
A Implementation details

We implement our model using Pytorch2. Here, we provide details of our model architecture, abla-
tions and training.

A.1 Map representation

The nuScenes map API provides lane polylines, their successors, and polygons for cross-walks and
stop lines. We consider map elements within an area of [-50, 50] m laterally and [-20, 80] m longitu-
dinally around the target vehicle. This ensures that most ground truth trajectories lie within the area
of interest. We split longer lane centerlines into snippets of maximum length 20m, and discretize
the polylines at a 1m resolution. Each snippet corresponds to a node in the graph. This ensures that
each lane node represents a lane segment of similar length. The node resolution (20m) and pose
resolution (1m) for the polylines were experimentally chosen. There is a trade-off associated with
the resolution of lane nodes: A finer resolution would provide a more informative set of inputs, but
would lead to a graph with a greater number of nodes (and a greater number of poses per node)
increasing encoder complexity.

A.2 GRU encoders

We embed both agent and node features using linear layers of size 16, followed by a leaky ReLU
non-linearity. We use GRUs with depth 1 and hidden state dimension 32 on top of the embeddings
for both the agent and node encoders.

A.3 Agent-node attention

We use scaled dot-product attention with a single attention head for the agent-node attention layers.
We use 32 × 32 weight matrices for projecting the node and agent encodings for obtaining the
queries, and keys and values respectively. The outputs of the attention layer are concatenated with
the original node encodings and passed through a linear layer of size 32, followed by a leaky ReLU
non-linearity to obtain updated node encodings of the same size as the original node encodings.

A.4 GNN layers

We use Pytorch geometric3 for implementing the GCN and GAT layers of our model. For GCN lay-
ers, we use the layer-wise propagation rule from [5]. Our adjacency matrix includes both successor
and proximal edges (treated as bidirectional), as well as self loops. The outputs at each node have
the same dimension, 32, as the inputs. For GAT layers, we use the layer-wise propagation rule from
[25]. We use a single attention head, with the outputs again having the same dimension as the inputs.

A.5 Policy header

The policy header is implemented as an MLP with 2 hidden layers of size 32 each and a scalar
output. The input to the policy header for each edge is a vector of size 98, consisting of the source
node encoding, destination node encoding and motion encoding of the target agent each of size 32,
and a one-hot encoding for the edge type of size 2.

A.6 Trajectory decoder

We aggregate context along nodes traversed by the policy using a multi-head scaled dot-product
attention layer. The attention layer has 32 parallel attention heads, and outputs a context vector C of
size 128. We model the latent variable as a multivariate standard normal distribution. z ∼ N (0, I),
where I is a 5×5 identity matrix. We output a trajectory for each sampled Ck, zk and hmotion

using an MLP with a hidden layer of size 128, and output of size 24 (x and y co-ordinates over the
prediction horizon of 6 seconds at 2 Hz). We sample 200 trajectories from the model and cluster to
obtain K=10 trajectories during training to compute the winner takes all regression loss Lreg .

2https://pytorch.org/
3https://github.com/rusty1s/pytorch geometric

11

https://pytorch.org/
https://github.com/rusty1s/pytorch_geometric


A.7 Training

We train the model using Adam, with learning rate 1e-4, and a batch size of 32. For the first few
epochs of training, since πroute does not produce meaningful traversals, we use the ground truth
traversal for sampling trajectories and computing Lreg. We pre-train the model using the ground
truth traversal for 100 epochs. We then finetune using paths sampled from πroute for 100 epochs.
We train our model using an AWS ”p3-8xlarge” instance with 4 NVIDIA Tesla V100 GPUs. Each
pre-training epoch takes roughly 1 minute and each finetuning epoch takes roughly 5 minutes for
nuScenes.

A.8 Ranking Clustered Trajectories

The nuScenes leaderboard4 requires a single set of ranked or scored predictions for computing the
MinADEk and MissRate metrics for k = 1, 5 and 10. We rank our set of 10 clustered trajectories
based on Ward’s merging cost5. We obtain the two clusters with the minimum merging cost. The
trajectory corresponding to the smaller of the two clusters is assigned rank 10. The two clusters are
then merged, with the merged cluster assuming the identity of the larger cluster. This process is then
repeated to assign ranks 9 through 1. Using Ward’s merging cost ensures that the top k trajectories
cover a diverse set of modes for all values of k.

A.9 Decoder ablation details

MTP: For the MTP header, we first aggregate context over the entire graph using a multi-head scaled
dot-product attention layer identical to our trajectory decoder, with 32 parallel attention heads and
an output context vector C of size 128. We then use two fully connected layers of size 240 and 10
respectively to output K=10 trajectories, and K probabilities.

LV only: For the LV only decoder, similar to the MTP header, we first aggregate context over the
entire graph using a multi-head attention layer with 32 attention heads and output C of size 128. The
decoder then outputs trajectories conditioned on C, hmotion and a sample zk of the latent variable
using the final MLP layer.

Traversal only: The traversal only decoder is identical to the trajectory decoder of our complete
model, except for the final MLP layer, which outputs trajectories conditioned only on Ck and hmotion

and not on the sampled latent variable zk.

Goals + LV: The Goals + LV decoder consists of two output headers: A goal prediction header
that outputs a scalar score at each node normalized using a softmax layer to give goal probabilities,
and a trajectory decoder that outputs goal conditioned trajectories. We model the goal prediction
header using an MLP with 2 hidden layers, each of size 32, and a scalar output. The input to the
goal prediction header at each node is obtained by concatenating hnode and hmotion. The trajectory
decoder consists of a multi-head attention layer with 32 heads that aggregates context over the entire
graph to output a context vector C of size 128. C is concatenated with hmotion, a sampled latent
vector zk and the node encoding of a sampled goal huk

node and passed through an MLP with a hidden
layer of size 128, and output size 24 corresponding to a goal conditioned trajectory.

4https://eval.ai/web/challenges/challenge-page/591/leaderboard/1659
5https://en.wikipedia.org/wiki/Ward%27s method

12

https://eval.ai/web/challenges/challenge-page/591/leaderboard/1659
https://en.wikipedia.org/wiki/Ward%27s_method

	Introduction
	Related Work
	Formulation
	Trajectory representation
	Representing HD maps as lane graphs
	Output representation

	Proposed Model
	Encoding scene and agent context
	Discrete policy for graph traversal
	Decoding trajectories conditioned on traversals

	Experiments
	Conclusions
	Implementation details
	Map representation
	GRU encoders
	Agent-node attention
	GNN layers
	Policy header
	Trajectory decoder
	Training
	Ranking Clustered Trajectories
	Decoder ablation details


