
Supplementary Materials

In addition to the sections below, a video demonstrating our controller’s performance on the kine-
matic car trajectory tracking and 2D quadrotor obstacle avoidance benchmarks can be found at
https://youtu.be/4MWVLtURxG0, and source code can be found at https://github.
com/dawsonc/neural_clbf/.

Proof of Theorem 1

The proof of Theorem 1 follows from the following lemmas, which prove stability and safety of
CLBF-based control, respectively.

Lemma 1. If V (x) is a CLBF, then any control policy π(x) ∈ K(x) ∀ x ∈ X will exponentially
stabilize the system ẋ = f(x) + g(x)π(x) to xgoal.

Proof. Since π(x) ∈ K(x), it follows that dV
dt ≤ −λV (x) for the closed loop system. Thus, V is a

Lyapunov function and proves exponential stability about xgoal.

Lemma 2. If V (x) is a CLBF, then for any control policy π(x) ∈ K(x) ∀ x ∈ X and any initial
condition x(0) ∈ Xsafe, x(t) /∈ Xunsafe ∀ t > 0 (i.e. any trajectory starting in the safe set will never
enter the unsafe region).

Proof. For convenience, define V = V ◦ x(t). Since x(0) ∈ Xsafe, condition (1c) implies that
V(0) ≤ c. Conditions (1b) and (1e) ensure that V is strictly decreasing in time (except when
x(t) = xgoal, at which point V is constant at zero). As a result, V(t) < V(0) ≤ c ∀ t > 0. If
x(t) were to enter the unsafe region, there would exist tu > 0 such that V(tu) > c. This is a
contradiction, so we conclude that x(t) will never enter the unsafe region for t > 0.

Proof of Theorem 2

Proof. By assumption, fθ and gθ are affine in θ. Additionally, the Lie derivatives LfV and LgV are
affine in f and g, and the rCLBF constraint (4) is affine in LfV and LgV . As a result, the overall
mapping from Θ to the left-hand side of (4) is affine and thus maps the convex hull of θ0, . . . , θns

to
the convex hull of Lfθ0

V + Lgθ0
V u + λV, . . . , Lfθns

V + Lgθns
V u + λV . It follows that if (4) is

satisfied for each scenario θi then it will be satisfied for any possible θ ∈ Θ. We can conclude that
the rCLBF satisfies the conditions of a standard CLBF for any particular realization of the system
with parameters θ ∈ Θ, so the safety and stability results of Theorem 1 apply.

Implementation of Learning Approach

In this section, we describe several details of our implementation of the system used to train V and
πNN. At a high level, our system is implemented in PyTorch [40] using PyTorch Lightning [41]. All
neural networks were implemented with tanh activation functions, and we used batched stochastic
gradient descent with weight decay for optimization (with learning rate 10−3 and decay rate 10−6).
The next paragraphs describe our training strategies.

Sampling of training data: we found that training performance could be improved by specifying
a fixed percentage of training points that must be sampled from the goal, safe, and unsafe regions.
For example, instead of sampling Ntrain points uniformly from the state space, we might sample
0.1Ntrain uniformly from the goal region, 0.1Ntrain uniformly from the unsafe region, 0.1Ntrain

uniformly from the safe region, and the remaining 0.7Ntrain uniformly from the entire state space.

Network initialization: although it was not necessary for all experiments, we found that some
experiments (particularly the car trajectory tracking benchmarks) performed better if the CLBF net-
work was initialized to match the quadratic Lyapunov function found by linearizing the system about
the goal point. After training V for several epochs to match this quadratic initial guess, we then al-
ternated between training V and uNN, optimizing one for several epochs before optimizing the other.

13

We found that on some examples this stabilized the learning process. We did not notice an improve-
ment from episodic learning, although this may be more useful when training on higher-dimensional
systems.

Hyperparameter tuning: during the development process, we optimized hyperparameters (c,λ, �,
the size of the V and uNN networks, and the penalty applied to relaxations of the QP constraints)
based on a combination of the empirical loss on a test data set and through controller performance
in simulation. In most experiments, we found that c = 1 and λ ∈ [0.1, 10] were sensible defaults,
along with neural networks with 2 hidden layers of 64 units each. We found that tuning parameters
a1 = a2 = 100 and a3 = 1 yield controllers that perform well in simulation.

Reach-avoid problem specification: when defining reach-avoid problems for this approach, care
should be taken when specifying Xsafe and Xunsafe. We found that it is necessary to have some
region in between the safe and unsafe sets where the neural rCLBF has the freedom to adjust the
boundary at V (x) = c as needed to find a valid rCLBF. In addition, we found that including a
safety constraint that prevents the system from leaving the region where training data was gathered
improves the controller’s performance.

rCLBF-QP Relaxation: to ensure that the controller is always feasible, we permit the QP to
relax the constraints on the CLBF derivative, and the extent of this relaxation is penalized with
a large coefficient in the QP objective. The penalty coefficients used in different experiments are
included below. This relaxation also provides a useful training signal for the V network. To make
use of this signal, we solve (rCLBF-QP) for each point at training-time and scale the last term of
the loss function point-wise by the relaxation, effectively increasing the penalty for regions where
the feasible set of (rCLBF-QP) is empty and decreasing the penalty in regions where there exists a
feasible solution (even if πNN has not yet converged to find that feasible solution).

Verification of Learned CLBFs

Our focus in this paper is primarily on the use of robust CLBFs to automatically synthesize feedback
controllers for nonlinear safe control tasks. We find that our learning method yields functions that
satisfy the rCLBF conditions in the vast majority of the state space, and yields feedback controllers
that are successful in simulation, but we do not claim to have exhaustively verified our learned
rCLBFs. Indeed, scalable verification for learned certificate functions remains an open problem.
Relevant verification techniques include neural network reachability analysis (see [29] for a recent
survey), SMT solvers [8], Lipschitz-informed sampling methods [30], and probabilistic claims from
learning theory [10].

Additionally, these verification techniques might be used in future work to inform the training of
an rCLBF neural network. For instance, spectral normalization [42] of the rCLBF network would
allow us to tune the Lipschitz constant of V (x), enabling more effective use of Lipschitz-informed
sampling verification tools. Similarly, reachability tools and SMT solvers can provide counter-
examples to augment the training data and make further failures less likely [8]. Further, almost
Lyapunov functions [31, 43] show that even if the Lyapunov conditions do not hold everywhere the
system is still provably stable; this result may generalize to CLBFs as well. These are all exciting
directions that we hope to explore in our future work on this topic.

Implementation of Robust MPC

We implemented our robust MPC scheme in Matlab following the example in the YALMIP doc-
umentation [32], which is in turn based on the algorithm published in [32]. This MPC algorithm
relies on a linearization of the system dynamics, and we used a constant linearization about the goal
state. For trajectory tracking examples, we linearize the system about the reference trajectory.

The robust MPC problem was formulated in YALMIP and Gurobi [44] was used as the underly-
ing QP solver. When measuring evaluation times for robust MPC, we first use YALMIP to pre-
compile the robust QP then measure the time needed to solve the compiled QP using Matlab’s
built-in timeit function. We understand that additional optimizations (e.g. explicit MPC) might
reduce the evaluation time of robust MPC further, but those optimizations can be applied equally
well to speeding up the QP solution in our proposed controller. Effectively, for the purposes of mea-

14

suring performance, we optimize both approaches to the point where a single quadratic program is
being sent to the Gurobi QP solver, and so we believe we have provided a fair comparison in our
results.

Implementation of Hamilton Jacobi Control Synthesis

To compute the Hamilton-Jacobi value function, we used the helperOC package at https:
//github.com/HJReachability/helperOC, which wraps the toolboxLS software [38].
We over-approximate the parametric uncertainty with an additive uncertainty. In the Segway exam-
ple, where the unsafe set is defined in terms of (x, y), we over-approximate this unsafe set using a
polytope defined on (p, θ). We computed the HJ value function, then applied the optimal HJ con-
troller forwards described in [45]. We used a time step of 0.05 seconds and a maximum horizon of
5 seconds while computing the backwards reachable set. The HJ value function was approximated
on a grid, and the grid resolution was set to balance accuracy and running time.

Details on Simulation Experiments

This section reports the dynamics and hyperparameters used in our experiments. Note that in some
of our examples, mass is an uncertain parameter but enters into the dynamics as 1/m (similarly for
rotational inertia). In these cases we treat 1/m as the uncertain parameter and proceed with our
method as described in Section 5. For clarity, we give the uncertainty ranges in terms of m rather
than in terms of the reciprocal.

Training was conducted on a workstation with a 32-core AMD 3970X CPU and four Nvidia GeForce
2080 Ti GPUs (one GPU was used for each training job, allowing us to parallelize our experiments).
Runtime evaluation was conducted on a consumer laptop with an Intel i7-8565U CPU running at
1.8 GHz, and no GPU.

Kinematic Car

We use the kinematic single track model of a car given in the CommonRoad benchmarks [34]. We
modify this model to express position and orientation relative to a reference path parameterized by
vref , aref , ψref , and ωref (the linear velocity and acceleration, angle, and angular velocity of the
reference path). To model a reference path with uncertain curvature, we treat ωref as the uncertain
parameter and assume that it vares on [−1.5, 1.5].

The state of the path-centric kinematic car model is [xe, ye, δ, ve,ψe], representing Cartesian error,
steering angle, velocity error, and heading error, and the control inputs are vδ and along (the steering
angle velocity and longitudinal acceleration). The dynamics are given by ẋ = f(x) + g(x)u, with

f(x) =

v cos(ψe)− vref + ωref ∗ ye
v sin(ψe)− ωrefxe

0
−aref

v
lr+lf

tan(δ)− ωref

 (6)

g(x) =

0 0
0 0
1 0
0 1
0 0

 (7)

where we define v = ve + vref and lf and lr are vehicle parameters measuring the distance from
the center of mass to the front and rear axles (these parameters are taken from the CommonRoad
vehicle-2 benchmark).

We define a goal point xgoal as the origin with nominal parameters vref = 10.0, aref = 0.0, ωref =
0.0 (note that the reference heading and reference position do not enter directly into the dynamics).
These tracking tasks are not reach-avoid tasks, as there is no hard constraint other than maintaining
bounded tracking error. We used the LQR solution with nominal parameters for πnominal. Training
data were sampled from xe, ye, ve ∈ [−3, 3], ψe ∈ [−π/2,π/2], and δ ∈ [−1.066, 1.066], but we

15

selectively re-sampled until at least 40% of the data were within �x� ≤ 1, at least 20% were within
�x� ≤ 0.25, and at least 20% were �x� ≥ 1.5, which ensured that adequate training data were
sampled from near the goal point. 125,000 samples were used for training, with 10% reserved for
validation. V and πNN are parameterized as two-layer fully-connected neural networks with hidden
layer size of 64 and tanh activation. We set c = 1, λ = 1, and allowed relaxations of the constraints
in (rCLBF-QP) with penalty coefficient 10.

A contour plot of the learned V is shown in Fig. 5 as a function of xe and ye, with all other state
variables zero. From this plot, we see that some violation of (3) occurs near the origin (the violation
was computed on a grid with maximum spacing of 0.008 between points). This makes sense, as this
system is likely impossible to robustly stabilize around the origin (i.e. we suspect that there is no
fixed u that renders the origin a fixed point for any ωref). Outside the origin, we see that the CLBF
conditions are satisfied, which agrees with what we observe in simulation: our controller leaves the
origin but then stabilizes with a relatively constant tracking error.

Figure 5: A contour plot of the learned rCLBF V (right) and violation of condition (3) (left) for the
kinematic car tracking task. The violation of the rCLBF decrease condition (3), which was found to
be at most 0.0225 over this range, was computed as max(dV/dt, 0), summed over both parameter
scenarios.

Car with Sideslip

We use the single-track model given in the CommonRoad benchmarks [34]. Similarly to the kine-
matic model, we express the dynamics in path-centric coordinates and treat ωref (which determines
the curvature of the reference path) as the uncertain parameter and assume that it vares on [−1.5, 1.5].

Compared to the kinematic model, the single-track (sideslip) model has two additional state vari-
ables: β (the sideslip angle) and ψ̇e (the rate of change of the heading error). The control inputs are
the same as for the kinematic model. The dynamics are given by ẋ = f(x) + g(x)u, with

f(x) =

v cos(ψe)− vref + ωref ∗ ye
v sin(ψe)− ωrefxe

0
0

ψ̇e

− µm
vIz(lr+lf)

(l2fCSfglr + lr2CSrglf)(˙psi+ ωref) +
µm

Iz(lr+lf)
(lrCSrglf − lfCSfglr)β + µm

Iz(lr+lf)
(lfCSfglr)δ

(mu
v2(lr+lf)

(CSrglf lr − CSfglrlf)− 1)(˙psie − ωref)− µ
v(lr+lf)

(CSrglfCSfglr)β + µ
v(lr+lf)

(CSfglr) ∗ δ

(8)

g(x) =

0 0
0 0
1 0
0 1
0 0

 (9)

16

where we define v = ve + vref and lf , lr, CSf , CSr, µ are parameters whose values taken from
the CommonRoad vehicle-2 benchmark (g is gravitational acceleration). Since these dynamics
become singular at low speeds, for |v| < 0.1 we revert to the kinematic model (as described in [34]).

We define a goal point xgoal as the origin with nominal parameters vref = 10.0, aref = 0.0,
ωref = 0.0 (note that the reference heading and reference position do not enter directly into
the dynamics). These tracking tasks are not reach-avoid tasks, as there is no hard constraint
other than maintaining bounded tracking error. We used the LQR solution with nominal param-
eters for πnominal. Training data were sampled from xe, ye, ve ∈ [−3, 3], ψe ∈ [−π/2,π/2],
ψ̇e ∈ [−π/2,π/2], δ ∈ [−1.066, 1.066], and β ∈ [−π/3,π/3], but we selectively re-sampled until
at least 40% of the data were within �x� ≤ 0.35, at least 20% were within �x� ≤ 0.25, and at least
20% were �x� ≥ 0.85, which ensured that adequate training data were sampled from near the goal
point. 125,000 samples were used for training, with 10% reserved for validation. V and πNN are
parameterized as two-layer fully-connected neural networks with hidden layer size of 64 and tanh
activation. We set c = 1, λ = 0.1, and allowed relaxations of the constraints in (rCLBF-QP) with
penalty coefficient 108.

When we examine the contour plot of the learned V (shown in Fig. 6 as a function of xe and ye,
with all other state variables zero), we see that it has a similar shape as that learned for the kinematic
model, but we did not detect any violation of (3) on a grid with maximum spacing of 0.004 between
points. However, given our controller’s simulation performance on this task, which included some
error relative to the goal, it is likely that some violation of the CLBF conditions would be seen on
other cross sections (i.e. where state variables other than xe and ye are varied).

Figure 6: A contour plot of the learned rCLBF V (right) and violation of condition (3) (left) for the
sideslip car tracking task. The rCLBF decrease condition (3), computed as max(dV/dt, 0), summed
over both parameter scenarios, was not found to be violated on this range.

3D Quadrotor

The state of the 9-dimensional quadrotor is given by x = [px, py, pz, vx, vy, vz,φ, θ,ψ], with control
vector u = [f, φ̇, θ̇, ψ̇]. This model is adapted from [9]. The system is parameterized by mass m.
The dynamics are given by ẋ = f(x) + g(x)u, with

17

f(x) = [vx, vy, vz, 0, 0,−g, 0, 0, 0]
T (10)

g(x) =

0 0 0 0
0 0 0 0
0 0 0 0

−(1/m) sin θ 0 0 0
(1/m) cos θ sinφ 0 0 0
(1/m) cos θ cosφ 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

(11)

where g is the gravitational acceleration. Note that although these dynamics are not affine in m, they
are affine in 1/m, which can be treated as the uncertain parameter without loss in generality.

In this task, xgoal is the origin, Xsafe = {x : pz ≥ 0 ∧ �x� ≤ 3}, and Xunsafe =
{x : pz ≤ −0.3 ∨ �x� ≥ 3.5}. To model uncertainty in the mass of the quadrotor’s payload,
we simulate both the rCLBF-QP and MPC controllers with masses sampled uniformly from
m ∈ [1.0, 1.5]. To isolate the impact of parameter variation on controller performance, we use
a constant initial condition x(0) = [1, 1, 1, 1, 1,−1, 1, 1, 1]. We used scenarios m0 = 1.0 and
m1 = 1.5 in the rCLBF-QP controller.

For this example, V is parameterized as a two-layer fully-connected neural network with hidden
layer size of 48 and tanh activation. πNN is represented as a three-layer fully connected network
with the same hidden layer size. Training data were sampled from px, py, pz ∈ [−4, 4], φ, θ,ψ ∈
[−π/2,π/2], and vx, vy, vz ∈ [−8, 8]. We used πnominal based on an LQR approximation (ignoring
state constraints). We set c = 10, λ = 1, and did not allow relaxations of the constraints in
(rCLBF-QP).

In addition to simulating the performance of our controller, we can also examine the learned rCLBF
function itself. A contour plot of V as a function of px and pz (all other states set to zero) is shown in
Fig. 7, comparing the level set at V (x) = 0 to the safe/unsafe boundaries. In computing this plot, we
also computed the maximum violation of the rCLBF condition (3), which we found to be 1.9×10−4.
This plot was computed by sampling uniformly from px and pz , and the maximum distance between
adjacent grid points was 0.008. Based on this extremely small maximum violation (which occurs in
a relatively small region of the space), we can conclude that our learning approach yields an rCLBF
that is valid throughout most of the domain X . The violation regions shown in this plot differ from
those highlighted in Fig. 3 because the grid size in Fig. 7 is much smaller, highlighting the sparsity
of violations in the state space. An interesting area for future work might involve counter-example
guided training of the rCLBF, as in [8], to resolve these sparse violations. On the other hand, the
theory of almost Lyapunov functions [31] suggests that these sparse, low-magnitude violations may
not necessarily invalidate the learned CLBF.

Neural Lander

The state of the neural lander is given by x = [px, py, pz, vx, vy, vz], with control vector u =
[fx, fy, fz]. pz is defined to be positive upwards in this case. This model was developed in [35]. The
system is parameterized by mass m. The dynamics are given by ẋ = f(x) + g(x)u, with

f(x) = [vx, vy, vz, Fa1/m,Fa2/m,Fa3/m− g]
T (12)

g(x) =

0 0 0
0 0 0
0 0 0

1/m 0 0
0 1/m 0
0 0 1/m

(13)

where g is the gravitational acceleration and Fa is the learned disturbance due to ground effect,
represented as a 4-layer neural network. The presence of a learned component in the dynamics

18

Figure 7: A contour plot of the learned rCLBF V (right) and violation of condition (3) (left) for
the 3D quadrotor hovering task. The violation of the rCLBF decrease condition (3), which was
found to be at most 1.9×10−4 over this range, was computed as max(dV/dt, 0), summed over both
parameter scenarios.

means that many traditional control synthesis techniques (including sum-of-squares techniques) do
not apply to this system. As with the 9-dimensional quadrotor, these dynamics are not affine in m,
but they are affine in 1/m, which can be treated as the uncertain parameter without loss in generality.

We use a similar safe hover task to that used for the 3D quadrotor, with xgoal at the origin,
Xsafe = {x : pz ≥ −0.05 ∧ �x� ≤ 3}, and Xunsafe = {x : pz ≤ −0.3 ∨ �x� ≥ 3.5}. The
mass of the vehicle is sampled uniformly from m ∈ [1.47, 2.00] and initial conditions x(0) =
[0.5, 0.5, 0.5, 0.5, 0.5,−1.0].

For this example, V is parameterized as a two-layer fully-connected neural network with hidden
layer size of 48 and tanh activation. πNN is represented as a three-layer fully connected network
with the same hidden layer size. Training data were sampled from px, py ∈ [−5, 5], z ∈ [−0.5, 2],
and vx, vy, vz ∈ [−1, 1]. We used πnominal based on an LQR approximation (ignoring state con-
straints and learned dynamics). For completeness, the learned rCLBF for the neural lander with a
high-resolution plot of the violation region is included in Fig. 8. We set c = 10, λ = 0.1, and
penalized relaxations of the constraints in (rCLBF-QP) with penalty coefficient 7.

2D Quadrotor

The state of the 2D quadrotor model is given by x = [px, pz, θ, vx, vy, θ̇], with control vector u =
[u1, u2]. pz , u1, and u2 are defined to be positive upwards. This model is adapted from [9]. The
system is parameterized by mass m, rotational inertia I , and the distance of the rotors from the
center of mass r, and we take m and I to be the uncertain parameters. The dynamics are given by
ẋ = f(x) + g(x)u, with

f(x) =
�
vx, vz, θ̇, 0,−g, 0

�T
(14)

g =

0 0
0 0
0 0

(1/m) sin θ (1/m) sin θ
(1/m) cos θ (1/m) cos θ

r/I −r/I

(15)

where g is the gravitational acceleration. These dynamics are not affine in m and I , but they are
affine in 1/m and 1/I , allowing the use of our rCLBF approach.

19

Figure 8: A contour plot of the learned rCLBF V (right) and violation of condition (3) (left) for
the neural lander hovering task. The violation of the rCLBF decrease condition was computed as
max(dV/dt, 0), summed over both parameter scenarios. We found the violation to be very small
and restricted to a small region of the state space. This plot was computed on a grid in px and pz (all
other states set to zero). The maximum distance between grid points is 0.008.

Xunsafe is set to be the region inside the obstacles, and Xsafe is offset from the obstacle boundaries
by 0.1 m. To prevent the controller from driving the system out of region covered by the training
data, we include a norm constraint in the safe and unsafe sets, �x� ≤ 4.5 in Xsafe and �x� ≥ 5 in
Xunsafe. To model uncertainty in the mass and inertia of the quadrotor, we vary mass and inertia in
(m, I) ∈ [1.0, 1.05] × [0.01, 0.0105], with nominal values m0 = 1.0 and I0 = 0.01 (the extreme
points of this set are used as scenarios in the rCLBF-QP method).

For this example, V is parameterized as a two-layer fully-connected neural network with hidden
layer size of 48 and tanh activation. πNN is represented as a three-layer fully connected network
with the same hidden layer size. Training data were sampled from px, pz ∈ [−4, 4], θ ∈ [−π,π],
vx, vz ∈ [−10, 10], and θ̇ = [−2π, 2π]. We used πnominal based on an LQR approximation (ignoring
obstacles). We set c = 1, λ = 6, and penalized relaxations of the constraints in (rCLBF-QP) with
penalty coefficient 1100.

To gain insight into the performance of our learning-based approach to rCLBF synthesis, we can ex-
amine the contour plot of the learned rCLBF V (x), shown in Fig. 9. These contours were computed
on a grid in px and pz , with other states set to zero and the maximum distance between adjacent grid
points equal to 0.003. We see that the level set of the learned rCLBF at V (x) = c aligns well with
the boundaries of the obstacles, and that the rCLBF derivative condition is satisfied in most of the
state space (a small violation ≤ 7.3× 10−2 is observed in a small region).

Satellite

In this example, we consider the satellite rendezvous and docking task adopted from [37]. As is
shown in Fig. 1, the blue chaser satellite attempts to close the distance to the black target satellite.
Within the green dashed circle, the chaser must stay in the green sector, which represents the line-
of-sight (LOS) region where the satellite’s sensors are most effective. While both the target and
chaser satellites orbit around the Earth, we choose a relative coordinate system centered at the target.
The motion of the chaser with respect to the target can be modeled by the Clohessy-Wiltshire-
Hill (CWH) equations [46]. The state x = [px, py, vx, vy] is consisted of the relative position and
velocity. The control inputs u = [fx, fy] are the forces applied to the chaser satellite. To keep the

20

Figure 9: A contour plot of the learned rCLBF V (left) and violation of condition (3) (right) for
the 2D quadrotor with obstacles. The violation of the rCLBF decrease condition (3), which was
found to be at most 7.3× 10−2 over this range, was computed as max(dV/dt, 0), summed over all
parameter scenarios.

chaser satellite within the LOS region, we define the safe set as Xsafe = {x : 4 ≤
�
p2x + p2y ≤

8 ∨ (py ≤ −|px| ∧
�
p2x + p2y ≤ 4)}, which represents the green sector plus the ring between the

grey circle and the green circle. The unsafe set is defined as Xunsafe = {x :
�
p2x + p2y ≥ 9∨ (py ≥

−|px| ∧
�
p2x + p2y ≤ 3)}.

There are two crucial parameters in the model dynamics: the mass of the chaser satellite and the
mean-motion

�
µ
a3 of the target satellite. µ is the Earth’s gravity constant and a is the length of the

semi-major axis of the target’s orbit.

The dynamics are given by ẋ = f(x) + g(x)u, with

f(x) =
�
vx, vy, 2nvy + 3n2px,−2nvx

�T
(16)

g(x) =

0 0
0 0

1/m 0
0 1/m

 (17)

We used a three-layer fully connected neural network with hidden size 256 and tanh activation
to represent the rCLBF V . During training, the state samples are uniformly drawn from the state
space with range [−12, 12] for each dimension. We set the nominal controller πnominal = 0. In the
implementation of MPC, we minimize the distance between the goal position and the last step of
the planning horizon, subject to the control input constraint fx, fy ∈ [−20, 20]. We set constraints
to enforce the chaser satellite to enter the green sector rather than anywhere else in the green circle.
The planning horizon was 10 steps with timestep 0.02s.

We can examine the learned rCLBF V by plotting its contour in Fig. 10 (left) as a function of px
and py (all other states set to zero). The contour plot shows that the learned V is able to distinguish
the safe and unsafe sets. In Fig. 10 (right), we plot the violation of rCLBF decrease condition (3).
For most of the samples within the range, the condition is satisfied, and we observe only a slight
violation less than 5.5× 10−2 for (px, py) ∈ [6, 10]× [−12,−10].

21

Figure 10: A contour plot of the learned rCLBF V (left) and violation of condition (3) (right) for the
satellite rendezvous task.

Segway

We consider the Segway obstacle avoidance task illustrated in Fig. 1. The Segway attempts to avoid
the obstacle while moving forward, which requires it to tilt forward to avoid collision. The state
x = [p, θ, v,ω] includes the horizontal position, angle, velocity and angular velocity of the Segway.
The control u is the force applied at the base of the system. We assume the vertical position of
the wheel’s center is always 0 and the length of Segway is 1. The obstacle is a circle with radius
0.1 centered at (0, 1). Denote the position of the Segway’s top as (px, py) = (p + sin(θ), cos(θ)).
Then the unsafe set Xunsafe = {x|

�
p2x + (py − 1)2 ≤ 0.1}. We define the safe set as Xsafe =

{x|
�
p2x + (py − 1)2 ≥ 0.15}.

The Segway model is from Chapter 3.2 of [36]. The state x = [p, θ, v,ω] with control input u as the
force aligned with p applied at the base of the system. Let M be the mass of the base, m and J be
the mass and inertia of the system to be balanced. Denote the distance from the base to the center of
mass of the system as l. Let g be the gravity constant. Define Mt = M +m as the total mass and
Jt = J +ml2 be the total inertia. The system dynamics are given by ẋ = f(x) + g(x)u, with

f(x) =

v
ω

gsθcθ+λ1vcθ+λ2v−lω2sθ
cθ−MtJt

m2l2
+λ9

λ3vcθ+λ4v−Mtg
ml sθ−ω2sθcθ

c2θ−
MtJt
m2l2

+λ9

(18)

g(x) =

0
0

λ6
Mt

(λ5+cθ)

c2θ−
MtJt
m2l2

+λ9
λ8l
Jt

(cθ+λ7)

c2θ−
MtJt
m2l2

+λ9

(19)

In the implementation of the rCLBF V , we used a three-layer fully connected neural network
with hidden size 64 and tanh activation. The lower and upper bound of the state space are
[−3,−π/2,−1,−3]T and [3,π/2, 1, 3]T . Training samples are uniformly sampled from this range.
We used an LQR controller for πnominal. In the MPC baseline, we minimize the angle w.r.t. the
vertical axis at each step, subject to the top of the Segway being outside the unsafe set. At each step,
when the solver fails find a feasible solution satisfying the constraint, we use u = 0 for that step.
The planning horizon is 10 steps, and the timestep is set to 0.005.

22

Figure 11: A contour plot of the learned rCLBF V (left) and violation of condition (3) (right) for the
Segway obstacle avoidance task.

Figure 12: A plot of the CPO RL agent’s performance on the Segway obstacle-avoidance task. Left:
p and θ over time; Right: the path of the head of the Segway in the xy plane, showing collision
between the Segway and the obstacle.

The contour plot of the learned V and the violation of the rCLBF condition are shown in Fig. 11.
We set v and ω to zero, then sample p and θ to evaluate V . To make this plot more interpretable, we
convert p and θ to the x− y coordinates of the top of the Segway. Fig. 11 shows that the learned V
has a wider safe and unsafe set than Xsafe and Xunsafe, which explains why the simulated rCLBF-QP
trajectories give such a wide berth to the obstacle. The Segway learns to gradually tilt down when
it is 0.5m away from the obstacle, instead of abruptly changing its angle when it is too close to the
obstacle. In addition, in Fig. 11 (right) we observe only a minor violation of the rCLBF decrease
condition; we have dV/dt ≤ 0 for most of the plotted range.

Failure of Constrained Policy Optimization

We attempted to train a controller for this task using the constrained policy optimization reinforce-
ment learning algorithm (CPO, [39]). We found that the RL agent was able to stabilize the Segway
in the absence of obstacles, but it failed to stabilize the system when an obstacle was included during
training. An example plot of the trained controller’s performance is shown in Fig. 12.

23

Pandemic Considerations

Our paper is concerned with synthesizing controllers for robotic systems. Due to facility access
limitations from the COVID-19, we were not able to gather experimental results on hardware, so
our paper focuses on experiments conducted in simulation. We took a number of steps to ensure that
performance in our simulations correlates with expected performance in hardware. In particular,

1. We report evaluation times for all controllers used in our experiments and compare these
times to the control frequency, allowing us to determine whether the algorithms could fea-
sibly be deployed in real-time.

2. We randomly vary the values of model parameters while computing safety and error rates,
simulating the uncertainty present in models of physical systems.

3. Our framework can be easily extended to include physical constraints, particularly actuator
limits, within the QP-based controller.

4. One of our simulated examples (the neural lander) includes a learned model of aerody-
namic ground effect, which uses experimental data to make the simulation more realistic
by including otherwise unmodeled effects.

That said, there are a number of gaps between our simulation and reality. The most glaring gaps are
that

1. Although our framework supports physical constraints, we do not present a thorough eval-
uation of the effect of varying actuator limits on controller performance.

2. We assume full information about the robot state, which in practice means that we assume
a high-quality state estimate is available at a suitably high frequency.

3. We do not study the effects of delay on the stability or safety of our controller (beyond our
measurement of control frequency).

In the coming months, we hope to carry out hardware demonstrations that justify these assumptions
and close these gaps.

24

