
A Appendix

A.1 Proof of Theorem 1

We begin with an introduction to the PAC-Bayes framework, and then provide a complete proof
of Theorem 1. PAC-Bayes provides an upper bound on the expected cost of deploying a policy
distribution P on environments E drawn from an unknown distribution D, i.e., EE⇠DE⇡⇠PCE(⇡).
This upper bound only depends on the cost of deploying P in a finite set of training environments
S ⇠ D

m, i.e., the training cost E⇡⇠PCEi(⇡), and a regularizer which depends on the KL-divergence
between P and a prior P0 that is chosen before observing S; note that P0 need not be a Bayesian
prior. The following is the PAC-Bayes bound that was presented in [26] and tightened in [49]:

Theorem 4 (PAC-Bayes Bound [26]) For any distribution over environments D, data-independent

prior distribution P0, cost C bounded in [0, 1], m � 8, and � 2 (0, 1), with probability at least 1��
over a sampling of S ⇠ D

m
, the following holds for all posterior distributions P :

E
E⇠D

E
⇡⇠P

CE(⇡) 
nX

i=1

E
⇡⇠P

CEi(⇡) +

s
DKL(PkP0) + ln 2

p
m
�

2m
(6)

where DKL is the KL-divergence.

The above theorem and the forthcoming PAC-Bayes theorems in this section are presented for policy
learning instead of supervised learning using the reduction provided in [40]. Note that this bound
provides a guarantee for a distribution over policies rather than a specific policy. This allows for a
regularizer dependent on the KL-divergence between the prior and posterior distributions rather than
one which is a direct expression of the complexity of the policy space (such as the VC-dimension).
However, this creates a challenge for calculating the upper bound, which requires computing an
expectation over ⇡ ⇠ P , or using potentially-loosening sample convergence bounds. Thus, we
make use of the recent work which provides a framework for derandomized PAC-Bayes bounds (i.e.
bounds which hold for a sampling of policy ⇡ rather than an expectation over ⇡ ⇠ P) [44]. The
following is a general theorem for formulating the derandomized PAC-Bayes bounds:

Theorem 5 (Pointwise PAC-Bayes Bound [44]) For any positive function �, distribution D, prior

distribution P0, and � 2 (0, 1), with probability 1� � over a sampling of S ⇠ D
m

and ⇡ ⇠ P , the

following holds for any posterior distribution P :

↵

↵� 1
ln(�(⇡, S))  D↵(PkP0) + ln

✓
1

(�/2)
↵
↵�1+1

E
S0⇠Dm

E
⇡0⇠P0

�(⇡0
, S

0)
↵
↵�1

◆
(7)

where P is the output of algorithm A on the training data S, i.e. P := A(P0, S) and D↵ is the

Rényi divergence.

Now we can proceed with the statement and proof.

Theorem 1 For any distribution D, prior distribution P0, � 2 (0, 1), cost bounded in [0, 1], and

deterministic algorithm A which outputs the posterior distribution P we have the following:

P
(S,⇡)⇠(Dm⇥P)

"
CD(⇡)  CS(⇡) +

s
D2(PkP0) + ln 2

p
m

(�/2)3

2m

#
 1� � (8)

where D2 is the Rényi Divergence for ↵ = 2.

Proof. We begin with the statement in Theorem 5, which is proved in [44]. Let ↵ = 2 and �(⇡, S) =
exp[↵�1

↵ mDKL(CS(⇡)kCD(⇡))]. Thus, we have the following with at least probability 1� � over
the random choice S ⇠ D

m and ⇡ ⇠ P :

DKL(CS(⇡)kCD(⇡)) 
1

m


D2(PkP0) + ln

✓
1

(�/2)3
E

S0⇠Dm
E

⇡0⇠P0

e
mDKL(CS0 (⇡0)kCD(⇡0))

◆�

(9)
From [49], we can upper bound ES0⇠Dm E⇡0⇠P0 e

mDKL(CS0 (⇡0)kCD(⇡0)) by 2
p
m when m � 8.

This gives us the following bound

DKL(CS(⇡)kCD(⇡)) 
1

m


D2(PkP0) + ln

2
p
m

(�/2)3

�
. (10)

12

We then apply the Pinkser’s inequality, i.e. DKL(pkq)  c =) q  p +
p
c/2, which results

in Inequality (2). Note that we could also use a quadratic version of the upper bound for the KL
divergence between two distributions and produce an upper bound analogous to the one presented
in [37].

A.2 Proof of Theorem 2

For the readers’ convenience, we restate Theorem 2 here and provide a detailed proof.

Theorem 2 Let D be the training distribution and P be the posterior distribution on the space of

policies obtained through the training procedure described in Sec. 4.1. Let S
0
⇠ D

0n
be a test

dataset, p(S0) be the p-value for S
0

defined in Definition 1, and � 2 (0, 1). Then,

P
(S,⇡)⇠(Dm⇥P)

[p(S0)  exp(�2n⌧(S)2)] � 1� � , (11)

where ⌧(S) := max{CS0(⇡)� C�(⇡, S), 0}.

Proof. We prove this theorem by considering two cases: when the PAC-Bayes cost inequality holds,
i.e., CD(⇡)  C�(⇡, S), and when it does not, i.e., CD(⇡) > C�(⇡, S); the two cases are considered
in (12)-(14). In the latter case, we cannot say anything about the p-value, while in the former case,
which holds with probability at least 1� �, we show in (15)-(26) that p(S0)  exp(�2n⌧(S)2).

Let us begin the proof by conditioning P
(S,⇡)⇠(Dm⇥P)

[p(S0)  exp(�2n⌧(S)2)] as follows:

P
(S,⇡)⇠(Dm⇥P)

[p(S0)  exp(�2n⌧(S)2)] (12)

= P
(S,⇡)⇠(Dm⇥P)

[p(S0)  exp(�2n⌧(S)2) | CD(⇡)  C�(⇡, S)] P
(S,⇡)⇠(Dm⇥P)

[CD(⇡)  C�(⇡, S)]

| {z }
�1�� (from Theorem 1)

+ P
(S,⇡)⇠(Dm⇥P)

[p(S0)  exp(�2n⌧(S)2) | CD(⇡) > C�(⇡, S)]

| {z }
�0

P
(S,⇡)⇠(Dm⇥P)

[CD(⇡) > C�(⇡, S)]

| {z }
�0

(13)

� P
(S,⇡)⇠(Dm⇥P)

[p(S0)  exp(�2n⌧(S)2) | CD(⇡)  C�(⇡, S)](1� �) (14)

Now, we claim:

P
(S,⇡)⇠(Dm⇥P)

[p(S0)  exp(�2n⌧(S)2) | CD(⇡)  C�(⇡, S)] = 1 , (15)

which on using in (14) completes the proof of this theorem. The remainder of this proof is dedicated
to establishing the claim in (15).

We are given

CD(⇡)  C�(⇡, S) . (16)

From Definition 1, we have

p(S0) = P
Ŝ⇠D0n

[CŜ(⇡) � CS0(⇡) | CD0(⇡)  CD(⇡)] (17)

= P
Ŝ⇠D0n

[CŜ(⇡)� C�(⇡, S) � CS0(⇡)� C�(⇡, S) | CD0(⇡)  CD(⇡)] (18)

= P
Ŝ⇠D0n

[CŜ(⇡)� C�(⇡, S) � ⌧ | CD0(⇡)  CD(⇡)] . (19)

From (16) and the assumption that the null hypothesis holds in (19), it follows that CD0(⇡) 
C�(⇡, S), which ensures that the following implication holds for ⌧ defined in the statement of the
theorem:

CŜ(⇡)� C�(⇡, S) � ⌧ =) CŜ(⇡)� CD0(⇡) � ⌧ . (20)

Therefore, if ⌧ > 0 we have that
P

Ŝ⇠D0n
[CŜ(⇡)� C�(⇡, S) � ⌧ | CD0(⇡)  CD(⇡)]  P

Ŝ⇠D0n
[CŜ(⇡)� CD0(⇡) � ⌧]  exp(�2n⌧2) ,

13

where the last upper bound follows from Hoeffding’s inequality. Hence, for ⌧ > 0, using the above
in (19) gives

p(S0)  exp(�2n⌧2) . (21)

If ⌧ = 0, the vacuous bound holds:

p(S0)  1 = exp(�2n0) = exp(�2n⌧2) . (22)

Combining the two cases for ⌧ > 0 in (21) and ⌧ = 0 in (22) gives us the following implication:

CD(⇡)  C�(⇡, S) =) p(S0)  exp(�2n⌧(S)2) . (23)

Now, we expand the left-hand side of (15) using the definition of conditional probability:

P
(S,⇡)⇠(Dm⇥P)

[p(S0)  exp(�2n⌧(S)2) | CD(⇡)  C�(⇡, S)] (24)

=

P
(S,⇡)⇠(Dm⇥P)

[p(S0)  exp(�2n⌧(S)2) ^ CD(⇡)  C�(⇡, S)]

P
(S,⇡)⇠(Dm⇥P)

[CD(⇡)  C�(⇡, S)]
(25)

From (23), we know that {(S,⇡) | CD(⇡)  C�(⇡, S)} ✓ {(S,⇡) | p(S0) 

exp(�2n⌧(S)2)}, therefore, P
(S,⇡)⇠(Dm⇥P)

[p(S0)  exp(�2n⌧(S)2) ^ CD(⇡)  C�(⇡, S)] =

P
(S,⇡)⇠(Dm⇥P)

[CD(⇡)  C�(⇡, S)] which on using in (25) gives the following:

P
(S,⇡)⇠(Dm⇥P)

[p(S0)  exp(�2n⌧(S)2) | CD(⇡)  C�(⇡, S)] =

P
(S,⇡)⇠(Dm⇥P)

[CD(⇡)  C�(⇡, S)]

P
(S,⇡)⇠(Dm⇥P)

[CD(⇡)  C�(⇡, S)]
= 1,

(26)

completing the proof of the claim (15) as well as the theorem.

A.3 Proof of Theorem 3

For the readers’ convenience, we restate Theorem 3 here and provide a detailed proof.

Theorem 3 Let D be the training distribution, D
0

be the test distribution, and P be the posterior

distribution on the space of policies obtained through the training procedure described in Sec. 4.1.

Let �, �
0
2 (0, 1) such that � + �

0
< 1, � :=

q
ln (1/�0)

2n , and �C := CS0(⇡)� � �C�(⇡, S). Then,

P
(S,⇡,S0)⇠(Dm⇥P⇥D0n)

[CD0(⇡)� CD(⇡) � �C] � 1� � � �0 . (27)

Proof. To lower bound the difference between CD0(⇡) and CD(⇡) with high probability we obtain
a lower bound on CD0(⇡) which holds with probability at least 1 � �0 using Hoeffding’s inequality
in (28)-(31). Then we use this bound with the PAC-Bayes bound (2) which holds with probability at
least 1� � to obtain (27) by following the steps in (32)-(37).

Let � be defined as in the statement of the theorem, then, using the independence of D
0n from

D
m
⇥ P , we can write2

P
(S,⇡,S0)⇠(Dm⇥P⇥D0n)

[CD0(⇡) � CS0(⇡)� �]

=

Z

(S,⇡)
P

S0⇠D0n
[CD0(⇡) � CS0(⇡)� � | S,⇡]d(Dm

⇥ P)(S,⇡) . (28)

For any given (S,⇡), we can apply Hoeffding’s inequality to get:

P
S0⇠D0n

[CD0(⇡) � CS0(⇡)� �] = P
S0⇠D0n

[CS0(⇡)� CD0(⇡)  �] � 1� exp(�2n�2) = 1� �0 .

(29)

2Note that CD0(⇡) and CS0(⇡) implicitly depend on S because the posterior distribution P , from which ⇡
is sampled, is trained on S.

14

Using (29) in (28) we get that:

P
(S,⇡,S0)⇠(Dm⇥P⇥D0n)

[CD0(⇡) � CS0(⇡)� �] �

Z

(S,⇡)
(1� �0)d(Dm

⇥ P)(S,⇡) (30)

= (1� �0)

Z

(S,⇡)
d(Dm

⇥ P)(S,⇡) = 1� �0 .

(31)

Now, observe that

CD(⇡)  C�(⇡, S) ^ CD0(⇡) � CS0(⇡)� � =) CD0(⇡)� CD(⇡) � CS0(⇡)� � � C�(⇡, S) . (32)

From the implication (32), it follows that

P
(S,⇡,S0)⇠(Dm⇥P⇥D0n)

[CD0(⇡)� CD(⇡) � CS0(⇡)� � � C�(⇡, S)] (33)

� P
(S,⇡,S0)⇠(Dm⇥P⇥D0n)

[CD(⇡)  C�(⇡, S) ^ CD0(⇡) � CS0(⇡)� �] (34)

Now using the Fréchet inequality P[E1 ^E2] � P[E1] + P[E2]� 1 (where E1 and E2 are arbitrary
random events) on (34) we obtain:

P
(S,⇡,S0)⇠(Dm⇥P⇥D0n)

[CD(⇡)  C�(⇡, S) ^ CD0(⇡) � CS0(⇡)� �] (35)

� P
(S,⇡)⇠(Dm⇥P)

[CD(⇡)  C�(⇡, S)] + P
(S,⇡,S0)⇠(Dm⇥P⇥D0n)

[CD0(⇡) � CS0(⇡)� �]� 1 (36)

� 1� � � �0 , (37)

where the last inequality follows by using (2) and (31) in (36). Finally, using (37) in (34) completes
the proof.

A.4 Training with Backpropogation

In this section, we describe a method to minimize the upper bound in Theorem 1 using back-
propogation. We make use of multivariate Gaussian distributions N with diagonal covariance
⌃s := diag(s) where := (µ, log s). When training the posterior distribution P , we would like to
take gradient steps directly with respect to . However, this would require backpropagation through
Ew⇠N CE(⇡w). We follow a similar procedure as in [28] and achieve the desired result of mini-
mizing the upper bound in Inequality (2) using an unbiased estimate of Ew⇠N CE(⇡w):

1

k

kX

i=1

CE(⇡wi), wi ⇠ N 8 i 2 {1, 2, . . . , k} . (38)

The resulting approach is presented in Algorithm 1. Note that the algorithm must be deterministic
in order to maintain the assumptions of Theorem 1. We achieve this by training with a fixed seed for
generating random numbers. Additionally, note that the backpropagation requires a gradient taken
through D2(N kN 0). We make use of the analytical form for the Rényi divergence between two
multivariate Gaussian distributions, presented in [50], in order to tractably compute the gradients.

D2(N kN 0) = D2

�
N (µ,⌃s)kN (µ0,⌃s0)

�
= (µ� µ0)

T⌃2(µ� µ0)�
1

2
ln

|⌃2||⌃s|

|⌃s0 |
2

, (39)

where ⌃2 = 2⌃s0 � ⌃s. We also note that there is a restriction on how far the posterior’s variance
can drift from the prior. The following expression must be satisfied for D2(N kN 0) to be finite
[50]:

2⌃�1
s � ⌃�1

s0 � 0. (40)
In practice, we project any problematic variances into the range of allowable variances.

After training, since we have used the pointwise PAC-Bayes bound in Theorem 1, we compute the
upper bound with a single w ⇠ N in contrast to traditional PAC-Bayes bounds. Thus, the resulting
policy ⇡w is deterministic and applicable in a broad range of settings, including ones which require
a pre-trained network. The resulting policy carries a PAC-Bayes guarantee.

15

Algorithm 1 PAC-Bayes Bound Minimization via Backpropagation
Input: Fixed prior distribution N 0 over policies, fixed seed for random number generation
Input: Training dataset S, learning rate �
Output: Optimized ⇤

while not converged do
Sample wi ⇠ N 8 i 2 {1, 2, ..., k}

B
1

mk

P
E2S

Pk
i=1 CE(⇡wi) +

p
R

 � �r B

end while

A.5 Training with Evolutionary Strategies

To train robot control policies in settings where backpropagation is not feasible (e.g. presence of
a “blackbox” in the form of a simulator or robot hardware in the forward pass), we use Evolution-
ary Strategies (ES) which is a class of blackbox optimizers [45]. ES addresses this challenge by
estimating the gradient via a Monte-Carlo estimator:

r CS(N) :=
1

m

X

E2S

r E
w⇠N

[CE(⇡w)] =
1

m

X

E2S

E
w⇠N

[CE(⇡w)r lnN (w)] . (41)

Although we can compute the gradient of the regularizer analytically (as mentioned in App. A.4),
using different methods to estimate the gradient of the empirical cost (ES) and the gradient of the
regularizer (analytically) results in poor convergence. To alleviate this, we estimate the regularizer’s
gradient using ES as well by leveraging the expectation form of Rényi divergence in Theorem 1.
This takes the following form:

r (CS(N) +
p

R)

=
1

m

X

E2S

E
w⇠N

"✓
CE(⇡w) +

e
ln
� N (w)

N 0
(w)

�
�D2(N ||N 0)

4m
p
R

◆
r lnN (w)

| {z }
C̃E(w)

#
. (42)

A.5.1 Derivation of (42)

To derive (42), note that

r (CS(N) +
p

R) = r CS(N) +r
p

R = r CS(N) +
1

2
p
R
r R . (43)

From (41) we know the gradient for r CS(N). In the rest of this derivation, therefore, we will
focus on the computing the gradient of the second term.

Note that the Rényi divergence for multivariate Gaussian distributions can be written as:

D2(N ||N 0) = ln

E

w⇠N 0

✓
N (w)

N 0(w)

◆2�!
. (44)

Let

⌘ := E
w⇠N 0

✓
N (w)

N 0(w)

◆2�
, (45)

then, using (44) we have that

D2(N ||N 0) = ln ⌘ (46)

which allows us to express R as

R =
ln ⌘ + ln(2

p
m/(�/2)3)

2m
. (47)

16

Hence,

r R =
1

2m⌘
r ⌘ =

e�D2(N ||N 0)

2m
r ⌘ , (48)

where the last equality follows from (46).

For computing the gradient using ES, we require the cost to be an expectation over the posterior,
however, ⌘ is an expectation on the prior. To address this we perform a change of measure which
gives us the following:

⌘ = E
w⇠N 0

✓
N (w)

N 0(w)

◆2
#
= E

w⇠N


N (w)

N 0(w)

#
. (49)

Using (49) in (48) gives us

r R =
e�D2(N ||N 0)

2m
r E

w⇠N


N (w)

N 0(w)

#
=

e�D2(N ||N 0)

2m
E

w⇠N


N (w)

N 0(w)
r lnN (w)

#
.

(50)

Using (50) and (41) in (43) and combining the expectation terms gives

r (CS(N) +
p

R) = (51)

1

m

X

E2S

E
w⇠N

"✓
CE(⇡w) +

e�D2(N ||N 0)

4m
p
R

N (w)

N 0(w)

◆
r lnN (w)

#
. (52)

Finally, we note that the dimensionality d of w can be large, in which case the term N (w)/N 0(w)
is numerically unstable because it involves the product of d terms. Hence, we express
N (w)/N 0(w) as eln(N (w)/N 0 (w)) which gives us (42) as the final form of the gradient.

A.5.2 Training algorithm

The gradient of the PAC-Bayes upper bound is estimated from (42). Since Theorem 1 requires the
training algorithm to be deterministic, we train with a fixed seed. The psuedo-code for our training
is provided in Algorithm 2. After training, a single w is drawn from N ⇤ , which corresponds to a
policy ⇡w, and the derandomized PAC-Bayes bound is computed for this policy.

Algorithm 2 PAC-Bayes Bound Minimization via ES
Input: Fixed prior distribution N 0 over policies, fixed seed for random number generation
Input: Training dataset S, learning rate �
Output: Optimized ⇤

while not converged do
Sample wi ⇠ N 8 i 2 {1, 2, ..., k}

grad
1

mk

P
E2S

Pk
i=1 C̃E(wi)

 � � · grad

end while

A.6 Additional Experimental Details and Results

A.6.1 Robotic grasping

Training platform. Training was performed on a Lambda Blade server with 2x Intel Xeon

Gold 5220R (96 CPU threads) and 768 GB RAM.

Distributions on the initial position of the mugs. For all datasets, mugs are placed upright on the
table with random yaw orientations sampled from the uniform distribution U([�⇡ rad,⇡ rad]). The
following distributions on the mug’s placement were used to generate the plot in Fig. 2(b):

1. U([0.45 m, 0.55 m]⇥ [�0.05 m, 0.05 m]) (training distribution)

17

2. U([0.40 m, 0.60 m]⇥ [�0.10 m, 0.10 m])

3. U([0.35 m, 0.65 m]⇥ [�0.15 m, 0.15 m])

4. U([0.30 m, 0.70 m]⇥ [�0.20 m, 0.20 m])

5. U([0.25 m, 0.75 m]⇥ [�0.25 m, 0.25 m])

6. U([0.20 m, 0.80 m]⇥ [�0.30 m, 0.30 m])

Control policy architecture. The manipulator’s control policy architecture is provided in Fig. 4.
The weights of the DNN are borrowed from [42] and the training is warm-started with the posterior

Figure 4: Network architecture for the manipulator’s grasping control policy.

provided in [42, App. A5.1].

A.6.2 Vision-based obstacle avoidance with a drone

The approximate CD(⇡) (estimated with 50, 000 held-out environments) is 0.149; PAC-Bayes thus
provides a strong bound.

Environment generation. Training environments have 9 obstacles and have at least one gap which
is wide enough to navigate through. We generate environments by randomly placing a set of
cylindrical obstacles whose locations are sampled from the uniform distribution U([4.5 m, 7 m] ⇥
[�3.5 m, 3.5 m]) relative to the drone’s starting point.

Training the prior. Training takes place completely in simulation. To allow for accurate sim-
to-real transfer, the motion primitives are recorded trajectories of open-loop control inputs for the
Parrot Swing hardware platform. We record multiple rollouts of each open-loop control policy. In

Figure 5: Numerical validation of lower bound in Theorem 3.

18

simulation, when the policy selects a motion primitive, we randomly select one of the corresponding
recorded trajectories to run. We train the prior N 0 over policies by transforming the problem into
a supervised learning setting. For each of 10,000 training environment in S the policy receives a
depth map. Leveraging the simulation, we simulate each primitive (sampled uniformly from the set
of recorded trajectories for that primitive) through each environment. We generate a label for each
depth map by recording the minimum distance to an obstacle achieved by each of the primitives and
passing the vector of distances through a softmax transformation. Note that even in simulation, we
do not assume knowledge of the exact location of obstacles and record the closest distance as viewed
by the robot’s 120� field of view depth sensor. These depth maps and softmax labels can then be
used for training the prior over policies in a supervised learning setting. We use the cross-entropy
loss to train . The result is a policy trained to assign larger values to motion primitives which achieve
a larger distance from obstacles.

Training platform. Training was performed on a desktop computer with an Intel i7-8700k CPU

(12 CPU threads) and an NVIDIA Titan Xp GPU with 32 GB RAM.

Numerical validation of Theorem 3. We numerically validate our confidence bound in Fig. 5. We
plot (i) the difference CD0(⇡) - CD(⇡) (estimated via exhaustive sampling of environments), (ii) the
maximum computed lower-bound on CD0(⇡) - CD(⇡) (computed using a confidence level of 0.9)
over 500,000 datasets S0, and (iii) the 90th percentile value of the bound over the 100,000 datasets.
As guaranteed by Theorem 3, the bound is valid greater than 90% of the time.

19

	Introduction
	Related work
	Problem formulation
	Approach
	Policy training via derandomized PAC-Bayes bounds
	Task-driven OOD detection with statistical guarantees

	Examples
	Robotic grasping
	Vision-based obstacle avoidance with a drone

	Conclusion
	Appendix
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Training with Backpropogation
	Training with Evolutionary Strategies
	Derivation of (42)
	Training algorithm

	Additional Experimental Details and Results
	Robotic grasping
	Vision-based obstacle avoidance with a drone

