
Appendix for Learning Feasibility to Imitate
Demonstrators with Different Dynamics

Zhangjie Cao1, Yilun Hao1, Mengxi Li2, Dorsa Sadigh1,2

1Department of Computer Sciences, Stanford University, United States
2Department of Electrical Engineering, Stanford University, United States

caozj@cs.stanford.edu, {yilunhao,mengxili}@stanford.edu, dorsa@cs.stanford.edu

In this Appendix, we provide the proposed method under stochastic MDPs in Sec. A. We provide the
details of the algorithm in Sec. B. We further explain our experimental details in Sec. C. Finally, we
show some extra experimental results in Sec. D.

A The Extension to Stochastic MDPs

In our main text, we discussed the deterministic MDP setting as all our experiments are in the
deterministic setting, but here we would like to extend the discussion to the stochastic MDP case.
In a stochastic MDP, our goal is still to learn a policy πi : S → Ai for the imitator to maximally
achieve the state transitions in the demonstrations. This means that if the state transition (sdt , s

d
t+1)

from a demonstration is more likely to be feasible, the expected distance between the next state sit+1

produced by πi and sdt+1 should be small, i.e., Esit+1∼pi(sdt ,πi(sdt ))[fdis(s
i
t+1, s

d
t+1)] should be small.

Therefore, the expected distance between sit+1 and sdt+1 can serve as a measure of feasibility, where
a smaller distance corresponds to a higher feasibility.

Under a feasibility metric defined by the expected distance, we can use the same design of f-MDP as
the deterministic MDP case: Mf = 〈S,Ai, pi,Rf , ρf0 , γf 〉. The state space, the action space and
the transition probability are all the same as the imitator’s. The initial state distribution is defined as
Uniform(T0). The reward is defined as:

sd0 ∼ Uniform(T0), s0 = sd0, st+1 = pi(st, a), Rf (st, a, st+1) = −fdis(st+1, s
d
t+1). (1)

Maximizing the expected return in the f-MDP in such a design will minimize the expected state
distance between the learned policy and the demonstrations, which matches our definition of feasibility.
After we learn the optimal policy π∗ for the f-MDP, we can derive the feasibility for each trajectory ξ
with the expected state distance between the demonstration and the policy:

w(ξ) = exp

−Est∼π∗
[∑N

t=1(γf )tfdis(st, s
d
t )
]
− C

σ

 . (2)

In our experiments, we only consider the case where the MDP is deterministic.

B Algorithm

We go through the steps of the algorithm of learning feasibility to imitate demonstrators with different
dynamics in Algorithm 1. For the state-based imitation learning algorithm used to learn the final
policy from reweighted demonstrations, we use the state-based GAIL as [1]. Lines 1-6 show the
process of constructing N f-MDPs (one for each demonstrator) and training the optimal policy for
each f-MDP. Line 7 shows how to compute feasibility with the optimal policy for each f-MDP. Lines
8-11 show imitation learning over the newly reweighted demonstrations.

Currently, we consider the state transitions in each trajectory share the same feasibility but do not
consider the case where parts of the trajectories are more feasible than some other parts. This is
because the state-based GAIL in our algorithm as well as many standard imitation learning algorithms

5th Conference on Robot Learning (CoRL 2021), London, UK.



Algorithm 1: Algorithm

Input: Demonstrations Ξj from each demonstratorMd
j , (1 ≤ j ≤ N).

1 for j=1 to N do
2 Construct the trajectory f-MDP Mf

j based on the demonstration set Ξj according to Eqn. (2);
3 Train an optimal policy π∗

j for the trajectory f-MDP Mf
j ;

4 Compute the feasibility w(ξj) for each trajectory ξj ∈ Ξj as in Eqn. (3);
5 Assign the feasiblity w(ξj) to each state transitions in ξj ;
6 end

7 Compute pw((sdt , s
d
t+1))← w((sdt ,s

d
t+1))∑(

sd
t′
,sd
t′+1

)
∈T

w((sd
t′ ,s

d
t′+1

))

8 while not converging do
9 Sample a batch of state transitions from pw;

10 Train π with the sampled batch of state transitions by an state-based imitation learning
algorithm: state-based GAIL

min
θπ

max
θd

E(st,st+1)∼π(log(D(st, st+1))) + E(st,st+1)∼pw(1− log(D(st, st+1))), (3)

where θπ is the parameter of π and θd is the parameter for the discriminator D in
state-based GAIL;

11 end
Output: Learned optimal policy π∗ forMi.

rely on learning from the full trajectory from the start to the end state. If a segment of the trajectory is
far from feasible or harmful, then the remaining part is also not going to be useful for our algorithm.
Therefore, we only learn from trajectories that are helpful in all parts.

C Experiment Details

In this section, we discuss experimental details for all of our environments. In addition, we discuss
the choice of our discount factor γf in C.3

C.1 Mujoco

Table 1: The composition of demonstrations for each environment

Environment Number of Demonstrations

i ii iii iv

Swimmer 50 50 500 500
Walker2d (first setting) 50 50 500 500

Walker2d (second setting) 500 500 10 10
HalfCheetah (first setting) 25 25 500 500

HalfCheetah (second setting) 500 500 25 25
Hopper 50 50 500 500

Composition of Demonstrations. The composition of demonstrations in each environment is shown
in Table 1. We design the composition of demonstrations to ensure that directly performing imitation
learning on all the demonstrations cannot learn an optimal policy as otherwise we do not need to
consider the problem of learning from demonstrations from agents with different dynamics.

Implementation Details. To implement our algorithm, we use TRPO [2] as the RL algorithm to
learn the optimal policy from f-MDP, and we use the GAIL from Observation algorithm [3] as our
imitation learning technique to learn the optimal policy from the reweighted demonstrations. For
each demonstrations, we create a separate f-MDP for its demonstrations and train an optimal policy
for the f-MDP to generate the feasibility for its demonstrations.

2



Compared to the final imitation learning algorithm, which requires about 7× 107 interactive steps
with the environment to converge, learning the optimal policy from f-MDP only needs about 5× 105

time steps, which is significantly smaller. This indicates that the proposed feasibility learning is
efficient even with an additional RL learning process.

C.2 Simulated and Real Robot Arm

Reward Function. In the main text, we evaluate our policy for the two robot arm environments
using the expected return. We introduce the details of the reward function here. The exact formula of
the reward function is r = −s− 10000h+ 5000g, where r is the reward, s is the number of steps,
h ∈ {0, 1} represents whether the robot hits any object in the environment, and g ∈ {0, 1} represents
whether the robot achieves the goal.

Composition of Demonstrations. The demonstration set composed of 5 trajectories from the 3 DoF
Panda robot arm with disabled joints and 43 trajectories from the 7-DoF Panda arm for both the
simulated and the real arm environments.

Implementation Details. To implement our algorithm, we use TRPO [2] as the RL algorithm to
learn the optimal policy from f-MDP. To learn the optimal policy from the reweighted demonstrations,
we learn a beta-VAE [4] to imitate the state transition sampled from the reweighted distribution of
state transitions pw. After learning the state transitions, we recover the joint actions from the changes
of the end-effector’s position using inverse kinematics.

Compared to learning the beta-VAE model, which requires about 2.56× 104 interactive steps with
the environment to converge, learning the optimal policy from f-MDP only needs about 5.12× 103

time steps, which is negligible with respect to the imitation learning algorithm. This indicates that the
proposed feasibility learning is efficient even with an additional RL learning process.

C.3 Choice of Discount Factor

The choice of the discount factor γf depends on how fast the compounding error increases with
respect to the number of steps in the environment. Faster increasing compounding errors need smaller
γf . In practice, this depends on the scale of the ‘movement’ of the agent at each step. For example,
for a robot arm, if each joint can only move at a small angle at each step, we can set γf to be larger
or if each joint can move at a larger angle at each step, γf should be set smaller. In our experiments,
we fix the γf = 0.9 and empirically it works well for all the environments.

D Experimental Results

In this section, we provide a number of additional experiments and results including additional results
in the Mujoco environment and the simulated robot (D.1, D.3), results demonstrating the effects of
varying the number of demonstrations (D.4), discussion and additional results with varying choices
of distance metrics (D.5), comparison with a mapping-based method (D.6), and comparison of the
expected return of our method with the expected return of the originally collected demonstrations
(D.7).

D.1 More Results for Mujoco Environments

We show the results of the second setting for the Walker2d and the HalfCheetah in Fig. 1. We observe
that our proposed feasibility achieves the best performance among all the methods. The highest
p-value comparing our method to baselines is 0.297 with ID-Feas for the Walker2d environment, and
0.0037 with ID-Feas for the HalfCheetah environment (statistically significant) respectively.

D.2 Performance with a Budget of Additional Demonstrations.

We now consider a setting, where we start with a limited set of demonstrations, but acquire more
demonstrations under a limited budget. Our feasibility metric can assess how likely it is for a
demonstrator to produce feasible demonstrations, and hence can help us select which demonstrator
to query for more demonstrations. We start with one demonstration from each demonstrator in the
Swimmer environment and evaluate the performance as we add demonstrations. For our method and

3



0 1 2 3 4 5 6 7
Number of Interaction Steps (1e7)

0

2000

4000

E
xp

ec
te

d 
R

et
ur

n

(a) Walker2d

0 1 2 3 4 5 6 7
Number of Interaction Steps (1e7)

−2000

0

2000

E
xp

ec
te

d 
R

et
ur

n

(b) HalfCheetah

4 8 12 16 20
Budget Size

0

50

100

E
xp

ec
te

d 
R

et
ur

n

(c) Additional Budget

Ours ID-Feas SAIL GAILOurs-Uniform ID-Feas-Uniform

Figure 1: (a-b) show the expected return for the second setting for the Walker2d and the HalfCheetah
environments respectively. (c) The expected return with varying budget of additional demonstrations
in Swimmer.

(a) Dynamics

−10000

−5000

0

5000

Ex
pe

ct
ed

 R
et

ur
n

(b) Expected Return

0.0

0.5

1.0

Su
cc

es
s R

at
e

(c) Success Rate (d) Sample Trajectories

Ours ID-Feas SAIL GAIL

Figure 2: (a) The illustration of different dynamics in the simulated robot arm environment. The
7 DoF robot arm can move in the whole 3D space while the 3 DoF arm can only move in the red
plane; (b-c) The bar plot for the expected return and the success rate for the simulated robot arm
environment; (d) Sampled trajectories for different methods in the simulated robot arm environment.

ID-Feas, we can acquire demonstrations proportional to the computed feasibility score. We compare
the expected return with demonstrations selected based on feasibility (Ours, ID-Feas) to the expected
return with demonstrations uniformly acquired from each demonstrator (Ours-Uniform, ID-Feas-
Uniform). We further compare with SAIL and GAIL, where no feasibility is defined and we uniformly
acquire demonstrations. As shown in Fig. 1(c), Ours outperforms ID-Feas, which demonstrates
that the proposed feasibility can better reflect how likely each demonstrator produces feasible
demonstrations and acquire more demonstrations from helpful demonstrators. Ours outperforms
all the other methods including Ours-Uniform (although not with statistical significance), which
indicates that the demonstrations acquired based on the feasibility gain more useful information.

D.3 Results on the Simulated Robot

As shown in Fig. 2, We observe that the proposed approach outperforms the baseline methods both
in terms of the expected return and the success rate. The highest p-value for the expected return is
7.252×10−9 and for the success rate is 1.047×10−8 (both with ID-Feas), which are both statistically
significant. The sampled trajectory show that the proposed approach achieves an efficient trajectory
successfully moving the book to the empty area of the shelf.

D.4 Varying the Number of All Demonstrations

We vary the number of demonstrations from all demonstrators. We conduct experiments on the first
setting of the all the Mujoco environments. For the Swimmer and Walker2d environments, we test
with 20% and 50% of the original demonstrations. For the HalfCheetah environment, we test with
40% and 60% of the original demonstrations since we have much less demonstrations (25 vs 50)

4



Table 2: The performance of varying percentage of demonstrations used with respect to the original
setting.

Method Swimmer Walker2d HalfCheetah Hopper

20% 50% 100% 20% 50% 100% 40% 60% 100% 20% 50% 100%

GAIL 40.0±34.3 37.9±35.2 30.9±23.5 276.9±18.3 313.1±63.0 261.1±5.6 2464.9±460.2 2597.2±399.0 2443.6±440.7 2798.3±351.1 2996.6±623.2 3009.6±362.4
SAIL -7.7±19.7 -5.5±24.6 -3.0±28.4 8.5±17.5 -5.3±56.4 19.0±30.1 -556.7±365.8 -503.3±299.3 -603.0±389.6 -252.6±432.6 -1622.2±1780.1 -7.00±11.4
RAL 23.1±33.9 30.6±28.1 48.2±39.0 244.3±27.4 261.0±46.7 227.0±24.2 2604.4±423.1 2515.3±311.0 2594.4±508.7 2040.3±408.3 2108.9±611.9 1916.1±750.4
Ours 68.2±24.7 76.4±22.1 74.3±20.1 3137.6±50.2 3127.0±30.7 3144.3±23.5 2716.7±301.6 2812.4±261.2 2830.6±292.6 3273.3±180.2 3351.0±146.3 3329.6±115.2

from the demonstrators similar to the imitator. As shown in Table 2, we observe that our approach
outperforms all the other methods when having access to different number of demonstrations.

0 1 2 3 4 5 6 7
Number of Interaction Steps (1e7)

−25

0

25

50

75

100

125

E
xp

ec
te

d 
R

et
ur

n

L2 Distance
L1 Distance
Cosine Distance

Figure 3: The expected return with respect to the
number of steps with different choices of distance
metrics.

Method Expected Return

GAIL [5] 31.20±22.25
SAIL [6] 0.56±4.27
DCC [7] 5.32±3.43

ID-Feas [1] 48.96±38.50
Ours 74.89±19.68

Table 3: The expected return of the learned pol-
icy in the Swimmer environment (with standard
deviation).

D.5 Discussion of the Choice of Distance Functions

We use L2 distance between states in the reward function in Eqn. (2) and (3) in the main text and in
all the experiments. This is because in all our environments, the L2 distance can accurately measure
the distance between states. However, this does not mean that the distance metric in our reward of
f-MDP is restricted to the L2 distance. We can change the distance depending on the specific state
space. For example, for a state space with unit vectors, we can use the cosine distance as the distance
metric.

In Fig. 3, we show the expected return of our method by using different distances in the Swimmer
environment. We use L1 distance and Cosine distance (the cosine of the angles between two state
vectors) as examples. We observe that L1 distance, which is another distance derived by norm,
performs close to L2 distance, but Cosine distance performs worse than L2 distance because Cosine
distance only cares about the distance on angle but ignores the scale of the vectors, while in Swimmer,
the scale of the states is also important. The results show that the choice of this distance function is
flexible and depends on the specific choice of the state space in our problem.

D.6 Comparison with Mapping-Based Methods

Mapping-based methods translate the demonstrations across different environments by learning state
mappings and action mappings [7], which can be used in our problem setting by mapping the source
demonstrations to the target environment. However, our problem setting does not ensure that there
exist a mapping between the demonstrators and the imitator, which violates the assumption of the
mapping-based methods. We thus do not include any mapping-based methods in our experiments in
the main body of our work. However, here as an additional experiment, we compare our method with
the state-of-the-art mapping-based method, DCC [7].

DCC requires random trajectories from both the demonstrators and the imitator to learn a mapping,
but we do not have access to the demonstrators’ environment and only have access to demonstrators’
demonstrations. So we use the demonstrations and the imitator’s random trajectories as the input
to DCC. As shown in Table 3, the performance of DCC is much worse than our method and even
worse than GAIL. This is because DCC itself is a good mapping-based method but mapping-based

5



methods are not quite suitable for our problem setting. In fact, there should not exist a mapping
between demonstrations and the imitator’s random trajectories. Building such a mapping causes
severe mismatch between states and actions of different environments and makes the translated
demonstrations distort the original demonstrations.

Table 4: The average expected return of demonstrations in different environments and the expected
return of our method.

Swimmer Walker2d HalfCheetah Hopper Simulated
Robot

Real
RobotFirst Second First Second

Demonstrations 106±3 3098±118 3720±336 3229±170 3337±67 3460±87 1823±110 2531± 362
Ours 75±20 3147±10 3424±645 2832±291 3142±89 3330±115 2127±5053 2746±2712

D.7 Comparison with the Collected Demonstrations

We compare the expected return of our approach with the demonstrations in Table 4. We observe that
in the first setting of Walker2d environment, Hopper environment, the simulated robot and the real
robot environments, our approach performs comparably to the expected return of demonstrations,
which are optimal demonstrations for different demonstrators. In the Swimmer, the second setting of
Walker2d and the HalfCheetah environments, the performance is worse than the demonstrations. This
is because only a few demonstrations are feasible for the imitator and that may not be enough to learn
an optimal policy. However, the margin between our approach and the demonstrations is still not
large. The results show that the proposed feasibility can select useful demonstrations for the imitator
to imitate.

References
[1] Z. Cao and D. Sadigh. Learning from imperfect demonstrations from agents with varying

dynamics. IEEE Robotics and Automation Letters (RA-L), 2021.

[2] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In
ICML, 2015.

[3] F. Torabi, G. Warnell, and P. Stone. Generative adversarial imitation from observation. Imitation,
Intent, and Interaction (I3) Workshop at ICML, 2019.

[4] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner.
beta-vae: Learning basic visual concepts with a constrained variational framework. 2016.

[5] J. Ho and S. Ermon. Generative adversarial imitation learning. In NeurIPS, volume 29, 2016.

[6] F. Liu, Z. Ling, T. Mu, and H. Su. State alignment-based imitation learning. In ICLR, 2019.

[7] Q. Zhang, T. Xiao, A. A. Efros, L. Pinto, and X. Wang. Learning cross-domain correspon-
dence for control with dynamics cycle-consistency. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=QIRlze3I6hX.

6

https://openreview.net/forum?id=QIRlze3I6hX

	The Extension to Stochastic MDPs
	Algorithm
	Experiment Details
	Mujoco
	Simulated and Real Robot Arm
	Choice of Discount Factor

	Experimental Results
	More Results for Mujoco Environments
	Performance with a Budget of Additional Demonstrations.
	Results on the Simulated Robot
	Varying the Number of All Demonstrations
	Discussion of the Choice of Distance Functions
	Comparison with Mapping-Based Methods
	Comparison with the Collected Demonstrations


