
Supplementary Material for: Structure from Silence

A Dataset Examples
We show video samples of static recordings (static_near.mp4 and static_far.mp4) and
video samples of motion recordings (motion.mp4) along with audio.

B Additional robot navigation experiments
We perform additional robotic navigation experiments. For these, we use a robot equipped with
to avoid the need for the robot to rotate to sense both sides of the scene (the model is otherwise
unchanged).

Experiment setting. We evaluate our model in 3 additional rooms. Their floor plans and track
designs are shown in Fig. 11. Similarly, the robot starts from one of several unknown locations (40cm,
80cm, or 120cm from the wall) and orientations (30◦ left or right, or facing forward). For each
room, we repeat the experiment 9 times and measure the longest distance along the track it attained
before colliding with a boundary. For the 'L'-shaped track in Room #2, we determine the distance
by projecting the final position to the center line of the track. All rooms (4 in total) are located in
distinct buildings, and are not included in the training set.

Algorithm. The detailed algorithm to control the robot is shown in Algorithm 1. When computing
the near-wall probability P (L) and P (R), we average the predictions of 20 clips of 3s audio to make
the prediction more accurate robust. For each room, we manually adjusted the threshold p, which
accounts for per-room biases in the classifier’s output. Experimental results. As before, we evaluate
using the “straight line” policy. We measure the performance by computing the percentage of the
completed track, and take the average of all trials, as well as the average of the trials starting with the
same orientation, as shown in Fig. 10. It can be seen that the “straight line” policy performs well when
reaching the goal does not require turning, as expected. However, it performs significantly worse than
our model when the robot starts at an angle that does not follow the wall. In contrast, the distance
our model traverses is more consistent between starting orientations, indicating that the model more
successfully guides the robot to navigate along the wall. When looking at the average performance
with different starting orientation on individual rooms, we also find that the “straight line” policy only
outperforms our method when starting facing forward on straight tracks, and performs worse than
ours with any other starting orientation or on the 'L'-shaped track in Room #2.

Average of
all trials

Average of
trials starting

30 toward left

Average of
trials starting
toward front

Average of
trials starting

30 toward right

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
om

pl
et

ed
 tr

ac
k

di
st

an
ce

 (%
)

65.9

55.4

82.1

60.4

51.5

32.2

81.9

40.5

Ours
Straight line

Figure 10: Additional Robot navigation results.

Vision model. While, in principle,
vision-based navigation is very effec-
tive (and is capable of significantly
outperforming audio-based naviga-
tion), we found in initial experiments
that our vision-based model did not
generalize well to novel viewpoints,
perhaps because the RGB-D train-
ing only contained wall-facing view-
points. To address this, we collected
12K RGB-D images as training data
from the same scenes, with additional
random viewing directions, and fine-
tune our visual model on it. We then
used a slightly modified algorithm (Al-
gorithm 2). To keep the control al-
gorithm as close as possible to the
controller for audio model, we made
a small modification to Algorithm 1.
We estimated the turning angle based on the prediction of near-wall side (which can be obtained by
comparing left-side score and right-side score at the initial step). The reason for this is to avoid the
noise from the prediction of far-wall side, considering the threshold p is usually very high (we set it
as 0.97 in the experiment).

Video demo. We provided demo video (robot_demo.mp4) in the supplementary material. Please
check the video for qualitative results of robot navigation.

1

Track

Start

De
st

in
at

io
n

9.
00

 m

6.00 m

2.00 m

2.
00

 m

4.
20

 m

4.80 m

2.80 m

2.
20

 m

Track

Start

Destination

8.
50

 m

7.50 m

2.00 m

1.
50

 m

4.
00

 m

3.
00

 m

(a) Room #1 (b) Room #2 (c) Room #3

Track

Start

Destination

12
.3

0
m

7.50 m

2.00 m

4.
10

 m

7.
00

 m

Figure 11: Classroom floor plans and corresponding track settings.

C Obstacle detection on static-dense recordings
Table 6: Obstacle detection for static-dense
recordings. Here, S denotes static and M
means motion.

Model Task AP(%) Acc(%)

Chance S 46.4 50.0
Chance M 52.4 49.8
Ours S 96.4 83.9
Ours M 98.3 94.2
Ours-static S 93.9 84.6

We evaluated the obstacle detection task for static-dense
recordings by training a model on 3 rooms and testing on
an unseen room with the same method as the main paper.
To evaluate whether the success rate for wall perception
increases when participants have self-motion, we simulate
the motion of the recorder by concatenating two audio with
the same angle from adjacent grids, and predict whether
the agent is moving towards or far away from the obstacles.
We report the performance of the model (Ours-static)
trained on static recordings for comparison as well.

As shown in Table 6, the average precision above 90% in static-dense recordings with both set-
tings. Comparing experimental results of with or without motion, we can find the network predicts
more accurately with the simulated motion. We also evaluate our static-dense model on static
recordings, finding that it could obtain 62.8% AP and 60.9% accuracy (on par with the equiva-
lent model trained on the static dataset). A video demo is available in the supplementary mate-
rial (obstacle_detect_video_demo.mp4).

D Indoor localization on static-dense recordings
We also asked whether ambient sounds can convey the absolute position in rooms (rather than distance
to walls), when trained and tested on similar (or the same) room. We performed a localization
experiment for static-dense recordings. We use the same network as the obstacle detection task and
replace the last linear layer with a N -class fully-connected layer, where N is the number of grid cells
in the room. We formulate this as a multi-way classification task and predict which grid the given
audio comes from. We train the model with the cross entropy loss and evaluate it with top-1, top-5,
and average distance (i.e., the Euclidean distance between our predicted and target grid position).

Grid classification. We ask to what extent ambient sound can allow a model to predict which grid
cell within the same room the model was trained on. For the train/test split, we randomly select audio
samples with three angles in each grid cell as training, then test on sound with the remaining angle
(i.e. the test samples are unseen, but the model has been trained with other examples from the same
room). The results are shown in Table 7. The model’s accuracy is significantly better than chance. As
expected, we see that our absolute-position model does not generalize well to other rooms, which may
be due to both ambiguities in the coordinate system and fundamental ambiguities in the prediction
problem.

Generalization over time. Next, we evaluated our model’s ability to predict the absolute position
in the room using the audio samples recorded at different times to see how well the model could
generalize over time. In this experiment, training and test sets are from the same room but different
times. The time intervals for Room #4, #5 and #6 are 1 week, 1 week, and 1 hour, respectively.

We show the experimental results in Table 7. It can be seen that the performance is lower when audio
is recorded at different times, confirming the assumption that the network can indeed use the shortcut

2

Table 7: Indoor Localization for static-dense recordings.
Room 4 Room 5 Room 6

EXP. Random Non time-shift Time-shift Random Non time-shift Time-shift Random Non time-shift Time-shift

Top-1 (%) 4.00 32.3 18.3 2.86 29.5 18.8 4.00 34.3 22.8
Top-5 (%) 20.0 77.7 50.3 14.5 70.8 51.8 20.0 74.3 55.6
Avg. Distance 3.17 1.23 1.71 3.59 1.98 2.17 3.17 1.31 1.87

of memorizing transient background sounds. However, the performance is still significantly better
than random chance for recordings that were taken a week apart.

E Relative depth order on motion recordings
We design experiments to investigate the accuracy of relative depth estimation model as the magnitude
of the depth difference changes. We paired audio in the test set with 5 different distance ranges,
and re-evaluated our model (without re-training). We used the variations of our networks that are
initialized randomly. The results are shown in Figure 12. We see that prediction accuracy increases
as the relative depth increases, and that the models are more confident when the distances apart are at
least 0.2 meters.

F Generalization between motion and static recordings
Table 8: Generalization between motion
and static recordings on obstacle detection
and depth order task.

AP(%) Acc(%)

Obstacle detection 61.3 51.9
Depth order 78.8 70.2

We give the results of the model trained on motion record-
ings (recorded in hallways) and tested on static recording
(recorded in the classrooms). The experiment results are
shown in Table 8 . Our model can still perform well above
random chance despite evaluating on a different domain.

G Effects of Non-ambient sounds
To investigate how non-ambient sounds from environment could affect our prediction, we mix static
recordings with sounds from FreeSound [81] to simulate other sound sources in the scenes. By using
synthetic mixtures, we prevent our model from exploiting other cues, e.g. echolocation. We use 200
types of sound events at training and test time, e.g., human sounds, animal, and music. We test our
models with (or without) re-training on the mixed sounds. The results are shown in Fig. 13. We can
see that the performance drops as the volume of distracting sound increases, while still outperforming
chance. Re-training the model with mixed sounds improves performance and makes the model
significantly more robust.

H Conditional absolute depth estimation
Implementation. We use a Siamese network from relative tasks to build conditional absolute
depth (CAD) model. The model takes three inputs: audio s1, reference audio s2, and ground-truth
depth x2. We first extract audio features with VGGish backbone and calculate the depth embedding
following [82]. We add the depth embedding and reference audio feature and fuse features via
concatenation prior to the multi-layer perceptron (i.e., FC-ReLU-FC-ReLU-FC layers). During
training, the reference sounds are randomly selected from the same scene, while those are fixed for
each sample in the test set (Fig. 14).

0 - 0.2 0.2 - 0.4 0.4 - 0.6 0.6 - 0.8 0.8 -
Pairwise Distance Range (m)

70

75

80

85

90

95

100

M
et

ric
s (

%
)

Audio - AP
Image(Random Init) - AP
Image(ImageNet Pretrain) - AP

Figure 12: Relative depth order performance vs. dis-
tance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Non-ambient sound volume

50

55

60

65

70

75

M
et

ric
s (

%
)

W/o Retraining - AP
W/o Retraining - ACC
W/ Retraining - AP
W/ Retraining - ACC

Figure 13: Obstacle detection performance vs.volume
of distracting sound.

3

Latest Audio 1 Reference
Audio 2

VGGish VGGish

Depth
Encoding

128-d128-d

concatenate

MLP

outputs

256-d

1-d

share

weights

Figure 14: Conditional absolute depth
model.

Latest
Audio 1 Audio 2

VGGish VGGish

128-d128-d

concatenate

MLP

256-d

128-d

share

weights

Image 2 Image 1

ResNet18 ResNet18

128-d128-d

concatenate

MLP

256-d

128-d

share

weights

concatenate

MLP

logits

256-d

1-d

Figure 15: The detail of AV-Order model.

I Self-supervised audio-visual learning

Implementation. We approach the AV-Order model by building two Siamese networks for both
audio and visual modalities. As shown in Fig. 15, for each modality, we first extract features from
inputs and concatenate them prior to the multi-layer perceptron. Then we concatenate two 128-d
feature vectors from image and audio branches, and forward it to an MLP (i.e., FC-ReLU-FC layers,
and all the MLP blocks are the same) for the logits.

AudioSet features. The low performance of the AudioSet features in Table 4, 5 could be due to
differences in the types of sounds considered, as well as the preprocessing in each method. The
preprocessing procedure used in the AudioSet model (which is standard on the dataset) throws away
all but the 125Hz-7500Hz frequency range, which our analysis (Section 5.2) suggests is important.
To test this, we trained a random feature baseline with (and without) this preprocessing, and see a
large difference in their performances (Table 4, 5).

Few-shot learning. To help understand how audio-visual self-supervision improves fine-tuned
models, we measure the performance using various numbers of labeled examples as training set (5%,
10%, 20%, 40%, 100%). The experiment results are shown in Figure 16. We can see a large
improvement from self-supervised initialization when there is more unlabeled data than labeled
data, especially in few-shot training regimes. When the number of labeled examples approaches the
number of unlabeled examples, the trained-from-scratch model catches up. This is expected, since
the two datasets are exactly the same, and the labels provide strictly more information than the audio.

5% 10% 20% 40% 100%
The size of training set

65

70

75

80

85

90

M
et

ric
s (

%
)

Random Init - AP
AV-Order pretrain - AP

Figure 16: Relative depth order performance vs. train-
ing set size.

0 - 1k 1k - 2k 2k - 3k 3k - 4k 4k - 5k 5k - 6k 6k - 7k 7k - 8k
Frequency Range (Hz)

0

10

20

30

40

50

60

70

En
er

gy
 R

at
io

 (%
)

Motion Recordings
VGGSound-Instruments

Figure 17: Energy ratio vs. different frequency.

4

J VGGSound-Instrument dataset
We sampled 37 classes of musical instruments with 32k video clips of 10s length from VGGSound
dataset [80], and we call this subset VGGSound-Instruments. Video classes are listed as below. We
explore frequency energy distributions of the motion recordings and VGGSound-Instruments by
computing the energy ratio, i.e. the ratio between the magnitude in a given frequency and the sum
of all frequency magnitudes, from all the samples. As shown in Fig. 17, we can see that 70% of
the spectrogram energy is concentrated on low-frequencies (0 to 1000Hz), which may explain why
our model achieves the best performance with low-frequency information in Fig. 8. Furthermore,
our ambient dataset contains relatively more low-frequency sounds than VGGSound-Instrument,
suggesting the diversity of our dataset.

playing accordion playing acoustic guitar playing banjo playing bass drum playing bass guitar
playing bongo playing cello playing clarinet playing congas playing cornet
playing cymbal playing djembe playing double bass playing drum kit playing electric guitar
playing electronic organ playing erhu playing flute playing glockenspiel playing guiro
playing hammond organ playing harp playing harpsichord playing mandolin playing marimba, xylophone
playing piano playing saxophone playing sitar playing snare drum playing steel guitar, slide guitar
playing tabla playing timbales playing trumpet playing ukulele playing vibraphone
playing violin, fiddle playing zither

Algorithm 1 Policy for navigating along the wall
using ambient sound

Require: threshold p, α; step length v
1: while No crash do
2: Input: left and right side sound
3: P (L) = Network(left sound)
4: P (R) = Network(right sound)
5: Angle ∝ |0.5(P (L) + P (R))− p|
6: if |P (L)− P (R)| < α then
7: Go forward
8: else
9: if 0.5(P (L) + P (R)) > p then

10: # Robot might be near to the wall
11: if P(L) > P(R) then
12: Turn right and go forward
13: else
14: Turn left and go forward
15: end if
16: else
17: # Robot might be far from the wall
18: if P(L) > P(R) then
19: Turn left and go forward
20: else
21: Turn right and go forward
22: end if
23: end if
24: end if
25: end while

Algorithm 2 Policy for navigating along the wall
using RGB images

Require: threshold p; step length v
1: # Determine which side is near-wall side
2: Input: left and right RGB image
3: P (L) = Network(left RGB image)
4: P (R) = Network(right RGB image)
5: if P (L) < P (R) then
6: Near-wall side is on the robot’s right; Far-

wall side is on the robot’s left
7: else
8: Near-wall side is on the robot’s left; Far-

wall side is is on the robot’s right
9: end if

10: while No crash do
11: Input: left and right RGB image
12: P (N) = Network(near-wall side RGB im-

age)
13: Angle ∝ |P (n)− p|
14: if P (N) > p then
15: # Robot might be near to the wall
16: Turn to the far-wall side and go forward
17: else
18: # Robot might be far from the wall
19: Turn to the near-wall side and go for-

ward
20: end if
21: end while

5

	Introduction
	Related Work
	The Quiet Campus Dataset
	Predicting 3D Structure from Ambient Sound
	Depth estimation tasks
	Self-supervised audio-visual learning
	Audio-based robotic navigation
	Models

	Experiments
	An experimental study of audio-based depth estimation
	Audio-visual representation learning
	Robotic navigation with ambient sound

	Conclusion
	Dataset Examples
	Additional robot navigation experiments
	Obstacle detection on static-dense recordings
	Indoor localization on static-dense recordings
	Relative depth order on motion recordings
	Generalization between motion and static recordings
	Effects of Non-ambient sounds
	Conditional absolute depth estimation
	Self-supervised audio-visual learning
	VGGSound-Instrument dataset

