
A Implementation Details

This section provides implementation details for the algorithms that we evaluate: LP3 [LS],
LP3 [MO-MPO], and LP3 [MO-MPO-D]. The results for MetaL, D4PG-Lagrangian, and
RewardShaping-0.1 in Table 1 were taken from Calian et al. [5].

We use an asynchronous off-policy actor-learner setup. In this setup, actors fetch policy parameters
from the learner and act in the environment, writing transitions to the replay buffer. The learner uses
the transitions in the replay buffer to update the preference, policy, and Q-function networks (and, for
LP3 [MO-MPO-D], the temperature network). We implement this setup on top of the open-sourced
MPO and MO-MPO implementations in Acme [37]3, an open-source framework for distributed RL.
To make learning more stable, we maintain a target network for each trained network; we use these
target networks for computing gradients, and update them after every 200 gradient steps. We use
Adam [41] for optimization, with a learning rate of 10−4 unless otherwise specified.

The learned preference is either a single value or a categorical distribution. The policy and Q-
functions are implemented as feed-forward neural networks. The policy πθ outputs a Gaussian
distribution with a diagonal covariance matrix. We found that adding layer normalization followed
by a hyperbolic tangent (tanh) to the first layer of the policy and Q-function networks improves
stability of learning. For the RWRL, Safety Gym, and robot tasks, we train a separate Q-function
per objective, with a shared first hidden layer. For the humanoid tasks, the Q-values for action norm
cost are computed exactly from the actions, so these “Q-values” have a discount factor of zero.

The hyperparameters we used for our experiments are reported in Table 2.

Gathering data. We gather data for the replay buffer via the actors. We use 32 actors for training.
When the policy πθ is preference-conditioned, at the start of each episode, each actor first samples a
preference ε′ from the preference distribution p, and then acts according to πθ(a|s, ε′) until the end
of the episode. For the next episode, the actor repeats this, sampling a new preference.

Evaluation. For the RWRL and humanoid tasks, we evaluate each trained policy on the same
100 randomly-initialized environments. For the Safety Gym tasks, we evaluate on the same 500
randomly-initialized environments. Table 3a reports how many actor steps policies are trained for,
before evaluation. In evaluation, we use a deterministic policy πθ by using the mean of the Gaussian
distribution over actions. When the policy is conditioned on preferences, at the beginning of each
episode during evaluation, we first sample a preference ε from the preference distribution, and then
execute the mean of πθ(a|s, ε), sticking with the same sampled preference for the entire episode.

B Experimental Domains

B.1 Toy Domain

As a toy domain, we use a multi-arm bandit with a continuous action, a ∈ R. We use either the
Schaffer or Fonseca-Fleming function to represent the Pareto front. Both functions are f : R 7→ R2,
where the two-dimensional output can be interpreted as the reward function r(a) ∈ R2. In our
experiments, the constraint is on the second objective.

The Schaffer function corresponds to a convex Pareto front, and is defined as

f1(a) = a2 and f2(a) = (a− 2)2 .

The Fonseca-Fleming function corresponds to a concave Pareto front, and is defined as

f1(a) = 1− exp(−(a− 1)2) and f2(a) = 1− exp(−(a+ 1)2) .

These functions are standard test functions in multi-objective optimization, and are originally de-
fined such that the aim is to minimize them [38]. In RL, the aim is to maximize reward, so we define
the reward as the negative of these functions.

For each function and constraint threshold, we trained five policies with LP3 [LS] and LP3 [MO-
MPO] with different random initializations. The policy is a MLP with hidden layers of size (20, 20),
that outputs a (univariate) Gaussian distribution. We train policies for 75000 learner steps, and then
plot the average performance over 100 trials.

3Available at github.com/deepmind/acme.
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Hyperparameter Default

Q-function(s): Qk(s, a) or Qk(s, a, ε)
layer sizes (512, 512, 256)
support [−150, 150]
number of atoms 51
n-step returns 5
discount factor γ 0.99
relabel preferences ε yes

policy network: πθ(a|s) or πθ(a|s, ε)
layer sizes (256, 256, 256)
minimum variance 10−12

maximum variance unbounded

policy and Q-function networks
layer norm on first layer? yes
tanh on output of layer norm? yes
activation (after each hidden layer) ELU

single preference: ε
softplus on output? yes
initial preference ε (before softplus) 0
Adam learning rate 10−5

preference distribution: p(ε)
layer sizes for temp net ηω(ε) (256, 256, 256)
support for εtask [0.1, 0.1]
support for εcost [10−5, 0.15]
number of atoms 100

MPO / MO-MPO for policy network πθ
actions sampled per state 20
default εk 0.1
KL-constraint on mean, βµ 10−3

KL-constraint on covariance, βΣ 10−7

initial temperature η 5
Adam learning rate (dual variables) 10−2

MPO / MO-MPO for preference distribution
actions sampled per state 20
default εk 0.1
KL-constraint on policy, β 10−7

initial temperature η 5
Adam learning rate (dual variables) 10−2

training
batch size 512
replay buffer size 106

target network update period 200

Humanoid

Q-function(s): Qk(s, a) or Qk(s, a, ε)
relabel preferences ε no

preference distribution: p(ε)
walk and stand: support for εcost [10−5, 0.30]
walk (4 obj): support for εtask [0.05, 0.05]

MPO / MO-MPO for preference distribution
walk: KL-constraint on policy, β 10−6

run and stand: KL-constraint on policy, β 10−8

walk (4 obj): KL-constraint on policy, β 10−8

Safety Gym (Point)

Q-function(s): Qk(s, a) or Qk(s, a, ε)
support [-10, 10]

preference distribution: p(ε)
support for εcost [10−5, 0.20]

Robot

preference distribution: p(ε)
support for εcost [10−5, 0.20]

RWRL

Q-function(s): Qk(s, a) or Qk(s, a, ε)
humanoid: relabel preferences ε no

MPO / MO-MPO for preference distribution
KL-constraint on policy, β 10−10

Walker

Q-function(s): Qk(s, a) or Qk(s, a, ε)
relabel preferences ε no

preference distribution: p(ε)
support for εtask [0.05, 0.05]

MPO / MO-MPO for preference distribution
KL-constraint on policy, β 10−8

Table 2: Left: Default hyperparameters for all approaches, with decoupled update on mean and covariance of
the policy. Right: Hyperparameters for experiments in each domain, that differ from the defaults.

Since Lagrangian-based approaches can be sensitive to the learning rate for the Lagrange multipli-
ers, in these experiments for LP3 [LS] we tried out three different policy and Lagrange multiplier
learning rate combinations: 10−3 for both, 10−3 for policy and 10−4 for Lagrange multipliers, and
vice versa. None of these enabled LP3 [LS] to find optimal solutions on the concave Pareto front of
the Fonseca-Fleming function.

B.2 Humanoid

We use the humanoid run and walk tasks from the DeepMind Control Suite [39].4 The observation
space is 67-dimensional and the action space is 21-dimensional. Observations consist of joint angles,
joint velocities, center-of-mass velocity, head height, torso orientation, and hand and feet positions.
Actions correspond to joint accelerations; the minimum and maximum action limits are −1 and 1,
respectively. Each episode is 1000 timesteps.

4Available at github.com/deepmind/dm control.
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Task Actor Steps

RWRL cartpole and quadruped 600 million
RWRL humanoid and walker 1.2 billion
Humanoid run, walk, stand 500 million
Humanoid run, mid-training 200 million
Humanoid walk (4 obj) 200 million
Point goal, button, push 400 million
Point goal with two constraints 200 million

(a)

Task Property Value

cartpole obs dimension 5
swingup action dimension 1

constraint on balance velocity
safety coefficient 0.1

humanoid obs dimension 67
walk action dimension 21

constraint on joint angle
safety coefficient 0.3

quadruped obs dimension 78
walk action dimension 12

constraint on joint angle
safety coefficient 0.2

walker obs dimension 18
walk action dimension 6

constraint on joint velocity
safety coefficient 0.1

(b)

Task / Algorithm Constraint Thresholds

Humanoid
run βcost ∈ linspace(−4.0,−1.0, 31)
walk βcost ∈ linspace(−2.0,−0.5, 31)

Safety Gym Point
goal, button, push βcost ∈ linspace(−15,−2, 14)
goal (two constraints) βx = −2

βy ∈ linspace(−10, 0, 11)

Robot
push βcost ∈ linspace(−40,−2, 20)

RWRL
LP3 [MO-MPO-D] βcost = −200
LP3 [LS] βcost = −100
Calian et al. [5]:

cartpole βcost ∈ {−70,−90,−115}
humanoid βcost ∈ {−278,−378,−478}
quadruped βcost ∈ {−545,−645,−745}
walker βcost ∈ {−57,−77,−97}

(c)

Table 3: (a) The number of actor steps that policies are trained for, before evaluation. (b) Details and settings
for the RWRL tasks we use. (c) The constraint thresholds that policies are trained on for each task.

The task reward is a shaped reward for maintaining a horizontal speed (in any direction) of 10 m/s
for humanoid run and 1 m/s for humanoid walk. The shaped reward is equal to min(h/h∗, 1), where
h is the speed of the agent and h∗ is the target speed, both in m/s. The constrained reward is the
negative l2-norm of the action vector: rcost(s, a) = −‖a‖2. This can be thought of as limiting the
energy usage of the agent.

We also consider a version of humanoid walk with four objectives. In addition to the task reward
and energy usage cost, we add a reward for moving forward and a reward for moving left. Both
directional rewards are computed with respect to the velocity of the torso in the egocentric frame.
Per-timestep, the sum of the move-forward and move-left rewards is equal to 1 if the agent’s speed h
is greater than 1 m/s and otherwise is equal to the speed. To compute these two rewards, we compute
the angle of movement θ (in degrees, with respect to the forward-axis) and use the ratio θ/90 for the
move-left reward, and min(h, 1)− θ/90 for move-forward. For example, if the agent is moving at a
45◦ angle, then the move-forward and move-left rewards will both be equal to 0.5 for that timestep.

B.3 Safety Gym Point

We use the level-two point mass tasks from OpenAI Safety Gym: goal, button, and push [22].5 The
action space is 2-dimensional, with minimum and maximum action limits of−1 and 1, respectively.
The observation space is 60-dimensional for point goal and 76-dimensional for point button and
push. There are 1000 timesteps per episode. At the start of each episode, the entities (i.e., goal,
agent, obstacles) are randomly initialized.

5Available at github.com/openai/safety-gym.
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We use the default task configurations from Ray et al. [22], including how many obstacles are
spawned, the regions for spawning, the size of entities, and the type of observations. The only
difference is that we use sparse instead of shaped task reward, since the former is more realistic.

A sparse task reward of 1 is given in point goal when the agent enters the goal area, in button when
the agent touches the target button, and in push when the agent pushes a box into the goal area. The
constrained reward is the negative cumulative cost. In the goal task the agent incurs cost by being
in hazardous regions or bumping into vases; in button the agent incurs cost by being in hazardous
regions, bumping into gremlins, or touching non-target buttons; in push the agent incurs cost by
being in hazardous regions or bumping into pillars. All obstacles are static, except for gremlins,
which move in a fixed circular pattern. The agent moves vases when it bumps into them.

In our experiments with two constraints (Sec. 5.3), we use a more difficult variant of the point goal
task, with two changes. First, the length of the square area in which entities are spawned is three-
quarters of the original length, which makes the density of obstacles higher and thus more difficult
for the agent to navigate around. In addition, the radius of the goal region is two-thirds the original
radius, which allows for it to be placed in more difficult-to-reach locations, because the random
initialization of the scene enforces that there are no collisions between the entities.

B.4 Robot

We implemented a simulated robotics task that is similar to the Safety Gym push task. The setup con-
sists of a Sawyer arm with two blocks in its workspace (Fig. 4). The action space is 5-dimensional:
one dimension for how open the gripper is, and four dimensions for Cartesian velocity control of
the gripper position—the gripper is always perpendicular to the workspace, so the control is along
the xyz axes and rotation. The observation space is 247-dimensional. The observations consist of
joint angles, joint velocities, joint torques, gripper pose, gripper velocity, wrist forces and torques,
the pose and velocity of each cube, the distance between the gripper pose and pose of each cube, the
position of the target, and the previous action taken. There are 400 timesteps per episode.

The task reward is the sum of a sparse reach reward and a sparse push reward. The reach reward is
given when the center of the robot’s gripper is within 2 cm of the block’s position. The push reward
is given when the green block’s position is within 2 cm of the target. The agent incurs a cost of −1
when the gripper is close to the yellow block, or when the green and yellow blocks are close.

At the beginning of each episode, the target position is randomly sampled uniformly from a region
with radius 2 cm, in the far left corner of the workspace (from the robot’s point of view). The poses
of the yellow and green blocks are randomly sampled to be in the near right corner of the workspace.

B.5 Real-World RL

From the Real-World RL (RWRL) suite [40],6 we use the same tasks and settings as used in Calian
et al. [5]. Table 3b provides the observation dimension, action dimension, constraint-specific reward,
and safety coefficient for each task. The safety coefficient defines how challenging the constraint is:
a safety coefficient of 0 results in a constraint that is impossible to satisfy, and a safety coefficient of
1 means the constraints will always be satisfied.

We evaluate LP3 [MO-MPO-D] and LP3 [LS] on these RWRL tasks. We obtained the results for
MetaL and D4PG Lagrangian (in Table 1) directly from the authors of Calian et al. [5].7 These
algorithms are as follows:

• D4PG Lagrangian: This algorithm uses D4PG to train policies to optimize the Lagrangian
dual objective. In Calian et al. [5], this algorithm is referred to as RC-D4PG.

• MetaL: This algorithm combines D4PG Lagrangian with the use of meta-gradients to up-
date the Lagrange multiplier learning rate throughout training.

6Available at github.com/google-research/realworldrl suite.
7We needed to obtain the raw results from the authors, in order to compute the numbers in Table 1 and

generate the Pareto plots in Fig. 8. This is because the results reported in Calian et al. [5] are averaged across
safety coefficients, whereas in this work we consider a single safety coefficient per task—for each task, we pick
one of their safety coefficients that is difficult but possible to satisfy. We also needed the per-seed results to
generate the Pareto plots.
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One thing to note is that in Calian et al. [5], the Lagrange multipliers for MetaL and D4PG La-
grangian are trained in a different way than in our work—the gradient update for the Lagrange mul-
tipliers is computed by sampling per-episode returns for the constraint-specific reward from a sepa-
rate replay buffer. In contrast, in our LP3 [LS] (which uses MPO to optimize the Lagrangian dual
objective), the gradient update is computed using a learned Q-function for the constraint-specific
reward. This does not seem to deteriorate performance; in fact, our LP3 [LS] baseline outperforms
all three algorithms from Calian et al. [5] on three of the four tasks (Table 1).

B.6 Walker

We use the (planar) walker run task from the DeepMind Control Suite, with a few additional ob-
servations and modified rewards. This domain has one task reward and two additional objectives
with constraints. The observation space is 27-dimensional and the action space is 6-dimensional.
Observations consist of planar orientations of all bodies, torso height, velocity, horizontal velocity,
and how upright the torso is. Actions correspond to joint accelerations; the minimum and maximum
action limits are −1 and 1, respectively. Each episode is 1000 timesteps.

The task reward is a shaped reward based on the height of the torso. It is equal to h/1.2: the torso
height h of the agent, divided by the target standing height of 1.2 meters from the stand task. The
first constrained reward relates to energy usage; it is the negative `2-norm of the action vector:
renergy(s, a) = −‖a‖2. The other constrained reward is move-forward, which is a shaped reward
for maintaining a forward horizontal speed of 1 m/s. This is equal to s/8: the horizontal speed s of
the agent, divided by the target speed of 8 m/s from the run task.

B.7 Evaluation

In our experiments, we trained policies with LP3 [MO-MPO(-D)] and LP3 [LS] for a range of
different constraint thresholds, which are reported in Table 3c. We consider the “harder” constraint
thresholds (in Fig. 3) to be the 50% lowest-magnitude thresholds for humanoid run and the point
tasks, and all thresholds for humanoid walk because its ground-truth Pareto front seems concave.

For RWRL, we train policies with the same constraints as used in Calian et al. [5], and compare the
average per-episode task reward and cost with that of the algorithms evaluated in that work.

For the humanoid and point tasks, we train policies on the same set of constraint thresholds. Thus,
each algorithm produces a policy trained separately for each different threshold. At the end of
training, all policies are evaluated on the same set of randomly-initialized environments. For LP3
[MO-MPO-D] policies, we sample a new preference at the start of each episode.

We plot the results in the same way that Pareto fronts are typically plotted—in terms of each policy’s
average per-episode task reward and cost (e.g., in Fig. 3).8 For both axes, higher values are better; a
policy is non-dominated if no other point lies both above and to the right of it.

For the robot task, we train policies for two different constraint thresholds, and evaluate performance
throughout the training process, rather than only evaluating fully-trained policies, because we are
interested in comparing sample efficiency.

For walker run, we train LP3 [MO-MPO-D] policies to learn a portion of the Pareto front, by learning
preferences with respect to inequality fitness functions (9) for two out of the three objectives—move
forward and energy usage.

C Additional Experiments and Analysis

C.1 Comparison to Multi-Objective RL Algorithms

We first evaluate whether our full algorithm, LP3 [MO-MPO-D], can find good solutions. Since the
ground-truth Pareto front is not available in general, we first find an approximate Pareto front for
humanoid run by training policies with MO-MPO for a range of preference settings: εtask = 0.1 and

8The action norm constraint for the humanoid tasks is per-timestep and there are 1000 timesteps per episode,
so a threshold of −2 corresponds to an average per-episode cost of −2000.
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εnorm at linearly spaced intervals between 10−5 and 0.15. The result is shown in the left-most plot in
Fig. 6, where policies are evaluated after 500 million actor steps.

Recall that LP3 [MO-MPO-D] trains a preference-conditioned policy in Module 1, and learns a
distribution over preferences in Module 2. An ablation of this is to train a preference-conditioned
policy for a fixed distribution over preferences. One way to do this is to extend MO-MPO to train
preference-conditioned policies, as described in Sec. 4.3.1; we call this approach controllable MO-
MPO. We used controllable MO-MPO to train preference-conditioned policies with five random
initializations, for εtask = 0.1 and εnorm sampled uniformly between 10−5 and 0.15, analagous to the
settings for MO-MPO. This produces a Pareto front that is comparable to MO-MPO’s, both in terms
of coverage and solution quality (Fig. 6, second from the right). Policies are evaluated after 500M
actor steps, like for MO-MPO. Note that controllable MO-MPO is much more computationally
efficient than MO-MPO: whereas we must train a separate policy per preference with MO-MPO,
we are able to train just one policy with controllable MO-MPO, and condition it on difference
preferences in order to obtain different tradeoffs.

It is possible to use linear scalarization, instead of MO-MPO, as the multi-objective RL algorithm
for training preference-conditioned policies. So as a baseline, we use MPO [30] to train policies
conditioned on linear scalarization weights; we call this baseline controllable MPO. These policies
were conditioned on a wtask of 1.0 and wnorm sampled uniformly between 0 and 0.15. Compared to
controllable MO-MPO, we had to train controllable MPO for longer (900M actor steps instead of
500M) in order to reach reasonable task performance, and controllable MPO was still unable to find
solutions with low action norm (Fig. 6, second from the left). This is not particularly surprising:
Abdolmaleki et al. [6] showed that MO-MPO outperforms MPO with linear scalarization on hu-
manoid run, so one would expect controllable MO-MPO to also outperform controllable MPO. We
tried running controllable MPO with higher weights for the action norm, to try and obtain solutions
with lower action norm, but these did not show any learning progress within 500M actor steps.

Policies trained with LP3 [MO-MPO-D] for equality constraint thresholds from−4 to−1 also lie on
the MO-MPO Pareto front (Fig. 6, right-most). We trained a separate preference-conditioned policy
and preference distribution for each unique constraint threshold. This supports that learning the
preference distribution simultaneously while training the policy and Q-functions does not negatively
impact the final solutions that are found.
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Figure 6: A comparison of the Pareto fronts for humanoid run found by different approaches. For MO-MPO and
LP3 [MO-MPO-D], each dot corresponds to a separately-trained policy. For controllable MPO and controllable
MO-MPO, five trained policies (with different random initializations) are evaluated by conditioning on a range
of linearly-spaced preferences, which correspond to weights or KL-divergence bounds, respectively. The gray
triangles denote the MO-MPO Pareto front, for easier comparison. Controllable MO-MPO finds better solutions
than controllable MPO, especially for smaller action norm cost. The Pareto front found by LP3 [MO-MPO-D]
is on-par with that found by MO-MPO, indicating that LP3 [MO-MPO-D] is able to find solutions with good
tradeoffs between the task reward and cost.

C.2 LP3 [LS]: MPO Lagrangian Baseline

The baseline we use in our empirical evaluation is LP3 [LS], which corresponds to using MPO to
optimize for the Lagrangian dual objective. We ran this baseline on the level 1 point tasks, using
the default settings in OpenAI Safety Gym (including dense reward) so that we can directly com-
pare against the constraint-satisfying policies obtained in Ray et al. [22].9 Our LP3 [LS] baseline

9Since we noticed that our Q-functions underestimate cost (Appendix C.8), we use a cost threshold of 15
for training, rather than the actual cost threshold of 25.
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compares favorably with those in Ray et al. [22], which instead combine Trust Region Policy Op-
timization (TRPO) and Proximal Policy Optimization (PPO) with Lagrangian relaxation (Fig. 7).
Policies were trained with TRPO-Lagrangian and PPO-Lagrangian for 10 million actor steps; after
the same number of actor steps, LP3 [LS] obtains on-par or slightly better task reward while meeting
the constraints.10
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Figure 7: Top: The task reward (averaged over episodes) achieved by policies trained with our LP3 [LS] (i.e.,
MPO-Lagrangian) baseline, over the course of training. The solid and dashed grey lines denote the task reward
obtained by PPO- and TRPO-Lagrangian, respectively, after 10 million actor steps in Ray et al. [22]. Our
LP3 [LS] baseline achieves similar or better task reward, in the same number of actor steps. Each color is a
different random seed. Bottom: Our LP3 [LS] baseline meets the constraint of incurring less than 25 expected
cumulative cost per episode, indicated by the dotted red line. Each colored line is a different random seed.

C.3 Quality of Solutions: RWRL

For all four RWRL tasks, LP3 [MO-MPO-D] finds policies that are better than those found by the
approaches in Calian et al. [5], in terms of both task reward and cost. These results are summarized
in Table 1, and the performance per trained policy is plotted in Fig. 8. We evaluated LP3 [MO-
MPO-D] policies conditioned on the median preference from the learned preference distributions.
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Figure 8: Performance of policies trained on the RWRL tasks, with LP3 [MO-MPO-D] (orange circles) versus
(a) MetaL, (b) D4PG Lagrangian, and (c) RewardShaping-0.1. Across all tasks, LP3 [MO-MPO-D] finds
policies that are better than those found by the alternate approaches, in terms of both task reward and cost.
Each dot corresponds to a separately-trained policy. Above and to the right indicates better performance.

10This required making LP3 [LS] more sample-efficient, by increasing the Adam learning rate to 10−4 and
enforcing exactly 16 actor steps per learner step, which slows down the rate at which actors gather data.
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C.4 Quality of Solutions: Humanoid and Point

On humanoid run, point goal, and point button, LP3 [MO-MPO-D] and LP3 [LS] find similar solu-
tions for easier constraint thresholds, but as the constraint threshold becomes more difficult to satisfy
(i.e., smaller in magnitude), LP3 [MO-MPO-D] does better in four out of five tasks (Fig. 3, 9, 15).
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Figure 10: For humanoid run, these learning curves show how LP3 [LS] (top) can only focus on improving
one objective at a time: when LP3 [LS] starts learning the task, the cost increases significantly and violates the
constraint. In contrast, LP3 [MO-MPO-D] (bottom) is able to improve both objectives at once, which leads to
better sample efficiency. The dashed lines indicate the constraint threshold.

The reason LP3 [MO-MPO-D] outperforms LP3 [LS] may be because when two objectives are
conflicting, such as the task reward and action norm cost in humanoid run, LP3 [MO-MPO-D] is
able to optimize the policy for both at once, whereas LP3 [LS] cannot (Fig. 10).

Learning a Set of Constraint-Satisfying Policies. For humanoid stand and run, we run LP3 [MO-
MPO-D] with the inequality fitness function, (9). This successfully learns a portion of the Pareto
front that satisfies the constraint (Fig. 11). For these plots, we evaluated the policy conditioned on
preferences at evenly-spaced percentiles of the learned distribution.

Note that there is some variation in the learned Pareto front across the different seeds for humanoid
run. This is because in humanoid run, task reward is given for running in any direction. So, there are
many possible running gaits that an agent could adopt to achieve high task reward. Since LP3 [MO-
MPO-D] trains a single policy to represent a portion of the Pareto front, this is limited to selecting
one of the possible strategies. The policy’s initialization impacts which strategy it ends up finding,
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and the resulting Pareto front. In contrast, in stand there is less variation across strategies, and thus
also less variation in the Pareto front across seeds.
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Figure 11: For humanoid stand (left) and run (right), we LP3 [MO-MPO-D] to train preference-conditioned
policies, each of which captures a set of constraint-satisfying nondominated policies, i.e., a portion of the
Pareto front. This is useful when the constraint is soft or not known exactly a priori. These plots are created
by evaluating each fully-trained policy conditioned on preferences at evenly-spaced percentiles of the learned
preference distribution. The dashed lines indicate the constraint threshold.

C.5 Constraint Satisfaction

LP3 [MO-MPO-D] always finds policies that satisfy the constraints for the humanoid tasks, whereas
the Lagrangian baseline occasionally violates the constraint. With longer training, these violations
might disappear, but we do not expect the task reward to improve. These violations are due to the
relatively unstable behavior of the Lagrangian baseline: when the constraint starts to be violated, this
leads to a gradual increase in the Lagrange multiplier, and it takes some time for this to propagate
into changes in the policy. This can be seen empirically in Fig. 10 (left plot, top row) where the
average cost dips below (i.e., violates) the constraint threshold, indicated by the dotted line.

For the point tasks, the policies found by both LP3 [MO-MPO-D] and the LP3 [LS] baseline slightly
violate the constraints (Fig. 9, bottom row); this is due to Q-function underestimates for the cost,
rather than a limitation of the policy optimization (Appendix C.8).

C.6 Scaling to Multiple Constraints

As mentioned in the main paper, for the walker run task with one task reward and two constraint-
specific rewards, we use LP3 [MO-MPO-D] to train policies to learn a portion of the Pareto front.
We do the same for humanoid walk, that has two rewards without constraints and two constraint-
specific rewards. For each of the two settings of constraints per task, we trained three policies with
LP3 [MO-MPO-D], each initialized using a different random seed. Fig. 12 and Fig. 13 show the
performance of all fully-trained policies from these experiments. All policies learn to satisfy both
constraints, and overall the learned Pareto fronts are relatively consistent across seeds.

These plots are created by evaluating each fully-trained policy conditioned on preferences at evenly-
spaced percentiles of the learned preference distribution for either the move or energy usage objec-
tives, combined with the median preference for the other(s).

We also investigated how well LP3 [MO-MPO-D] scales to multiple constraints for a more difficult
version of point goal (see Sec. B.3). There are two constraints: one on the cost of crossing over
hazards, and one on bumping into vases. For each type of cost, we fix its threshold to −2 and
vary the other between −10 and 0. The baseline fails to obtain task reward when the constraint for
hazards is fixed at the challenging threshold of −2, whereas LP3 [MO-MPO-D] finds a range of
solutions (Fig. 14, right).

C.7 Multiple Random Seeds

Humanoid and Point To verify that the empirical results we observed in Sec. 5.3 are statistically
significant, we used LP3 [MO-MPO-D] and LP3 [LS] to train policies for the same constraint thresh-
old, starting from five random initializations. We evaluated this for four constraint thresholds per
task for humanoid and point, selected from the ranges in Table 3c. Results are shown in Fig. 15.
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Figure 12: For the walker run task, with three objectives (and constraints on two of them), we use LP3 [MO-
MPO-D] to train policies that learn a portion of the Pareto front. We train policies for two settings of constraints,
a lower bound of 500 on move-forward return per episode and −2.5 on per-timestep energy usage (left), and a
lower bound of 250 on move-forward return per episode and −1.5 on per-timestep energy usage (right). These
plots show the resulting Pareto front for each random seed. All policies learn to meet the constraints, and there
is relatively little variation across seeds. The dashed lines indicate the constraint threshold.
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Figure 13: For the humanoid walk task, with four objectives (and constraints on two of them), we use LP3
[MO-MPO-D] to train policies that learn a portion of the Pareto front. We train policies for two settings of
constraints: a bound of 400 on either move-forward or move-left return per episode and −1.5 on per-timestep
energy usage. These plots show the resulting Pareto front for each random seed. All policies learn to meet the
constraints, and there is relatively little variation across seeds. The dashed lines indicate the threshold.

LP3 [MO-MPO-D] achieves significantly higher task reward than the baseline for the harder-to-
satisfy constraint thresholds in four out of the five tasks. For the other constraint thresholds, both
approaches achieve similar task reward. In terms of satisfying constraint thresholds, our approach
performs on-par with or better than the baseline.

As mentioned, the slight violation of constraint thresholds for the Safety Gym point tasks is due
to underestimation of Q-values, rather than a limitation of the policy improvement method; this is
described in the following subsection.

Robot We ran LP3 [MO-MPO-D] and LP3 [LS] for the robot push task, for five random seeds per
threshold. Consistent with the results in the main paper, we see that LP3 [MO-MPO-D] and LP3
[LS] converge to similar task performance, but LP3 [LS] takes about twice as long to reach similar
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baseline, especially when the constraint on the hazards cost is hard to satisfy (right plot).
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Figure 15: LP3 [MO-MPO-D] (in aqua) achieves significantly higher task reward than the LP3 [LS] baseline
(in gray) for the harder-to-satisfy constraint thresholds in four out of five tasks for humanoid and point. In
terms of satisfying constraint thresholds, LP3 [MO-MPO-D] performs on-par with or better than the baseline.
Each bar shows either the average task reward (solid bars) or cost (clear bars) per episode, averaged over
five seeds. For both, higher is better. The error bars refer to standard deviation. The red lines denote the
constraint thresholds: clear bars above the constraint threshold indicate that the constraint is met. Asterisks
denote p ≤ 0.05, computed via Welch’s t-test.

performance (Fig. 16). LP3 [MO-MPO-D] also trains policies that satisfy the constraint earlier in
learning, compared to those trained by LP3 [LS].
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Figure 16: Learning curves for the robot push task, where β denotes the constraint threshold. The LP3 [LS]
baseline takes about twice as long to converge to similar task performance as LP3 [MO-MPO-D]. LP3 [MO-
MPO-D] also trains policies that more quickly learn to satisfy the constraints. The shaded area denotes standard
error across five seeds.

C.8 Q-function Estimates

We noticed that for the point tasks, both LP3 [MO-MPO-D] and the Lagrangian baseline train poli-
cies that slightly exceed the constraints (Fig. 9, bottom row). After digging deeper, we realized that
this results from suboptimal Q-function learning, rather than suboptimal policy optimization. The
learned Q-values for the cost consistently underestimate the actual cost incurred (Fig. 17a). The
policy optimization finds a policy that meets the constraints, assuming that the learned Q-values for
the cost are accurate (Fig. 17b).

Thus, better constraint satisfaction can be obtained by improving policy evaluation, so that estimated
Q-values are more accurate—this is orthogonal to our proposed approach, which is focused on policy
improvement.
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Figure 17: In the plots above, the Q-value estimate is obtained by averaging the Q-values for 100 batches of
(s, a) pairs from the replay buffer, after 200M actor steps of training. Each point corresponds to a separately-
trained policy, for a different constraint threshold. (a) The learned Q-function for cost underestimates the cost
per episode. The actual cost is obtained by evaluating the deterministic policy after 200M actor steps, on the
same 100 randomly-initialized environments. (b) For both approaches, almost all trained policies satisfy the
constraint (i.e., are on or above the dotted line), according to the learned Q-values.

C.9 Ablation Study on Preference Relabeling

Recall that when we train preference-conditioned policies, as in LP3 [MO-MPO-D], we relabel pref-
erences. This means that for each learning step, we augment the states of transitions sampled from
the replay buffer with preferences sampled from the current preference distribution (Sec. 4.3.1).
This is motivated by prior work, that shows relabeling goals improves sample-efficiency of learn-
ing [33]. In this context, relabeling preferences allows our algorithm to learn from off-policy data
that is collected with a much different preference distribution than the current one.

To investigate the utility of preference relabeling, we run an ablation study with LP3 [MO-MPO-
D] on the RWRL tasks. Across the four RWRL tasks, we find that relabeling preferences leads to
improved performance on cartpole, slightly improved performance on walker, on par performance
on quadruped, and slightly worse performance on humanoid. Although in this ablation study, pref-
erence relabeling did not significantly help performance across all tasks, our hypothesis is that in
a regime that requires more sample-efficient learning (e.g., learning from scratch on a real robot),
relabeling preferences will have more benefit, because it makes it more feasible to learn from highly
off-policy data.
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Figure 18: In the RWRL tasks, for most tasks relabeling preferences (orange circles) results in better or on-
par performance compared to not relabeling (blue triangles). These plots show five random seeds per task,
separately plotted.

D Connection to Existing Work

A main contribution of this work is our proposed framework called LP3, that takes a multi-objective
perspective to tackling constrained RL problems (Sec. 4.2). We showed that Lagrangian-relaxation-
based algorithms are a special case of this framework. LP3 [MO-MPO-D] is a particular instanti-
ation of this framework, that solves a CMO-MDP by finding a set of constraint-satisfying policies.
LP3 [MO-MPO-D] consists of training a preference-conditioned policy in parallel with learning a
distribution over preferences that leads to constraint satisfaction. There are also other possibilities
for finding a set of constraint-satisfying policies, that fit within our proposed framework and relate
to existing work.
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For example, one could keep a discrete set of preferences and train a separate policy per preference
in this set, rather than training a single preference-conditioned policy as LP3 [MO-MPO-D] does.
The set of preferences could be either static or learned. If it is static, then at the end of training, the
individually-trained policies can be either accepted or rejected depending on constraint satisfaction.
This approach is computationally wasteful though, because it fully trains policies that violate the
constraints. This downside could be addressed by adjusting the set of preferences during training, to
prefer constraint-satisfying policies.

Using a learned discrete set of preferences is similar to the approach taken in Xu et al. [29]. That
work optimizes for the hypervolume of the Pareto front, but could be extended to additionally opti-
mize for meeting a specified constraint. A downside of this approach, compared to LP3 [MO-MPO-
D], is that training a separate policy per preference quickly becomes computationally burdensome
for larger numbers of preferences. In addition, in some situations, training a single preference-
conditioned policy may improve learning, because training over multiple preferences can enable
more diverse data collection and lead to increased exploration.

E Algorithmic Details

In this section, we first give more detail on how we extend MO-MPO to train preference-conditioned
policies—we call this algorithm controllable MO-MPO (as mentioned in Sec. C.1). LP3 [MO-MPO-
D] combines controllable MO-MPO with a learned preference distribution.

Then, we describe how to learn the preference policy and provide an algorithm box for the policy
improvement step. We also describe the overall procedure we use to collect data and learn from the
data.

E.1 Controllable MO-MPO

We introduce controllable MO-MPO, which extends MO-MPO to learn preference-conditioned poli-
cies. We use this for Module 1 of LP3 [MO-MPO-D] (within our framework, Fig. 1), in order to
learn a single policy for a distribution of preferences. Note that any other multi-objective RL algo-
rithm capable of training preference-conditioned policies could be used for this step.

An overview of MO-MPO is given in Sec. 3.2. Recall that MO-MPO can only train policies π(a|s)
for a single preference ε. In contrast, controllable MO-MPO trains a single policy π(a|s, ε) for
a range of preferences. Extending MO-MPO to controllable MO-MPO requires making both the
policy and Q-functions preference-conditioned, replacing the scalar temperature with a preference-
conditioned temperature network, as well as modifying the underlying MO-MPO optimization prin-
ciples. We also introduced relabeling of preferences, as described in Sec. 4.3.1.

Controllable MO-MPO is a policy iteration algorithm with two steps:

• Policy evaluation: learn preference-conditioned Q-functions for all objectives.
• Policy improvement: improve the preference-conditioned policy according to Q-functions.

The policy evaluation step is described in Sec. 4.3.1. Here we provide more detail on the policy
improvement step. Some of the information provided in Sec. 4.3.1 is repeated, so that the description
here is self-contained.

Preference-conditioned policy improvement. The policy improvement step assumes a state dis-
tribution µ(s), per-objective Q functionsQold

k (s, a, ε), the current policy πold(a|s, ε), and the current
preference distribution pold(ε). It consists of two sub-steps: 1) finding per-objective improved ac-
tion distributions, and 2) distilling these distributions into a new preference-conditioned policy via
supervised learning.

Finding per-objective distributions: To find per-objective improved action distributions qk(a|s, ε),
we optimize the following RL optimization problem for each objective:

max
qk

Epold(ε)µ(s)

[ ∫
a

qk(a|s, ε)Qold
k (s, a, ε) da

]
(10)

s.t. Eµ(s)
[
KL(qk‖πold(a|s, ε))

]
< εk ∀ ε ∼ pold(ε) .
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We can solve this problem in closed form to obtain

qk(a|s, ε) ∝ πold(a|s, ε) exp
(Qold

k (s, a, ε)

ηωk
(εk)

)
, (11)

where ηωk
(εk) is a preference-dependent temperature function for objective rk, and is parameterized

by ωk. This temperature function is obtained by minimizing the following dual function:

g(ωk) = Epold(ε)µ(s)

[
ηωk

(εk)
(
εk + (12)

log

∫
a

πold(a|s, ε) exp
(Qold

k (s, a, ε)

ηωk
(εk)

)
da
)]
.

In practice, we maintain a single function ηω(ε) with shared parameters ω for all objectives.

The optimization problem in (10) generalizes the one in MO-MPO, which assumes fixed KL-
constraints ε, to a distribution πold(ε) over KL-constraints. Thus (11) and (12) can be derived by
following steps analogous to those given in Abdolmaleki et al. [6].

To approximate the expectations over the preference distribution and state distribution, we draw L
states from the replay buffer and L preferences ε from the preference policy πold(ε). To approximate
the integrals over a, for each (s, ε) pair we sample M actions from the current policy πold(a|s, ε).
Learning a new parameterized action policy: After obtaining per-objective improved policies, we
use supervised learning to distill these distributions into a new parameterized policy:

max
θ

K∑
k=0

Epold(ε)µ(s)

[
KL(qk(a|s, ε)‖πθ(a|s, ε))

]
(13)

s.t. Epold(ε)µ(s)

[
KL(πold(a|s, ε)‖πθ(a|s, ε))

]
< β,

subject to a trust region with bound β > 0 for more stable learning. To solve this optimization, we
use Lagrangian relaxation as described in Abdolmaleki et al. [30, 6].

E.2 Learning Preference Distributions

As discussed in the main paper, one option for Module 2 of our framework is to use a preference
distribution. Here we give more detail on how to learn a new preference distribution p(ε), given
the current preference distribution pold(ε) and fitness functions fk(ε) (that evaluate ε in terms of
constraint satisfaction). One could add the fitness functions together to obtain

∑
k fk(ε), and use

any off-the-shelf RL algorithm to optimize for a new preference policy. On the other hand, this
problem can be been as a multi-objective problem where the fitness for each constraint k is an
objective. To this end, we use MO-MPO for learning p(ε). Note that in this paper we have at most
two constraints. In the case of a problem with one constraint (i.e., one “objective”), MO-MPO [6]
reduces to MPO [30].

More formally, following the MO-MPO algorithm, we optimize the following constrained optimiza-
tion problem, that can be solved via Lagrangian relaxation [6]:

max
ψ

K∑
k=1

KL(zk(ε) ‖ pψ(ε))

s.t. KL(pold(ε) ‖ pψ(ε)) < δ , (14)
where δ defines a trust region for more stable learning and zk(ε) is a non-parametric improved policy
for each objective, i.e,

zk(ε) ∝ pold(ε) exp
(fk(ε)
ϕk

)
.

ϕk is a temperature variable that we maintain for each objective (or fitness function) and is obtained
by optimizing the convex dual function

g(ϕk) = ϕkαk + ϕk log

∫
ε

pold(ε) exp
(fk(ε)
ϕk

)
dε , (15)

where αk for each objective k defines a desired KL-divergence bound between the new improved
policy qk(ε) and current policy pold(ε). We use the same value of αk = 0.1 for all fitness functions
k throughout the paper. For more details on MO-MPO, please refer to [6].
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E.3 General Algorithm

We maintain one online network and one target network for each Q-function, policy, and preference
distribution. We also maintain one online network for the temperature function. Target networks are
updated every fixed number of steps by copying parameters from the online network. Online net-
works are updated using gradient descent in each learning iteration. We refer to the target networks
by using the subscript/superscript “old” throughout the paper.

We use an asynchronous actor-learner setup. In this setup actors fetch policy parameters from the
learner and act in the environment while writing transitions to the replay buffer. At the beginning
of each episode, we first sample one preference parameter ε from the preference policy, which
remains fixed until the end of the episode. The learner uses the transitions in the replay buffer to
update the Q-functions, policies and temperature functions. Algorithm 1 describes one step of policy
improvement for LP3 [MO-MPO-D].
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Algorithm 1 LP3 [MO-MPO-D]: One policy improvement step

1: given batch size (L), number of actions and ε to sample (M ), current policy pold(ε)πold(a|s, ε), current
(K + 1) Q-functions {Qold

k (s, a, ε)}Kk=0, temperature network ηω(ε), (K) constraint fitness functions
{fk(ε)}Kk=1, (K) temperature variables {ϕk}Kk=1, (K) KL bounds {αk}Kk=1, replay buffer D, first-order
gradient-based optimizer O

2:
3: initialize πθ(a|s, ε) from the parameters of πold(a|s, ε)
4: initialize pψ(ε) from the parameters of pold(ε)
5: repeat
6: // Collect dataset {si, εi, aij , Qijk }

L,M,K
i,j,k , where

7: // L states si ∼ D
8: // L preferences εi ∼ pold(ε)

9: // M actions aij ∼ πold(a|si, εi) and Qijk = Qold
k (si, εi, aij)

10:
11: // Compute (non-parametric) action distribution for each objective
12: δω ← ∇ω

∑
k

1
L

∑L
i ηω(ε

i)[k]
[
εik + log

∑M
j

1
M

exp
(

Q
ij
k

ηω(εi)[k]

)]
, where [k] is the index of the vector

13: Update ω based on δω , using optimizer O
14: for k = 0, . . . , K do
15: qijk ∝ exp(

Q
ij
k

ηω(εi)[k]
)

16: end for
17:
18: // Update action policy
19: δθ ← −∇θ

∑L
i

∑M
j

∑K
k=0 q

ij
k log πθ(a

ij |si, εi)
20: (subject to additional KL regularization)
21: Update πθ based on δπ , using optimizer O
22:
23:
24: // Collect dataset {εi, f ik}M,Ki,k , where
25: // M preferences εi ∼ pold(ε) and f ik = fk(ε

i)
26:
27: // Compute epsilon distribution for each constrained objective
28: for k = 1, . . . , K do
29: δϕk ← ∇ϕkϕkαk + ϕk log

(∑
i

1
M

exp
(
fik
ϕk

))
30: Update ϕk based on δϕk , using optimizer O
31: zik ∝ exp(

fik
ϕk

)

32: end for
33:
34: // Update preference policy
35: δψ ← −∇ψ

∑M
i

∑K
k=1 z

i
k log pψ(ε

i)
36: (subject to additional KL regularization)
37: Update pψ based on δψ , using optimizer O
38:
39: until fixed number of steps
40: return πold(a|s, ε) = πθ(a|s, ε) and pold(ε) = pψ(ε)
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