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1 More Results for Depth Prediction

Depth Prediction on KITTI Dataset: Due to the space limitation, we only compared with part of
the sate-of-the-art methods for dense depth prediction task in the main paper. Here, Table 1 shows
the complete comparison with the state-of-the-art methods on KITTI [1] dataset. By effectively
using low-cost sparse LiDAR points, our method achieves more accurate dense depth predictions
than all state-of-the-art counterparts including the sparse-LiDAR based methods.

Statistics by Semantic Categories: Fig. 1 shows the comparison of depth prediction error by differ-
ent semantic categories in the KITTI [1] dataset, while Fig 2 shows the average number of pixels per
image by different semantic categories. Our proposed model consistently and significantly improves
the depth quality for all the semantic categories.

Depth Error Qualitative Analysis: Fig. 5 shows the complete qualitative comparison of the depth
errors of our method and the image-based depth prediction model monodepth2 [2]. Leveraging
low-cost sparse LiDAR information, our method produces much better results on all of the objects.

Effectiveness of RefineNet: To better understand the effectiveness of our RefineNet, we show the
qualitative comparison between the initial depth and the refined depth in Fig. 6. These results show
that our proposed RefineNet can significantly reduce the depth error on all these objects.

Computational Efficiency of RefineNet: The existing depth correction / refinement methods [3, 4]
conducts iterative optimization on the testing data, and normally they have higher accuracy but is
extremely slow (1-2 FPS). Table 2 shows the comparison between our RefineNet and the existing
method including GDC [3] and PnP-Depth [4]. The comparison shows that our RefineNet is more
efficient, achieving real-time speed (139 FPS) on single Nvidia RTX-2080Ti GPU.

LiDAR Sparsity. As shown in Fig. 3, our proposed method can consistently improve the depth
prediction even when only one beam of sparse LiDAR points is used. And our method significantly
outperforms other methods [5, 3, 6] when the same amount of sparse LiDAR points are used.

2 More Results for Monocular 3D Object Detection

Comparison With the State-of-the-Art: In addition to the concise quantitative comparison for 3D
detection in the main paper, here we show a more comprehensive quantitative evaluation of how our
advanced depth prediction improves downstream tasks. We employ the PatchNet [7] to perform the
3D monocular object detection on the KITTI [1] dataset using the depth maps generated from our
model. Table. 3 shows the full comparison between our method and state-of-the-art methods on the
KITTI testing set, using the KITTI official testing server. Our method significantly outperforms all
counterparts, including the Pseudo LiDAR++ [3] that also uses the sparse LiDAR points.

Qualitative Comparison: Fig. 4 shows the qualitative comparison between our method and the
state-of-the-art monocular depth prediction model Monodepth2 [2] on the KITTI validation set. The
PatchNet [7] is employed for detection which takes the depth maps generated by our model and the
Monodepth2 as inputs respectively. Note that the Monodepth2 also needs 4-beams LiDAR points
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Method Train The lower the better The higher the better
Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

SfMLearner [8] M 0.208 1.768 6.958 0.283 0.678 0.885 0.957
DNC [9] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Vid2Depth [10] M 0.163 1.240 6.220 0.250 0.762 0.916 0.968
LEGO [11] M 0.162 1.352 6.276 0.252 0.783 0.921 0.969
GeoNet [12] M 0.155 1.296 5.857 0.233 0.793 0.931 0.973
DF-Net [13] M 0.150 1.124 5.507 0.223 0.806 0.933 0.973
DDVO [14] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974
EPC++ [15] M 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2Depth [16] M 0.141 1.036 5.291 0.215 0.816 0.945 0.979
SIGNet [17] M 0.133 0.905 5.181 0.208 0.825 0.947 0.981
CC [18] M 0.140 1.070 5.326 0.217 0.826 0.941 0.975
LearnK [19] M 0.128 0.959 5.230 0.212 0.845 0.947 0.976
DualNet [20] M 0.121 0.837 4.945 0.197 0.853 0.955 0.982
SuperDepth [21] M 0.116 1.055 - 0.209 0.853 0.948 0.977
Monodepth2 [2] M 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Guizilini et al. [22] M 0.111 0.785 4.601 0.189 0.878 - -
PackNet-SfM [23] M 0.111 0.785 4.601 0.189 0.878 0.960 0.982
FeatDepth [24] M 0.104 0.729 4.481 0.179 0.893 0.965 0.984
MonoDepth [25] S 0.133 1.142 5.533 0.230 0.830 0.936 0.970
MonoDispNet [26] S 0.126 0.832 4.172 0.217 0.840 0.941 0.973
MonoResMatch [27] S 0.111 0.867 4.714 0.199 0.864 0.954 0.979
MonoDepth2 [2] S 0.107 0.849 4.764 0.201 0.874 0.953 0.977
RefineDistill [28] S 0.098 0.831 4.656 0.202 0.882 0.948 0.973
UnDeepVO [29] M+S 0.183 1.730 6.570 0.268 - - -
DFR [30] M+S 0.135 1.132 5.585 0.229 0.820 0.933 0.971
EPC++ [15] M+S 0.128 0.935 5.011 0.209 0.831 0.945 0.979
MonoDepth2 [2] M+S 0.106 0.818 4.750 0.196 0.874 0.957 0.979
DepthHint [31] M+S†† 0.100 0.728 4.469 0.185 0.885 0.962 0.982
FeatDepth [24] M+S 0.099 0.697 4.427 0.184 0.889 0.963 0.982
Dorn [32] M+Sup 0.099 0.593 3.714 0.161 0.897 0.966 0.986
BTS [33] M+Sup 0.091 0.555 4.033 0.174 0.904 0.967 0.984
Guizilini et al. [22]* M+L 0.082 0.424 3.73 0.131 0.917 - -
Ours (Initial Depth) M+L 0.078 0.515 3.67 0.154 0.935 0.973 0.986
Ours (Refined Depth) M+L 0.074 0.423 3.61 0.150 0.936 0.973 0.986
Struct2Depth [16] M† 0.109 0.825 4.750 0.187 0.874 0.958 0.983
GLNet [34] M† 0.099 0.796 4.743 0.186 0.884 0.955 0.979
FeatDepth [24] M† 0.088 0.712 4.137 0.169 0.915 0.965 0.982
FeatDepth [24] M+S† 0.079 0.666 3.922 0.163 0.925 0.970 0.984
Pseudo LiDAR++ (GDC) [3]** M+L† 0.098 0.714 4.30 0.176 0.899 0.967 0.984
Ours (Initial Depth + GDC) M+L† 0.067 0.423 3.42 0.144 0.941 0.977 0.988
Ours (Refined Depth + GDC) M+L† 0.063 0.364 3.291 0.139 0.945 0.978 0.988

Table 1: Depth prediction on KITTI original dataset: Methods are ranked by absolute relative
error. The best results are in bold. All methods are using a resolution of 640x192 pixels. Due to the
exceptional time-consume (around 1-2 FPS), we rank methods with and without iterative refinement
separately. M , S, and L respectively indicates Monocular, Stereo, and Sparse LiDAR data, with
Sup and † respectively indicating supervised training and iterative correction in testing phase.
* Only use LiDAR data in training phase, but tested on the KITTI improved dataset, which usually
has a much lower error value.
** For a fair comparison, we replace the supervised stereo depth module with monodepth2 [2].

Method Iterative Abs Rel Speed (FPS)
Without Refinement — 0.078 -
Ours (Refine Net + GDC) Yes 0.064 2.00
GDC [3] Yes 0.067 2.01
PnP Depth [4] Yes 0.077 15.2
Ours (Refine Net) No 0.074 139.0

Table 2: Speed comparison between our RefineNet and other conventional iterative refinement
methods: The other methods use LiDAR point cloud to iteratively refine the predictions and it
usually results with higher accuracy but super low speed (around 1-2 FPS). As its replacement, our
newly designed RefineNet is an efficient feed-forward network that achieves real-time performance
(139 FPS) on single Nvidia RTX-2080Ti GPU.

to retrieve the absolute metric scale of the depth map before detection. With more accurate depth
predictions, our method leads to much better detection results than the Monodepth2.

3 More Implementation Details

Dense Depth Prediction: The proposed framework is trained on KITTI Depth Prediction dataset
with an Adam optimizer [35] with a learning rate starting at 1e − 4 and reduced by 90% every 15
epochs. Our model takes images of resolution 640 × 192 as input and outputs predictions of same
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Figure 1: Depth Error by Semantic Categories: The depth absolute relative error analysis by
different semantic categories in the KITTI test set. Our proposed model consistently improves the
depth quality for all the semantic categories.

resolution. All the models are trained with a batch size of 8 on a single NVIDIA Tesla V100 GPU
for around 15 hours.

Depth Completion: Our framework is trained with an Adam optimizer [35] with a learning rate
starting at 1e − 4 and reduced by 90% every 8 epochs. Our model takes images of resolution
1216× 352 as input and outputs predictions of the same resolution. All the models are trained with
a batch size of 4 on a single NVIDIA Tesla V100 GPU for 15 epochs, and the training takes around
20 hours.

Monocular 3D Object Detection: For monocular 3D object detection, the most recent state-of-the-
art model PatchNet [7] is employed as detector to evaluate the performance based on our predicted
depth. The PatchNet is trained on the KITTI detection dataset with pseudo-LiDAR patches as input,
which is lifted from our predicted depth. The model is optimized with an Adam optimizer [35] with
a learning rate starting at 1e − 3 and reduced by 90% every 40 epochs. The entire optimization is
done with 100 epochs, and it takes around 10 hours on a single NVIDIA Tesla V100 GPU.
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Figure 2: Number of Pixels by Semantic Categories: The average number of pixels per image by
different semantic categories in the KITTI test set.

Supervised KITTI Testing (AP |40)Method Depth Easy Mod. Hard
OFTNet [36] - 1.61 1.32 1.00
FQNet [37] - 2.77 1.51 1.01
ROI-10D [38] - 4.32 2.02 1.46
GS3D [39] - 4.47 2.90 2.47
Shift R-CNN [40] - 6.88 3.87 2.83
Multi-Fusion [41] % 7.08 5.18 4.68
MonoGRNet [42] ! 9.61 5.74 4.25
Decoupled-3D [43] ! 11.08 7.02 5.63
MonoPSR [44] - 10.76 7.25 5.85
MonoPL [45] ! 10.76 7.50 6.10
SS3D [46] - 10.78 7.68 6.51
MonoDIS [47] - 10.37 7.94 6.40
M3D-RPN [48] - 14.76 9.71 7.42
AM3D [49] ! 16.50 10.74 9.52
PatchNet [7] ! 15.68 11.12 10.17
Pseudo LiDAR++ [3] % 14.93 10.85 9.50

Ours %
25.21 18.99 16.53

+68.9% +75.0% +74.0%
Table 3: 3D detection performance evaluation for the Car category on the testing set of KITTI
dataset [1]. IoU threshold is set to 0.7. For fair comparison, we replace the supervised stereo
depth module of Pseudo LiDAR++ with Monodepth2 [2]. Our method significantly outperforms all
counterparts, including the Pseudo LiDAR++ [3] that also uses the sparse LiDAR points.
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Figure 3: Depth Error With Different LiDAR Sparsity: The depth absolute relative errors on the
KITTI depth prediction dataset.

Figure 4: Monocular 3D Object Detection: The qualitative comparison of monocular 3D detection
by PatchNet [7] based on the depth from our model and the Monodepth2 [2]. With the accurate dense
depth prediction, our method produces much better detection results than the Monodepth2. Green
boxes are the ground truth boxes while red boxes are the detection results. The LiDAR points in this
figure are only used for visualization purpose.
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Figure 5: Depth Error Qualitative Analysis: The depth absolute error. The first to third rows
are: the input RGB image, the prediction of Monodepth2 [2], and the predictions by our method
respectively. The Red, yellow, and green indicate the depth error from high to low (best viewed in
color). By fusing the low-cost sparse LiDAR information, our method generates much better results
than the baseline which only rely on image features for all these objects.

Figure 6: Effectiveness of RefineNet: The depth absolute error. The first to third rows are: the
input RGB image, our initial depth prediction, and our refined depth prediction. The red, yellow,
and green indicate the depth error from high to low (best viewed in color). These results show that
our proposed RefineNet can significantly reduce the depth error on all these objects.
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