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In the following sections, we provide additional background information and implementation details
concerning the methods and results presented in the paper. We start by describing the graph represen-
tations, before presenting the pseudocode for all learning algorithms and outlining the experimental
setup in greater detail. Lastly, we provide hyperparameters, learning curves and additional material
for all the experiments.

A Graph representations

In this section, we introduce the Structure2Vec architecture, how to obtain every node’s initial en-
coding and the two possibilities for defining the graph’s connectivity. All these details are used in
the experimental evaluation in Sec. 3.

A.1 Alternative encoding - Structure2Vec (S2V)

Structure2Vec Encoding (S2V). S2V is one popular GNN architecture applied to combinatorial
optimization algorithms [31]. In the first step of this method, the initial node embeddings n(0)

i = xi
are projected into a higher dimensional space via

n
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(0)
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(0)
i )), (1)

using a fully-connected (FC) layer followed by a rectified linear unit (ReLU) activation function.
Note that the function g will be used repeatedly as we progress with the graph update, however, on
each further appearance we assume a different set of weights.

For discovering where a block needs to be placed next in our assembly problem, solely relying on
the individual node encodings is not sufficient. We also need to take the topology of the graph into
account. Thus, for each node, another feature ei is computed which accumulates the features of all
its neighbors as follows

ei(ni)
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where c(ni) is the connectivity count of the node ni, indicating how many edges are connected to
this node. Based on these two initial embeddings, for each node, we obtain high level features by
performing l rounds of message passing, i.e. updating each encoding l times, according to
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This high-level representation ni(l) will be used subsequently to define our agent’s action.

A.2 Insights for the node encoding

To encode both the available and the already placed blocks, as well as the points representing the
target structure to be built, we use the following initial representation

n
(0)
i =

[
xpos

placed
target

]
(4)
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Figure 1: Illustrating the two different connectivity implementations. Note: The two nodes shaded in light blue
illustrate one object made up of two primitive blocks. In the partial connectivity setup on the left, there are no
connections in between the unplaced elements visualized on the left-hand side. Only the connection between
the light blue nodes reveals them forming one object. On the contrary, in the fully-connected setup on the right,
all nodes irrespective of their type are connected.

with the respective object’s position (xpos ∈ R3), and the booleans placed and target. placed takes
a value of 1 for target elements and already placed blocks, and -1 otherwise. target equates to 1 for
target elements only, and to -1 otherwise. This initial representation forms the basis for obtaining
the graph’s higher-level encoding using either the MHA or the S2V architecture.

A.3 Graph connectivity

In Fig. 1, we illustrate the different connectivities investigated in this work. Namely, the partially-
connected and the fully-connected setup. Whereas in the fully-connected setup all nodes are simply
interconnected with each other, in the partially-connected setup, there are no connections in between
the unplaced objects. We reason that message passing between the unplaced objects can be omitted,
as it should be more crucial to make the connections between the placed elements and the target
shape in order to figure out where to next place an unused block. Further, the partial connectivity
also has the advantage to clearly mark objects formed from multiple boxes, by adding connections
between the individual primitive elements without requiring any further one-hot encoding or similar
representation.

B Learning algorithms - Pseudocode

This section provides the pseudocode of all the algorithms presented in Sec. 2.2. Alg. 1 represents
the standard framework in which the learning is conducted, i.e. periodically collecting experience
and updating the current Q-function which forms the basis for action selection. The difference be-
tween the algorithms lies in the action selection mechanisms and loss functions. Apart from that, all
of them make use of a replay buffer during training and exploit the same simulation environments.
For implementing the learning algorithms, we have used the mushroom reinforcement learning li-
brary [44].

The standard Q-learning algorithm, without conducting any model-based search, is provided in Alg.
2. Alg. 3 is an extension to Alg. 2 by adding tree search during test time. For expanding the initial
node, it uses an epsilon-greedy expansion strategy. Algs. 5 and 4 differ from the others as also
search is conducted while training the models. Whereas Q-MCTS conducts the tree search on every
sample and uses an epsilon-greedy expansion, ε-MCTS first has the decision whether to do search
or not and then eventually uses a UCT expansion strategy. Thus, the loss function of ε-MCTS is
also more adaptive, since the cross-entropy loss term is only active when search has been conducted
during training starting from the current state. As ε decreases over time, the influence of the cross-
entropy term in ε-MCTS is increasing. Contrarily, Q-MCTS does not have this decision and the
cross-entropy term is active throughout the whole training process, as for every sample search is
conducted.
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Algorithm 1 Learn2Assemble
1: for i in 1..NumberEpochs do
2: /* Collect experience
3: j = 0, Buffer B = []
4: /* Define number of samples to collect
5: Γ = 100
6: while j < Γ do
7: Sample unplaced elements SU , initially placed box SP , target shape ST
8: finished=False
9: while finished==False do

10: Sample action [a,QS , ae] = act(Q, s) using Q-function approximator Q
11: Move robot to pick and place the part - Update: SU , SP , obtain r(s, a)
12: Receive next state s′

13: B.append([s, a,QS , ae, r(s, a), s′])
14: j = j + 1
15: s = s′

16: if |SU | = 0, or robot destroyed the structure, or F (st+1) > ∆, or j == Γ then
17: finished=True
18: /* Update weights of Q-function
19: π = update(Q,B)

Algorithm 2 DQN
1: Number of update steps χ
2: procedure act(Q, s)
3: if RandomVariable < ε then
4: a = RandomChoice(AllPossibleActions(s))
5: else
6: a = maxa′ Q(s, a′|a′ ∈ AllPossibleActions(s))

return a
7: procedure update(π,B)
8: Add B to Replay Memory
9: for i in 1..χ do

10: Sample random subset from Replay Memory
11: loss = smoothL1(Q(s, a)− (r(s, a) + γmaxa′ QT (s′, a′|a′ ∈ AllPossibleActions(s))))
12: Update Q-function approximator Q with parameters θ
13: θ = θ − α ∂loss

∂θ

14: return Q

Algorithm 3 DQN + MCTS
1: /* Note, this is only during evaluation, for training see Alg. 2
2: Rollout Depth η = 1 if not stated otherwise
3: Search Budget τ
4: Number of update steps χ
5: procedure act(Q, s)
6: Given: state s, set containing the explored actions SA = {}
7: ∀a, Initialize W (s, a) = 1, QS(s, a) = Q(s, a)
8: for i in 1..τ do
9: if RandomVariable < ε then

10: a = RandomChoice(AllPossibleActions(s)|W (s, a) = 1)
11: else
12: a = maxa′ Q(s, a′|a′ ∈ AllPossibleActions(s),W (s, a′) = 1)

13: Add a to SA, collect r(s, a)
14: for j in 1..η − 1 do
15: a = DQN− act(Q, s) (Alg. 2, Line 2), collect current single step reward r̃
16: Update: r(s, a) = r(s, a) + γj r̃

17: Update: W (s, a) = W (s, a) + 1, QS(s, a) = 1
2
(QS(s, a) + r(s, a) + γη maxa′ Q(s′, a′))

18: if RandomVariable < ε then
19: ar = RandomChoice(SA)
20: else
21: ar = maxa′ QS(s, a′|a′ ∈ SA)

22: return ar, {QS(s, a|a ∈ SA)}, {a|a ∈ SA}
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Algorithm 4 Q-MCTS
1: Rollout Depth η = 1 if not stated otherwise
2: Search Budget τ
3: Number of update steps χ
4: procedure act(Q, s)
5: Given: state s, set containing the explored actions SA = {}
6: ∀a, Initialize W (s, a) = 1, QS(s, a) = Q(s, a)
7: for i in 1..τ do
8: if RandomVariable < ε then
9: a = RandomChoice(AllPossibleActions(s)|W (s, a) = 1)

10: else
11: a = maxa′ Q(s, a′|a′ ∈ AllPossibleActions(s),W (s, a′) = 1)

12: Add a to SA, collect r(s, a)
13: for j in 1..η − 1 do
14: a = DQN− act(Q, s) (Alg. 2, Line 2), collect current single step reward r̃
15: Update: r(s, a) = r(s, a) + γj r̃

16: Update: W (s, a) = W (s, a) + 1, QS(s, a) = 1
2
(QS(s, a) + r(s, a) + γη maxa′ Q(s′, a′))

17: if RandomVariable < ε then
18: ar = RandomChoice(SA)
19: else
20: ar = maxa′ QS(s, a′|a′ ∈ SA)

21: return ar, {QS(s, a|a ∈ SA)}, {a|a ∈ SA}
22: procedure update(π,B)
23: Add B to Replay Memory
24: for i in 1..χ do
25: Sample random subset from Replay Memory, including the actions taken during search
26: loss = 1

2
smoothL1(Q(s, a)− (r(s, a) + γmaxa′ QT (s′, a′|a′ ∈ AllPossibleActions(s))))

− 1
2
softmax(Q(s, ae))

T softmax(QS(s, ae))
27: Update Q-function approximator Q with parameters θ
28: θ = θ − α ∂loss

∂θ

29: return Q

C Additional details on experimental setup

All the simulation environments have been implemented using PyBullet [45]. Every environment is
characterized by the size and number of all the target shapes, as well as the number of blocks that
are available. As most of the components used for the learning algorithms are implemented with
fixed-size arrays, we decided that during training, every graph has a fixed size, i.e. a fixed number of
nodes. However, as per side, the number of points describing the target shape is variable (3, 4 or 5),
the number of available blocks is adapted accordingly. Thus, despite the choice of fixing the number
of nodes during training, the algorithms still encounters a versatile set of graphs as the distribution
over the node types changes depending on how many nodes are required for describing the desired
shape.

C.1 Sampling target shape

For every side of the environment, we initially define its size. In this work, we experimented with
grids ranging from size 3-by-3 up to sizes of 6-by-6. Exemplarily, a grid sized 3-by-3 has a maxi-
mum width of 3 blocks and a maximum height of 3 blocks. We assume to place the initial element
(red block) always in the bottom center of this grid. If there are multiple sides to be built, the initial
block is placed by randomly selecting one of them. From inside these grids, we sample 3, 4 or 5
points. Two out of these points are always sampled on the bottom, one to the left of the initial block
and one to the right of it. For the upper points, we just sample points at a random height and width
from inside the available grid.
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Algorithm 5 ε-MCTS
1: Rollout Depth η = 1 if not stated otherwise
2: Search Budget τ
3: Number of update steps χ
4: procedure act(Q, s)
5: if RandomVariable < ε then
6: a = RandomChoice(AllPossibleActions(s))
7: return a
8: else
9: Given: state s, set containing the explored actions SA = {}

10: ∀a, Initialize W (s, a) = 1, QS(s, a) = Q(s, a)
11: for i in 1..τ do
12: a = maxa′ Q(s, a′) + 2

√
log(

∑
a′′ W (s,a′′))
W (s,a′) |a′ ∈ AllPossibleActions(s),W (s, a′) = 1

13: Add a to SA, collect r(s, a)
14: for j in 1..η − 1 do
15: a = DQN− act(π, s) (Alg. 2, Line 2), collect current single step reward r̃
16: Update: r(s, a) = r(s, a) + γj r̃

17: Update: W (s, a) = W (s, a) + 1, QS(s, a) = 1
2
(QS(s, a) + r(s, a) + γη maxa′ Q(s′, a′))

18: ar = maxa′ QS(s, a′|a′ ∈ SA)
19: return ar, {QS(s, a|a ∈ SA)}, {a|a ∈ SA}
20: procedure update(Q,B)
21: Add B to Replay Memory
22: for i in 1..χ do
23: Sample random subset from Replay Memory, including the actions taken during search
24: /* Note: If the sample is collected without conducting search, then, for this sample, the cross entropy

regularization term is omitted and instead equates to 0.
25: loss = 1

2
smoothL1(Q(s, a)− (r(s, a) + γmaxa′ QT (s′, a′|a′ ∈ AllPossibleActions(s))))

− 1
2
softmax(Q(s, ae))

T softmax(QS(s, ae))
26: Update Q-function approximator Q with parameters θ
27: θ = θ − α ∂loss

∂θ

28: return Q

C.2 Reward and reset function

Our method’s objective is to use the available blocks to construct a stable structure that fills the tar-
get design up to a desired filling threshold ∆ for which we view the experiment as successful. This
results in a reset of the environment, i.e., sampling a new instance with new target points and blocks.
The environment is also reset when there are no more unplaced blocks available, or if an invalid
action has been taken. An action is invalid if it results in an unstable configuration, in destructing
the previously built structure, or if it is not executable by the robot due to kinematic constraints.
The outcome of every action is checked through the simulator as explained in Sec. C.5. To refine
the stacking policies, we therefore have to provide a meaningful reward signal to incentivize the
successful completion of the construction tasks. We have used two different reward definitions in
this work, depending on the simulation environment. In the simple block stacking environments
with only one type of block available, we made use of a discrete reward as introduced in Sec. C.2.1.
However, in the more complicated environments with multiple different blocks available, we defined
another reward function (see Sec. C.2.2) which not only returns a binary signal but actually encour-
ages to fill the shape as efficiently as possible by providing a reward proportional to the increase in
the filling.

C.2.1 Reward function in simple block stacking environments

In the simple environments with only one type of blocks available, we define the reward as

r(st, at) =

 1 if F (st+1)− F (st) > 0,
−1 if an invalid action,

0 otherwise,
(5)
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where an invalid action is defined as described above in Sec. C.2. The coverage F (st) is computed
by first summing over the intersection areas for each side, i.e. the areas for which the target shape
and current structure overlap, and divide it by the total area of the target shapes. The intuition behind
this reward function is to provide an ”intrinsic” motivation for actions that lead to improvement in
the filling of the desired area, punish actions that disrupt the execution, and to not reward any actions
that do not promote the assembly (e.g., placing blocks outside the desired area).

C.2.2 Reward function in environments with multiple different blocks

In environments with multiple different blocks available we want to incentivize filling the target
shape using the different available modules as effectively as possible, and thus assign a slightly
modified reward function according to

r(st, at) =


c1(F (st+1)− F (st)) + 1 if F (st+1)− F (st) > 0 and F (st+1) > ∆,

c1(F (st+1)− F (st)) if F (st+1)− F (st) > 0,
−1 if an invalid action destroying the structure,

0 otherwise.

(6)

The coverage F (st) is computed as introduced in Sec. C.2.1 and the hyperparameter (scaling con-
stant) c1 is set to 3. The constant has been determined empirically and is required to scale the reward
signal to facilitate the learning of the action-value function. For example, setting this constant to 1
might make it difficult to differentiate an action that results in only marginally improving the filing
from another one that does not improve it at all. Since exceeding the filling threshold ∆ corresponds
with successfully completing the experiment, we provide an additional bonus of +1 to the agent.

C.3 Populate environment without (wo) robot

Depending on the choice of target shape, as well as the number of available blocks, we have Nk

blocks remaining that need to be placed. To ensure an equal spacing in between the blocks, we
use Sobol sequences [46] to sample where the unplaced blocks are to be placed. Note that in the
experiments without the robot, we did not enforce any measures to avoid collisions between the
unplaced blocks, as they are not modelled by the physical simulator. They are only added to the
simulated scene the moment they are placed.

C.4 Populate environment with (w) robot

In the environment with the robot, the unplaced parts are added to the physics simulator from the
very beginning, as the parts have to be grasped by the robot. To ensure graspability, we place them
in rows with sufficient spacing.

C.5 Checking stability of overall structure

To check the stability of the overall structure, we track the velocities of all the parts in the scene. If
blocks are colliding or falling down, the accumulated velocity will exceed a threshold, which will
signal that the action has been invalid. This will reset the entire environment. In all non-robotic
scenarios, this threshold on the velocity is also active for the block that is being placed, ensuring that
the controller will not drop any block from above, as this will result in more inaccurate placements
compared to just positioning it exactly at the right place. In the robot scenarios, and especially in the
multidimensional ones, dropping a cube from a higher position is sometimes required as otherwise,
the construction of enclosed shapes is impossible. Therefore, we only keep track of all the placed
elements, ignoring the block that is currently being placed.

C.6 Robotic environment - Moving the robot

For moving the robot, we use trajectories that are defined by multiple waypoints. To map from
the Cartesian space to joint coordinates, we use the Pinocchio library [47]. For grasping as well as
placing the cubes, the respective goal positions are approached from the top, without running any
additional obstacle avoidance module. As shown in Fig. 2, the objects are grasped from the top
and there are two grasping poses, as well as two placing poses available. These four grasp-place
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(a) (b) (c) (d)

Figure 2: Illustrating the different available grasping and placing poses in the four-sided robotic environment.
(a)&(b) Two grasping poses. (b)&(c) Two placing poses.

Table 1: Hyperparameters used for training the policies
Parameter Value

Number Training Epochs 5000
Discount Factor γ 0.8

Initial ε 1.0
Final & evaluation ε 0.05
Epoch final ε reached 1000

Size replay buffer 30000
Optimizer adam

Learning rate 0.001
Batch size 32

Number of update steps χ 25
Update target (epochs) 50

Target filling threshold ∆ 0.975

combinations allow to realize rotations by 0◦ (same orientation for grasping and placing), as well as
±90◦ around the z-axis.

D Additional experimental results

In this section, we will provide additional details and results underlining the main findings of our
work. To better showcase the behavior of the individual agents, we also provide videos on our
website https://sites.google.com/view/learn2assemble.

D.1 General information on training procedure

If not stated otherwise, all the results presented in the paper are based on evaluating 5 agents that
have been trained with different random seeds using the parameters shown in Table 1.

For all experimental results presented in this work, we report the mean values (and eventually the
95% confidence interval in brackets) from evaluating all the agents on building 100 randomly sam-
pled target shapes. In the result tables in Sec.3, the star(*) indicates the environment in which the
agents have been trained in, while the other experiments are OOD.

The value of ε is decreased linearly and the target Q-network QT is updated every 50 epochs, where
each epoch consists of sampling 100 state-action transitions. To speed up the training process, which
is especially crucial when search is added also during training time, we implemented a parallel
sampling strategy by combining the code from [48] and [44]. In the following, we will also show
the evolution of the discounted average return during the training process. Note that for obtaining
those learning curves, we did not average over building 100 target shapes, but use the score collected
from the 100 samples which are at the same time exploited to update the Q-function.

D.2 Evaluation of graph architectures

For evaluating the graph architectures, we used a slightly different set of parameters. Namely, the
final exploration frame has been reached after episode 2000 and the replay buffer size has been set
to 150000.

As illustrated in Fig. 3a, already throughout the training process, the discounted average return ob-
tained by the MHA agents is significantly higher compared to using the S2V architecture. This hints
that using the attention mechanism results in obtaining more powerful representations, which then
result in obtaining higher rewards as the target shape can be filled more effectively. The videos
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(a) Evolution of the discounted average return R
when training the MHA, SHA and S2V models
using the standard DQN algorithm (Alg. 2).
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(b) Evolution of the discounted average return R
when training the MHA in the fully-connected
(fc) and partially-connected (pc) configuration us-
ing the standard DQN algorithm (Alg. 2).

Figure 3: Learning curves for different experiments.

Table 2: Comparison of different architectures on the single-sided environment without the robot and only one
type of block, extending the results presented in Table 1 by also reporting scores for the single-head attention
encoding (SHA). R is the cumulative discounted return, f the ratio of runs that ended with failure, i.e., the
structure colliding and b, the ratio of runs that ended without success and no more blocks remaining.

3-by-3 grid, 20-24 blocks* 3-by-3 grid, 30-34 blocks 4-by-4 grid, 20-24 blocks
Method R b f R b f R b f

MHA (FC) 3.22 (0.04) 0.01 0.15 3.44 (0.04) 0.00 0.21 3.66 (0.05) 0.18 0.41
SHA (FC) 2.99 (0.09) 0.08 0.25 3.16 (0.10) 0.04 0.37 3.48 (0.08) 0.25 0.49
S2V (FC) 2.36 (0.08) 0.49 0.47 2.15 (0.10) 0.08 0.87 2.75 (0.20) 0.45 0.55

confirm these impressions and clearly show that the S2V architecture has difficulties drawing the
connection between the target shape and the already placed blocks, resulting in placing many un-
necessary blocks and failing to fill the target shape reliably. This underlines the findings presented
in Sec. 3.

D.2.1 Additional experiment - Single-head attention (SHA)

To evaluate the effectiveness of using the multi-head attention approach, we ran one additional
experiment using only a single attention head. The results are shown in Table 2. We reason that SHA
performs better compared to S2V as it can explicitly compute the compatibility score between nodes
which helps to disambiguate the different components encoded in the graph structure. Nevertheless,
the superiority of MHA hints that having multiple attention heads with different weights allows to
construct even more meaningful features which result in better performance.

D.3 Evaluation of graph connectivity

While it is quite straightforward to defined each node’s features (position, type information, cf.
Appx. A.2), there are different approaches for the graph connectivity. This choice is important as it
influences the message passing between nodes. We investigated the effect of using a fully connected
(FC) graph and compare it to using partial connections (see Fig. 1) omitting the connections between
different unplaced blocks, inducing a stronger inductive bias on the structured representation.

Figure 4

To test the generalization abilities, we test the approaches in the set-
ting of Fig. 4 with different types of blocks (i.e., rectangles of various
lengths). Those novel objects are fixed concatenations of the already ex-
isting blocks, treating the individual boxes as primitive elements. This
has the advantage of not needing any modifications to the action and ob-
servation space, while allowing us to create more complex and diverse
objects.
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Table 3: Comparison of FC against partially connected MHA architecture on a task with variable sets of object-
types available in the setting shown in Fig. 4.

5-by-5 grid, 25-27 blocks
5-by-5 grid, 25-27 blocks * 5-by-5 grid, 35-37 blocks 6-by-6 grid, 35-37 blocks (different types)

Method R f R f R f R f

MHA (FC) 1.94 (0.12) 0.39 1.69 (0.11) 0.51 1.32 (0.10) 0.61 1.88 (0.11) 0.42
MHA (partial) 2.42 (0.03) 0.23 2.22 (0.06) 0.34 1.75 (0.08) 0.51 2.40 (0.10) 0.26

We use the same set of parameters as in the previous subsection, but we
trained the agents for 10000 epochs. Further, as this experiment considers also larger blocks, we use
the adapted reward function introduced in Appx. C.2.2. Using the larger objects necessitates two
new skills: learning to differentiate the different object types and handling them correctly.

Results. As shown in Table 3, partial connectivity outperforms the FC in all experiments. Inter-
estingly, designing a priori meaningful edge connections favors the extrapolation of the method to
unseen types of objects (last column), indicating that the chosen representation is modular and effec-
tive in solving more challenging problem settings. These results also indicate that reasoning about
different block types in the FC setting is more difficult, as this has to happen based on the blocks’
distances. Contrarily, in the partial setting, the connectivity information directly reveals the block
type. As we want to keep the flexibility of handling more complex blocks, we will exclusively focus
on the partially connected architecture.

Fig. 3b depicts the learning behaviors for the fully- and the partially-connected setup. While initially,
there is hardly any difference between the two approaches, in the long run, the partially-connected
setup clearly outperforms the fully-connected one. We reason that during the early stages of training,
the connectivity only plays a minor role, as all the agents have to figure out which actions are ad-
missible. However, as training proceeds, the partial connectivity gathers higher rewards, indicating
that providing additional structure through the graph’s connectivity facilitates learning. This trend
is also visible in the accompanying videos.

D.4 Evaluation of the learning algorithms

When comparing the performance of the different learning algorithms, we use the exact same hy-
perparameters as introduced in Sec. D.1. Compared to the experiments presented in Secs. D.2 &
D.3, we decided to decrease the size of the replay buffer and to increase the speed of decaying ε.
Those measures were intended to increase memory efficiency as well as to improve the convergence
speed. Further, for training the Q-MCTS and the ε-MCTS agents a search budget of 5 is being used.
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Q-MCTS

ε-MCTS

Figure 5: Evolution of the discounted average re-
turn R when training agents using the different
learning algorithms.

The learning progress is very similar for all the in-
troduced algorithms, as can be seen in Fig. 5. The
learning curves for DQN as well as ε-MCTS are
hardly distinguishable, which we think is due to the
fact that both of them are using an ε-greedy decision
whether to apply a random action or to either use
the best action according to the Q-function (DQN)
or according to the result of a quick searching pro-
cedure (ε-MCTS). Q-MCTS, in contrast, seems to
learn slightly quicker during the early phase of the
learning process due to more exploitation, as it al-
ways performs the tree search. However, this behav-
ior might actually also result in less exploration, as
always conducting tree search might result in over-
fitting to a suboptimal solution.

Table 4 provides results from running additional ex-
periments. The last two columns (most difficult
tasks) reveal that using a search budget of 10, instead of 5, slightly improves performance. While us-
ing a search budget of 5 and playing the rollout until termination yields best performance across all
tasks and methods, we still decided to use a search budget of 10 with only a single step of expansion
for the subsequent experiments. The main reason for this choice being computational efficiency.
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Table 4: Combining Q-learning and MCTS in the two-sided environment without the robot. R denotes the
cumulative discounted return, ā, the mean number of actions conducted in this environment, f the ratio of runs
that ended with failure, i.e. the structure colliding. The double star (**) indicates that the rollout has been
played until termination.

Search 3-by-3, grid 20-24 blocks* 3-by-3 grid, 30-34 blocks 4-by-4 grid, 30-34 blocks 5-by-5 grid, 40-44 blocks
Budget Method R ā f R ā f R ā f R ā f

0 DQN 3.21 (0.05) 7.93 0.16 3.44 (0.08) 8.65 0.17 3.61 (0.06) 12.02 0.51 3.63 (0.08) 13.66 0.93
ε-MCTS 3.18 (0.03) 8.57 0.22 3.37 (0.10) 9.30 0.30 3.54 (0.09) 12.53 0.62 3.50 (0.13) 12.75 0.95
Q-MCTS 2.80 (0.15) 7.33 0.51 2.89 (0.09) 7.60 0.64 2.66 (0.08) 7.47 0.92 2.34 (0.17) 6.45 0.99

5 DQN+MCTS 3.43 (0.04) 8.20 0.03 3.67 (0.02) 8.99 0.02 3.95 (0.04) 14.05 0.35 3.96 (0.10) 16.05 0.91
ε-MCTS 3.16 (0.06) 8.38 0.23 3.34 (0.08) 9.11 0.35 3.55 (0.09) 12.45 0.61 3.51 (0.18) 12.61 0.93
Q-MCTS 3.07 (0.10) 8.03 0.40 3.20 (0.08) 8.35 0.50 3.10 (0.12) 8.97 0.85 2.85 (0.19) 8.27 0.98

5** DQN+MCTS 3.47 (0.02) 8.12 0.02 3.71 (0.02) 8.83 0.02 3.99 (0.04) 14.13 0.28 4.04 (0.06) 17.08 0.87
ε-MCTS 3.21 (0.04) 8.40 0.19 3.39 (0.06) 9.06 0.31 3.60 (0.06) 12.84 0.59 3.58 (0.12) 13.28 0.92
Q-MCTS 3.20 (0.07) 8.00 0.27 3.28 (0.10) 8.48 0.43 3.28 (0.07) 9.60 0.77 3.08 (0.18) 9.23 0.98

10 DQN+MCTS 3.47 (0.02) 8.16 0.05 3.66 (0.03) 8.96 0.06 3.96 (0.04) 13.92 0.31 4.08 (0.09) 17.33 0.87
ε-MCTS 3.21 (0.03) 8.48 0.20 3.37 (0.11) 9.10 0.31 3.60 (0.09) 12.65 0.61 3.63 (0.16) 13.16 0.93
Q-MCTS 3.24 (0.04) 8.56 0.27 3.39 (0.08) 9.24 0.41 3.42 (0.07) 10.99 0.76 3.41 (0.13) 11.27 0.96

1000 UCT 0.54 4.00 1.00 - - - - - - - - -

Table 5: Comparing policies trained with (w) and without (wo) the robot-in-the-loop.
5 by 5 grid 15-17 blocks* 6 by 6 grid 16-18 blocks

Method R ā f R ā f

w robot 2.71 (0.14) 5.40 0.25 2.93 (0.08) 6.71 0.42
wo robot 2.14 (0.27) 3.92 0.40 2.40 (0.18) 4.91 0.58

The video material that we provide along this appendix illustrates the different findings, as well as
the results from Sec. 3. Adding search to the DQN agent improves performance and results in slight
gains compared to the ε-MCTS agents, whereas the Q-MCTS agents perform worse.

D.5 Evaluation of trainings with and without the robot-in-the-loop

In this section, we provide more details on the comparison between DQN agents trained with and
without the robot-in-the-loop. Compared to the previous experiments, we decided to adapt the filling
threshold indicating when to view a shape as being built successfully. For all experiments including
the robot, we decided to lower this value to ∆ = 0.75. The reason lies in the fact that when using
the robot to actually place the cubes, there will always remain some spacing in between the parts.
Therefore, lowering the threshold is necessary.

The difference in the magnitude of the obtained rewards in Fig. 6a can thus be explained by the
two different threshold values used during training, as for the training without the robot, we still
used the previous value of 0.975. Apart from this, there does not seem to be a distinction in the
learning speed. However, when evaluating both of the policies in the environment with the robot-in-
the-loop, agents trained without the robot fail significantly more often as they do not take the robot’s
kinematics into account (see Table 5). This results in the arm colliding with the structure as shown
in the accompanying videos. Thus, as already pointed out in Sec. 3 of the main paper, for obtaining
reliable policies for assembling architectural structures, it is essential to include the robot-in-the-
loop already during training. The results also underline that the graph representations are flexible
enough to take the robot’s restrictions and nonlinearities into account while still successfully solving
the tasks. Note that for this experiment we still considered the 5-dimensional action space (only
consisting of the placement actions) as choosing a grasp perpendicular to the structure being built
will ensure to not collide with it. This choice also ensures a fair comparison between the agents.

D.6 Evaluation of building complex shapes with the robot-in-the-loop

Lastly, we investigated building even more complex shapes with the robot-in-the-loop. Building
those two- and four-sided shapes also requires grasp selection, and thus this setting is the most com-
plex investigated in this work. Fig. 6b depicts the learning curves for the DQN agents trained on
these difficult tasks. As can be seen, learning to build two-sided shapes seems to be more straightfor-
ward and results in faster training and a steeper learning curve. Nevertheless, towards the end of the
training, the agents can achieve higher rewards in the four-sided environments as those contain more
blocks to be placed. Since adding MCTS during test time improved performance throughout all of
our experiments, we showcase the behavior of DQN+MCTS agents in the accompanying videos.
Note that to better illustrate the performance of the agents, the threshold has been set to 0.9 for the

10



0 2000 4000

Epoch

0

2

4

6

R

wo robot

w robot

(a) Evolution of the discounted average return R
when training the agents on the single-sided en-
vironment with and without the robot-in-the-loop
using the standard DQN algorithm (Alg. 2).
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(b) Evolution of the discounted average return R
when training the agents in the two- and four-
sided environment, including the robot using the
standard DQN algorithm (Alg. 2).

Figure 6: Learning curves for different experiments with the robot-in-the-loop.

videos. As shown there, the agents are capable of building complex shapes and are successful at
placing a large number of blocks.

D.7 Illustrating search

We present a series of pictures, which depict the searching process, i.e. which actions have been
explored during search given the initial configuration shown in Fig. 7. As can be seen in Figs. 8
and 9 which show the explored grasping and placement actions respectively, the tree search explores
a versatile set of actions and attempts to grasp different objects. Some of the grasps are invalid as
the gripper fails to grasp the part due to collisions (see Fig. 8 a). The other grasps are valid but
the associated placement actions illustrated in Fig. 9 b-d result in a different filling of the target
structure. Finally, the highest reward action (grasp - Fig. 8 d, placement - Fig. 9 d)is selected and
executed in the environment.
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Figure 7: Initial configuration on which we start the search.

(a) (b) (c) (d)
Figure 8: (a) - (d) Illustrating four different grasping configurations explored during search. Only the grasp
depicted in (a) is invalid as the gripper collides with the block.

(a) (b) (c) (d)
Figure 9: (a) - (d) Illustrating the result of executing the placement actions (including gripper orientation)
starting from the grasps illustrated in Fig. 8. For (a) no placement is executed as the grasp is already invalid.
Given the target shape, the placement action depicted in (d) results in the highest reward and is thus finally
executed after the search.

D.8 Generalization with respect to randomized scenes

For the experiments on how well our learned representations scale to different scenes, we have
used the exact same training configuration as for the results in Appx. D.6. In fact, we have simply
evaluated the agents that have been trained in the original two-sided scenario and evaluate them in
the randomized scenes. As described in the main paper, and as also shown in the accompanying
videos (filling threshold set to 0.9), the agents transfer well to the novel settings.

D.9 Generalization with respect to different building blocks

Figure 10 illustrates the environment in which multiple blocks are available. As shown, there are in
total 4 different building blocks available which are i) primitive box object (from previous experi-
ments), ii) vertical block of length 2, consisting of 2 primitive blocks, iii) L-shaped object consisting
of 3 primitive blocks, and iv) s-shaped object which is made up of 4 primitive blocks. In line with
the previous experiments, the set of objects that is available is sampled at random from this set. This
however implies that now there is no guarantee that the set of available blocks is actually sufficient
to fill the shape up to the desired threshold. Also, for the objects that are not symmetric around the
z-axis, i.e. L- and s-shaped block, we randomly choose an orientation from the set {0,±90, 180}.
In the environments without the robot, we modify the action space, as it would otherwise be impos-
sible for the agents to rotate the available blocks which might be crucial to successfully solve these
more complicated tasks. We therefore also allow the agents to rotate the respective block around the
z-axis with values of {0,±90, 180}. The combination of those four rotational actions together with
the five placement actions results in an action space of dimension Na = 4× 5 = 20.

For training the agents in those complicated settings we use the reward function from Appx. C.2.2.
We also found that applying the previous settings (cf. Table 1) results in converging to suboptimal
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Figure 10: Initial configuration on which we start the search.

Table 6: Evaluating the trained policies in the environments with multiple different objects available. The
results in row 3&4 correspond to using a modified environment without including the robot.

5 by 5 grid 20-24 blocks* 5 by 5 grid 30-34 blocks 6 by 6 grid 30-34 blocks
Method R ā f R ā f R ā f w/wo robot
DQN 1.25 (0.03) 3.18 0.25 0.28 (0.07) 2.95 0.67 0.11 (0.11) 3.12 0.75 w robot
DQN+MCTS 1.42 (0.05) 3.53 0.21 0.77 (0.09) 3.27 0.52 0.61 (0.08) 4.38 0.61 w robot
DQN 1.44 (0.21) 4.87 0.34 1.29 (0.13) 5.91 0.43 0.94 (0.15) 6.53 0.56 wo robot
DQN+MCTS 2.20 (0.02) 5.05 0.06 1.89 (0.03) 5.96 0.15 1.48 (0.09) 7.27 0.27 wo robot

solutions. We thus increased the number of training epochs from 5000 to 10000, increased the epoch
when the final value of ε is reached from 1000 to 2000, and also increased the discount factor to 0.95.

Table 6 complements the results in the paper by also reporting the performance of the DQN agents.
As can be seen, also in those scenarios, the addition of search improves the agent’s performance.
However, in the experiments that include the robot, the addition of search is not as efficient as for the
other experiments (especially considering the first column) which hints at the fact that there might be
additional limiting factors. We reason that the action space might limit the agent’s performance by
not providing enough flexibility in terms of low-level placement actions, as well as grasp selection.
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