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7.1 Neural Network Architecture570
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Figure 8: The architecture of MT-Opt Q-function. The input image is processed by a stack of convolutional
layers. Action vector, state vector and one-hot vector Ti representing the task of interest are processed by several
fully connected layers, tiled over the width and height dimension of the convolutional map, and added to it.
The resulting convolutional map is further processed by a number of convolutional layers and fully connected
layers. The output is gated through a sigmoid, such that Q-values are always in the range [0, 1].
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Figure 9: Comparison of single-headed and multi-
headed neural networks approximating the Q-
function. In both cased task ID was fed as the in-
put to the network. Multi-headed architecture of the
Q-function under-performs on a wide range of tasks,
winning only on lift-any tasks which has most of the
data.

We model the Q-function for multiple tasks as571

a large deep neural network whose architecture572

is shown in Fig. 8. This network resembles one573

from [1]. The network takes the monocular RGB574

image part of the state s as input, and processes575

it with 7 convolutional layers. The actions a and576

additional state features (gstatus, gheight) and task577

ID Ti are transformed with fully-connected lay-578

ers, then merged with visual features by broad-579

casted element-wise addition. After fusing state580

and action representations, the Q-value Qθ(s, a)581

is modeled by 9 more convolutional layers fol-582

lowed by two fully-connected layers. In our sys-583

tem the robot can execute multiple tasks from in584

the given environment. Hence the input image585

is not sufficient to deduce which task the robot586

is commanded to execute. To address that, we587

feed one-hot vector representing task ID into the588

network to condition Q-Function to learn task-589

specific control.590

In addition to feeding task ID we have experimented with multi-headed architecture, where n sep-591

arate heads each having 3 fully connected layers representing n tasks were formed at the output592

of the network. Fig.9 shows that performance of the system with the multi-headed Q-function593

architecture is worse almost for all tasks. We hypothesize that dedicated per task heads “over-594

compartmentalizes” task policy, making it harder to leverage shared cross-task representations.595
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7.2 Description of Scripted Policies596

As discussed in Section4 we use two crude scripted policies to bootstrap easy generic tasks.597

Scripted Picking Policy: To create successful picking episodes, the arm would begin the episode598

in a random location above the right bin containing objects. Executing a crude, scripted policy, the599

arm is programmed to move down to the bottom of the bin, close the gripper, and lift. While the600

success rate of this policy is very low (≈ 10%), especially with the additional random noise injected601

into actions, this is enough to bootstrap our learning process.602

Scripted Placing Policy: The scripted policy programmed to perform placing would move the arm603

to a random location above the left bin that contains a fixture. The arm is then programmed to604

descend, open the gripper to release the object and retract. This crude policy yields a success rate of605

(47%) at the task of placing on a fixture (plate), as the initial fixture is rather large. Data collected606

by such a simplistic policy is sufficient to bootstrap learning.607

7.3 fIskill
impersonation strategy details608

Algorithm 1 Task Impersonation
procedure fI (ei : original episode)

expanded episodes = []
SD{ki} ← set of SDs relevant to task Ti

for SDk in SD{ki} do
// ek: ei but rewards for task Tk not Ti

ek = SDk(e
i)

expanded episodes.append(ek)
return expanded episodes

Task impersonation is an important component of609

the MT-Opt method. Given an episode and a task610

definition, the SD classifies if that episode is an611

example of a successful task execution accord-612

ing to that particular goal definition. Importantly,613

both the success and the failure examples are effi-614

ciently utilized by our algorithm. The success ex-615

ample determines what the task is, while the fail-616

ure example determines what the task is not (thus617

still implicitly providing the boundary of the task),618

even if it’s an example of a success for some other619

task. Fig.11 shows offline success rates and Fig.12 shows by how much the per task data is expanded620

using the fIskill impersonation function.621

In Section 3.2 we discuss a problem arising when using a naive fIall
episodes impersonation func-622

tion, and suggest a solution to impersonate data only within the boundaries of a skill. Namely,623

given an episode ei generated by task Ti, a skill Sj that task belongs to is detected. The ei will be624

impersonated only for the tasks T{Sj} belonging to that particular skill.625
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Figure 10: System overview: Task episodes from disk are continuously loaded by LogReplay job into task
replay buffers. LogReplay process assigns binary reward signal to episodes using available Success Detectors
and impersonates episodes using fIskill (or other strategy). Impersonated episodes are compartmentalized into
dedicated per task buffers, further split into successful and failure groups. Bellman Update process samples
tasks using re-balancing strategy to ensure per task training data balancing and computes Q-targets for individ-
ual transitions, which are placed into train buffer. These transitions (s,a, Ti) are sampled by the train workers
to update the model weights. The robot fleet and Bellman Update jobs are reloading the most up to date model
weights frequently.
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Figure 11: Effective success rate for each task in our
offline dataset. This plot represents the distribution of
successes within the entirety of our offline dataset col-
lected over time from many policies, not the perfor-
mance of any particular policy.

Figure 12: Practical effect of task impersonation for
successful outcomes. Dark blue indicates data specif-
ically collected for a task; light blue indicates episodes
impersonated from some other tasks which happen to
be a success for the target task.

Note, that sometimes impersonation for all626

T{Sj} tasks within a skill could result in too627

excessive data sharing. For example, the bulk628

of the data for our object-acquisition skill rep-629

resents variants of tasks involving foods ob-630

jects. If we want to learn a new task within631

the same skill using visually significantly dif-632

ferent objects, e.g. transparent bottles, all of-633

fline episodes involving the plastic objects will634

be (correctly) impersonated as failures for the635

lift-transparent-bottle task. That is, a few in-636

trinsic failures for that task will be diluted in637

large set of artificially created negatives.638

To solve this issue we introduce a stochastic im-639

personation function. An impersonated episode640

candidate will be routed to training with the641

probability ps if it’s a success, or with proba-642

bility pf if it’s a failure. We experiment with643

ps = 1.0, and pf <= 1.0. The reasoning is644

that it’s always desirable to utilize surplus im-645

personated examples of a successful task execu-646

tion, but it could be better to utilize only a frac-647

tion of the surplus failures to balance intrinsic648

v.s. artificial failures for that task.649

This gives rise to the fIskill
(ps, pf ) imperson-650

ation function which is suitable in some situa-651

tions explained above.652

7.4 Distributed Asynchronous System653

Fig.10 provides an overview of our large scale654

distributed Multi-Task Reinforcement Learning655

system.656

8 Reward Specification with657

Multi-Task Success Detector658

Training a visual success detector is an iterative process, as a new task initially has no data to train659

from. We have two strategies to efficiently create an initial SD training dataset for a new task. 1)660

We collect 5Hz videos from 3 different camera angles where every frame of the video a human is661

demonstrating task success, and then a short video demonstrating failure (see examples in Fig. 14.662

Note that the user shows the desired and non-desired outcome of the task, not to be confused with663

demonstrations of how the task needs to be done.664

The intention here is to de-correlate spurious parts of the scene from task-specifics. This process is665

repeated for approximately 30 minutes per task. 2) We relabel data from a policy that occasionally666

generated success for the new task (e.g., relabel lift-any data for lift-carrot task.).667

The user would then change the lighting, switch out the objects and background, and then collect668

another pair of example videos (see Fig. 14 for example one video where there is always something669

on a plate being moved around paired with another video where there is never anything on a plate).670

Once the initial SD is trained, we can train an RL policy, and begin on-policy collection. We671

continue to label on-policy data which keeps coming for the new task until SD is reliable. Table 3672

shows false positive and false negative error rates on holdout data for the SD model used in our673

ablations. Our holdout data consisted of all images from a particular robot.674

During the SD training process, the data is artificially augmented to improve generalization, which675

involves cropping, brightening, rotating, and superimposing random shadows onto the images.676
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Primary SD
Name

Total
Count

Success
Count

Failure
Count

Success
Rate

F. Neg.
Rate

F. Pos.
Rate

Other F.
Neg. Rate

Other F.
Pos. Rate

lift-any 16064 7395 8672 46% 1% 2% 0% 0%
lift-banana 6255 510 5745 8% 2% 1% 0% 1%
lift-bottle 6472 430 6042 7% 5% 1% 0% 1%

lift-sausage 6472 461 6011 7% 3% 0% 0% 1%
lift-milk 6472 158 6314 2% 7% 0% 3% 9%
lift-box 6467 487 5980 8% 1% 1% 0% 2%
lift-can 6467 270 6197 4% 2% 0% 3% 3%

lift-carrot 6481 911 5570 14% 0% 1% 0% 0%
place-any 3087 1363 1724 44% 1% 2% 0% 0%

place-bottom 2893 693 2200 24% 2% 1% 1% 3%
place-top-left 2895 346 2549 12% 10% 0% 3% 8%

place-top-right 2897 312 2585 11% 4% 0% 0% 5%

Table 3: Success detection holdout data statistics. Table shows success detector error rate for held out labelled
success detector data. We split out the evaluation dataset based on the robot, e.g. all data generated by Robot #1
is used for evaluations and not for training. This strategy results in a much better test of generalization power
of the success detector, compared to the conventional way to split out 20% of the data randomly for evaluation.
The Other Task False [Positive/Negative] Rates columns indicates how well the success detector for a task A
classifies outcomes for all other tasks. For example we want to ensure that a successful lift-carrot episode
does not trigger lift-banana success, i.e. not only a success detector should manifest its dedicated task success,
but also reliably reason about other related tasks. This “contrastiveness” property of the success detectors is
of great importance in our system. As success detectors determine tasks data routing and experience sharing,
an error in this tasks data assignment would drive anti-correlated examples for each task, resulting in a poor
performance of the system.

Overhead Camera Right Camera Left Camera

Figure 13: SD training images. Each row represents
a set of images captured at the same time that are
fed into the SD model. These images demonstrate
our train-time SD data augmentation process as they
have been distorted via cropping, brightening, rotat-
ing, and superimposing of shadows.

place-anywhere success examples:

place-anywhere failure examples:

Figure 14: Video frames for the place-anywhere
task. Success and failure videos are iteratively cap-
tured in pairs to mitigate correlations with spurious
workspace features such as hands of the user, back-
grounds, bins, and distractor objects.
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Fig. 13 shows training images after these distortions have been applied. Our success detector model677

is trained using supervised learning, where we balance the data between success and failures as well678

as tasks. We use the architecture that is based on that from [67] with the exception of the action679

conditioning as it is not needed for this classification task. For each task the network outputs the680

probability representing whether a given state was a success or failure for the corresponding task.681

The model receives three images as an input that come from an over-the-shoulder camera (same682

image as RL policy), and two additional side cameras. These side camera images are only used683

by the SD model, not the RL model. The additional cameras ensured that the task goals would684

be unambiguous, with a single camera, it was often difficult for a human to discern from an image685

whether or not the task had succeeded.686

A breakdown of the labelled SD training data is provided in Fig. 15. While training SD, we incor-687

porated data sharing logic based on task feasibility. For example any success for lift-carrot would688

also be marked as failure for all other instance lifting tasks, and as a success for lift-any. In this689

manner, the original set of labelled data shown in Fig. 15 could act effectively as a much larger690

dataset for all tasks, where successes of one task often worked an interesting negatives for other691

tasks. Additionally we balanced the proportion of success and failure examples per task seen by the692

model during training.693

9 Robot Setup694
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Figure 15: Counts of labelled SD training data
by task and outcome. This data was generated ei-
ther from human video demonstration, or by la-
belling terminal images from episodes produced
by a robot. Note, that not all of the negatives were
hand-labelled. As we may know dependencies be-
tween the tasks, e.g. that a success for lift-carrot
is always a failure for lift-banana, we can auto-
matically generate negative examples. Similarly,
all successes for the semantic lifting tasks are also
successes for the lift-any task.

In order for our system to be able to learn a vision-695

based RL policy that can accomplish multiple tasks,696

we need to collect a large, diverse, real-robot dataset697

that represents data for various tasks.698

To achieve this goal, we set up an automated, multi-699

robot data collection system where each robot picks700

a task Ti to collect the data for. Collected episode701

is stored on disk along with the Ti bit of informa-702

tion. Our learning system can then use this episode703

collected Ti for to train a set of other tasks utiliz-704

ing MT-Opt data impersonation algorithm. Once the705

episode is finished, our data collection system de-706

cides whether to continue with another task or per-707

form an automated reset of the workspace.708

In particular, we utilize 7 KUKA IIWA arms with709

two-finger grippers and 3 RGB cameras (left, right,710

and over the shoulder). In order to be able to au-711

tomatically reset the environment, we create an ac-712

tuated resettable bin, which further allows us to au-713

tomate the data collection process. More precisely,714

the environment consists of two bins (with the right715

bin containing all the source objects and the left716

bin containing a plate fixture magnetically attached717

anywhere on the workbench) that are connected via718

a motorized hinge so that after an episode ends,719

the contents of the workbench can be automatically720

shuffled and then dumped back into the right bin to start the next episode. Fig. 16 depicts the physi-721

cal setup for data collection and evaluation. This data collection process allows us to collect diverse722

data at scale: 24 hours per day, 7 days a week across multiple robots.723

One episode has ≈ 10 steps on average, taking ≈ 25 seconds to be generated on a robot, including724

environment reset time. This accounts to≈ 3300 episodes/day collected on a single robot, or≈ 23K725

episodes/day collected across our fleet of 7 robots.726

9.1 Details of Data Collection to bootstrap a Multi-Task System727
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Task Name #Eps. QT-Opt fIorig , rand fIorig , rebal fIall , rand
QT-Opt DataShare

MultiTask MultiTask
lift-any 635K 0.88 0.94 0.85 0.62
lift-banana 9K 0.04 0.13 0.38 0.09
lift-bottle 11K 0.02 0.16 0.66 0.15
lift-sausage 5K 0.02 0.10 0.38 0.15
lift-milk 6K 0.01 0.13 0.42 0.13
lift-box 6K 0.00 0.12 0.16 0.08
lift-can 6K 0.01 0.16 0.46 0.07
lift-carrot 80K 0.71 0.41 0.72 0.37
place-any 30K N/A 0.86 0.74 0.30
place-bottom 5K N/A 0.43 0.57 0.30
place-top-right 4K N/A 0.16 0.55 0.08
place-top-left 4K N/A 0.23 0.75 0.19
Min 0.00 0.10 0.16 0.07
25-th percentile 0.00 0.13 0.41 0.09
Median 0.01 0.16 0.56 0.15
Mean 0.14 0.32 0.55 0.21
75-th percentile 0.03 0.42 0.73 0.30
Max 0.88 0.94 0.85 0.62
Mean (low data) 0.01 0.18 0.42 0.13

Task Name fIall , rebal fIskill(1, 0.15) , rebal fIskill(1, 1) , rand fIskill(1, 1) , rebal
(ours)

lift-any 0.95 0.80 0.88 0.89
lift-banana 0.30 0.58 0.62 0.33
lift-bottle 0.48 0.68 0.55 0.69
lift-sausage 0.39 0.42 0.28 0.38
lift-milk 0.27 0.27 0.52 0.51
lift-box 0.22 0.12 0.28 0.29
lift-can 0.28 0.47 0.43 0.43
lift-carrot 0.75 0.52 0.71 0.70
place-any 0.24 0.83 0.57 0.85
place-bottom 0.02 0.62 0.17 0.87
place-top-right 0.10 0.26 0.27 0.54
place-top-left 0.16 0.39 0.22 0.53
Min 0.02 0.12 0.17 0.29
25-th percentile 0.20 0.36 0.28 0.42
Median 0.28 0.50 0.48 0.54
Mean 0.35 0.49 0.46 0.58
75-th percentile 0.41 0.64 0.58 0.74
Max 0.95 0.83 0.88 0.89
Mean (low data) 0.21 0.36 0.32 0.5

Table 4: Quantitative evaluation of MT-Opt with different data impersonation and re-balancing strategies. This
table reports performance of 7 different models on the 12 ablation tasks, trained on identical offline dataset,
with identical computation budget, and evaluated executing 100 attempts for each task for each strategy on the
real robots (totaling to 12*100*7=8400 evaluations). In all cases a shared policy for all 12 tasks is learned. The
difference across the strategies is in the way the data is impersonated (expanded), and in the way the imperson-
ated data is further re-balanced. The last column is our best strategy featuring skill-level data impersonation
and further data re-balancing. This strategy outperforms other strategies on many different percentiles across
all 12 tasks; however the effect of that strategy is even more pronounced for the tasks having scarce data, e.g.
lift-can, lift-box, place-top-right, see Mean (low data) statistic. The column #2 indicates the number of episodes
which were collected for each task.
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Left and Right RGB 
Shoulder Cameras

Overhead 
RGB Camera Actuated Bins and 

Magnetic Fixtures

Figure 16: Robot workspace consisting of an
overhead camera (red), two over the shoulder
cameras (brown), and a pair of articulated reset-
table bins with a plate fixture that can be magnet-
ically attached to the bin (blue).

Figure 17: Evaluation scene used for ablation ex-
periments. Contains one of three different color
plates. And nine graspable objects: One of each
object from our seven object categories with two
extra toy food objects sometimes from the seven
object categories, sometimes not.

This section contains more details on the data728

collection process introduced in Section 9.1.729

Real world robot data is noisy. For this project730

nearly 800,000 episodes were collected through the731

course of 16 months. The data was collected over732

different:733

1. Locations: Three different physical lab lo-734

cations.735

2. Time of day: Robots ran as close to 24x7 as736

we could enable.737

3. Robots: 6-7 KUKAs with variations in738

background, lighting, and slight variation739

in camera pose.740

4. Success Detectors: We iteratively improved741

our success detectors.742

5. RL training regimes: We developed better743

training loops hyper-parameters and archi-744

tectures as time went on.745

6. Policies: Varied distribution of scripted, ep-746

silon greedy, and on-policy data collection747

over time.748

Our data collection started in an original physical749

lab location, was paused due to COVID-19, and the750

robots were later setup at a different physical lab lo-751

cation affecting lighting and backgrounds. Initially752

scripted policies were run collecting data for the lift-753

anything and place-anywhere tasks. Once perfor-754

mance of our learned policy for these tasks out-performed the scripted policy we shifted to a mix755

of epsilon greedy and pure on-policy data collection. The majority of our episodes were collected756

for the lift-anything and place-anywhere tasks with learned policies. It is worth mentioning that757

over the course of data collection many good and bad ideas where tried and evaluated via on-policy758

collection. All of these episodes are included in our dataset. Additional tasks being incorporated759

over time.760

After we had a policy capable of the lift-anything and place-anywhere tasks we introduced more761

specific variations of pick and place tasks where either a specific object needed to be picked, or762

an object needed to be placed in a specific location on the plate. At this point, our data collection763

process consisted of executing a randomly selected pick task followed by a randomly selected place764

task.765

As a result of the collection process described above, we were left with a 800,000+ episode offline766

dataset, very diverse along tasks, policies, success rate dimensions.767

10 Details for real world experiments768

The robot workspace setup for the 12 task ablations is shown in Fig 17. Table 4 summarizes769

studies of 7 different data impersonation and re-balancing strategies for 12 tasks. The last column770

features the model which on average outperforms other strategies. Note that this strategy is not771

the best across the board. For example, due to big imbalance of our offline dataset, the native data772

management strategy (column #3) yields best performance for the over represented tasks, but very773

bad performance for underrepresented tasks.774
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