
A Algorithm409

Algorithm. We now present our main algorithm for Assisted Reward Design. At every iteration 8,410

we use the Maximal Information acquisition functions to select the next environment "8+1 and query411

the reward designer. Note that the environment space Mdevel is continuous and high dimensional and412

it is intractable to exhaustively search through it. We thus use uniform sampling to select a candidate413

set Mcand 2Mdevel. Note that one can employ di�erent heuristics for selecting such candidate sets,414

and we leave the heuristic design to future work.415

Representing Belief Distribution. We use particles to represent %̃8 (F = F
⇤
): at each step, we416

sample #? particles from %̃8 (F = F
⇤
), compute importance weights based on Eq. 1 for each particle,417

and resample using the importance weights.418

Algorithm 1 Assisted Reward Design via Info-Gathering

Require prior %0 (F), Mdevel, #cand, #? , initial training environments M0

Initialize posterior %̃0 (F = F
⇤
) = %0 (F)

for 8 = 0, ..,) do
F̃8 ⇠ %user (F |F

⇤
,M8) { Query the designer on M8 }

Compute posterior %̃8+1 (F = F
⇤
) using Eq. 4 or Eq. 5

Sample #cand candidate environments Mcand ✓ Mdevel
for " 2Mcand do

Compute 5 (")

end
Select "8+1 = argmax" 2Mcand 5 (")

M8+1 =M8 [{"8+1}

end

Complexity. Our algorithm is bounded by the number of particles #? for representing posterior419

distribution and the number of candidates #cand. At every iteration, the algorithm needs to solve420

for each particle F in each candidate environment, which leads to a total of O(#? ·#cand) planning421

problems in order to compute belief update. This is the main speed limit. While one can potentially422

speed up by learning fast planners [39], we leave this to future work. In our experiments, we423

implement the environment as in Sec. B such that the dynamics and reward function are both424

vectorizable. We then concatenate the reward functions of O(#? · #cand) problems and compute425

batch forward planning using gradient-based planner. Note that this is not feasible for general426

planning problems with non-di�erentiable dynamics or reward functions.427

Adding New Features. When the designer adds in new feature q:+1 on environment "=, the428

new proxy reward has 3 + 1 dimensions while the previous proxies have 3 dimensions. We can429

still perform reward inference on all of the 3 + 1 dimensions, as long as we incorporate all proxies430

received so far. The meta-agent would then have to revisit all the reward designs it’s gotten so far431

and recompute posterior over the new augmented space. To do so, we invert Eq. 1 using the formula432

from [1]:433

%(F = F
⇤
|F̃1:=, "̃1:=) / %(F)

÷
8=1:=

exp
�
VF

)
q̃8
�

/̃

, /̃ (F) =
π
F̂

exp
�
VF

)
q̃8
�
3F̂

with %(F) being the prior. We use MCMC to infer the distribution. During inference, every sample434

F is of 3 +1 dimensions, and q̃8 are of 3 +1 dimensions, computed from all previous proxy rewards435

(of 8 or 8 + 1 dimensions) on the existing tasks. To compute the normalizer, we integrate over F̂ in436

the 3 +1 dimensional space.437

B Driving Environment Implementation438

This section provides the details of the driving environment used in the paper. We introduce439

definitions of environment dynamics, feature and reward functions, the environment distributions,440

and how we implement the environment e�ciently for trajectory optimization.441

1

Environment Features
Feature Name Raw Feature

qraw

Transformation qfull Meaning

Speed E �(qraw � Egoal)
2 How much the vehicle deviates

from the goal speed.
Control [Dsteer,Dacc] �| |qraw | |

2 The control e�ort by the vehicle.
Lane G N(qraw � ÆGgoal,3lane) How much the vehicle deviates

from target lane center.
Car [G, H] �

Õ
8N(qraw � ÆGcar i,3car i) How much the vehicle is driving

close to other vehicles.
Obstacle [G, H] �

Õ
8N(qraw�ÆGobs i,3obs i) How much the vehicle is driving

close to the obstacles.
Fence G �[Gfence left �qraw]+

�[qraw � Gfence right]+

How much the vechile is outside
the fence

Table 1: Environment Feature Table

Dynamics We represent the forward dynamics of the MDP as GC+1 = 5 (GC ,DC), where we have the442

full knowledge of G. To model system dynamics, we use simple point-mass vehicle model with443

holonomic constraint. Let Gcar = [G, H, \,E]
>, where G, H are the corrdinates of the vehicle, \ is the444

heading, and E is the speed. We let D = [Dsteer,Dacc]
> be the control input, where Dsteer is the steering445

input and Dacc is the acceleration. We also use U as the friction coe�cient. The model for a single446

vehicle is:447

[§G §H §\ §E] = [E · cos(\) E · sin(\) Dsteer Dacc �U · E] (6)

We model human vehicles as moving forward at constant speed and tra�c cones as static objects.448

Feature and Reward Functions. In the following Table 1 we introduce the environment features449

q in the driving environment. Each feature composes of qraw, a subset of the current state GC and450

control DC , and a non-linear transformation on qraw. The nonlinear transformation is designed such451

that when maximized, it induces the desired behaviour in that feature, such as moving to the target452

lane. These environment features are are di�erentiable and that we can characterize the desired453

driving behavior via a linear weighed sum F
>
q.454

Violations. Here we provide in Table 2 the definition of environment constraint functions used in the455

experiment section to evaluate driving quality. Each constraint is a boolean function that returns true456

or false for one timestep, and we compute the final violation count for each trajectory by summing457

over constraints over the time horizon. These constraint functions are not used for optimization, but458

as an evaluation criterion for the case study experiment. Lower violation counts correspond to better459

driving behavior.460

Environment Constraints
Feature Name Definition Meaning
Overspeed E > Emax The vehicle is driving over the maximal al-

lowed speed.
Underspeed E < Emin The vehicle is driving below the minimum

speed on highway (i.e. backing up).
Uncomfortable | |D | |1 > | |Dmax | |1 The vehicle is applying too much force that it’s

uncomfortable (i.e. accerlating too much or
jerky).

Collision | |ÆG� ÆGcar i | |  3min The vehicle crashes into the other vehicles.
Crash Object | |ÆG� ÆGobj i | |  3min The vehicle crashes into the obstacles.
O�track G < Gfence left or

G > Gfence right

The vehicle drives o� the left or the right fence.

Wronglane | |G� Glane left | |  3lane The vehicle drives drives onto the wrong lane
while merging.

Table 2: Environment Constraints Table

Planning Speed. We implement the dynamics and reward function using JAX [40] and leverage461

the JIT compilation to speed up running time. We use shooting method and perform gradient-based462

planning using the Adam optimizer for 200 steps. We plan at a horizon of 10 timesteps and replan463

2

every 5 timesteps. When planning for a single environment, we can generate 2.57 trajectories per464

second. Because we can vectorize the planning problem and plan for multiple trajectories at once, we465

can achieve 157.72 trajectories per second, by planning for 500 trajectories in batch. Computations466

are benchmarked on the c2-standard-4 instance on Google Cloud. We use batch planning for467

computing the belief distribution and environment proposals, as discussed in Sec. A as the main468

bottleneck of our algorithm.469

Environment Distribution. We use a simple method to define the distribution of environments470

Mdesign,Mdeploy. There are two human vehicles and two tra�c cones positioned on the three-lane471

highway. We assume that the autonomous vehicle starts from the center of the scene (G = 0, H = 0), and472

sample the starting position of the other vehicles and obstacles. The other vehicles can start anywhere473

in Gmin car  Gcar  Gmax car, Hmin car  H  Hmax car and the obstacles can be initialized anywhere in can474

start anywhere in Gmin obs  Gobs  Gmax obs, Hmin obs  H  Hmax obs. We filter out situations where the475

other vehicles or obstacles are initialized to be colliding with the main vehicle.476

Note that this is a very coarsely designed distribution to showcase our method. We have several477

limitations. For instance, we do not exclude the environments where the other vehicles runs into478

obstacles. These are relatively unlikely environments, and in principle we can define more realistic479

distributions by more careful environment engineering or by loading real world driving datasets.480

The di�erence betweenMdevel andMdeploy is that inMdeploy, we define a tighter feasible range of Gcar481

centered around the autonomous vehicle. This results in a shifted distribution of pseudo-di�culty482

metric with long-tail events. After discretization, Mdevel has 274k environments and Mtest has483

91k environments. Given these large number of possible environments, it is impossible for reward484

designers to enumerate them manually.485

C Experiment Details486

Optimal Planning For the autonomous driving task, we compute trajectories of 10 timesteps. We use487

finite-horizon optimal planning with regard to given rewards. We plan at a horizon of 10 timesteps,488

and replan every 5 timesteps.489

Reward Design We use rationality factor V = 0.1
| |M | |

to simulate noisy designer, and V = 1 in the490

inverse model. This is because we find empirically that the proxy reward quickly approaches the491

ground truth reward when we have multiple proxy environments. We thus divide the rationality492

factor V it by the number of proxy environments to maintain its noisiness. To compute the posterior493

probability in Eq. 4 or Eq. 5, we need to approximate the normalizing constant. We follow the494

approach in [1] by sampling F. In the section 4.2 of [1], they find empirically that it helped to include495

the candidate sample F in the normalizing sum. This requires planning with F and computing its496

feature sum in the MCMC inner loop, which largely slows down the inference. Instead, we include497

the candidate F, but multiplies it with proxy F̃’s feature sum in the normalizing constant.498

We then compare three methods (random, di�culty, maximal information) in iterative fashions. We499

use the same initial environment for the three methods and perform 9 iterations. We aggregate results500

over five random seeds.501

Environment Proposal. During environment proposal, we use #? = 500 particles on #cand = 64502

environments. We implement a vectorized car dynamic model using JAX [40] and Ray [41] for503

batch planning. Our environment proposal step takes 4 minutes on c2-standard-4 instance on Google504

Cloud.505

Evaluation. To examine the quality of our inferred posterior of the reward function, we need to506

evaluate the posterior in new driving environments. We thus sample 500 environments uniformly507

from Mdeploy as the deployment set for evaluation. We compute the regret, note that because of508

the di�erent placement of vehicles and objects, di�erent environment have di�erent maximum and509

minimum reward they can produce. Thus it is unfair to compute the absolute regret Amax � AF . We510

thus compute the relative regret, by first taking the worst cases reward Amin in each environment.511

Then the relative regret is regretF = (Amax � AF)/(Amax � Amin) = (AF⇤ � AF)/(AF⇤ � Amin).512

3

	Introduction
	Related Work
	Problem Statement
	The Unassisted Reward Design Problem
	The Assisted Reward Design Problem

	Assisted Reward Design via Active Info-Gathering.
	Updating Beliefs over w*
	Adding New Features

	Experiments with Simulated Designers
	Experiment Setup
	Experiment Results

	Experiments on Real Reward Design
	Experiment Setup
	Experiment Results

	Discussion
	Algorithm
	Driving Environment Implementation
	Experiment Details

