(c) NYU!Office

Figure 10: Illustrations of (prevention of) forgetting for the NYU dataset as source environment.
Green is background, blue is foreground.
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