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Abstract: We introduce Language-Informed Latent Actions (LILA), a framework
for learning natural language interfaces in the context of human-robot collabora-
tion. LILA falls under the shared autonomy paradigm: in addition to providing
discrete language inputs, humans are given a low-dimensional controller – e.g.,
a 2 degree-of-freedom (DoF) joystick that can move left/right and up/down – for
operating the robot. LILA learns to use language to modulate this controller, pro-
viding users with a language-informed control space: given an instruction like
“place the cereal bowl on the tray,” LILA may learn a 2-DoF space where one
dimension controls the distance from the robot’s end-effector to the bowl, and the
other dimension controls the robot’s end-effector pose relative to the grasp point
on the bowl. We evaluate LILA with real-world user studies, where users can pro-
vide a language instruction while operating a 7-DoF Franka Emika Panda Arm to
complete a series of complex manipulation tasks. We show that LILA models are
not only more sample efficient and performant than imitation learning and end-
effector control baselines, but that they are also qualitatively preferred by users.1

Keywords: Language for Shared Autonomy, Language & Robotics, Learned La-
tent Actions, Human-Robot Interaction

1 Introduction

Nearly a million American adults live with physical disabilities, requiring assistance for everyday
tasks like taking a bite of food, or pouring a glass of milk [1] – assistance that robots could provide.
Paradigms for efficient human-robot collaboration that strike a balance between robot autonomy
and human control such as shared autonomy [2, 3, 4, 5] present a promising path towards building
such assistive systems. Unlike full autonomy approaches that enforce a sharp separation between
user intent and robot execution, falling prey to problems of sample efficiency and robustness, shared
autonomy couples a human’s input with automated robot assistance. Consider a kitchen or dining
environment where a high-dimensional (high-DoF) robot such as a wheelchair-mounted manipulator
aids a human who may be physically unable to perform tasks requiring fine-grained manipulation.
While the human can manually teleoperate the arm by fully controlling individual “modes”, or sepa-
rate degrees-of-freedom of the robot’s end-effector, past work has shown this to be unintuitive, slow,
and frustrating [3, 6]. Shared autonomy approaches such as learned latent actions [5, 7, 8] however,
build intuitive low-dimensional controllers for high-DoF robots via dimensionality reduction.

Specifically, learned latent actions models learn state-conditioned auto-encoders directly from
datasets of (state, action) pairs; the encoder takes the current state and action, and compresses it
to a latent action z with the same dimensionality as the human control interface (e.g., 2-DoF). This
is fed to a decoder to try to reconstruct the original high-dimensional action. While these approaches
are reliable and sample efficient, they are limited by their reliance on just the current state: given
tasks like “grab the milk” and “shift the milk to the side” that overlap in state space, these controllers
fail as the models lack sufficient information to disambiguate behavior.

1Additional visualizations and supplemental experiments can be found at the following webpage: https:
//sites.google.com/view/lila-corl21. Code can be found here: https://github.com/siddk/lila.
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Figure 1: [Left] Our breakfast buffet environment with several diverse manipulation tasks. By
providing both natural language input and low-dimensional joystick control [Middle], users dis-
ambiguate between different tasks while retaining the ability to maneuver through the environ-
ment. This is enabled by our [Right] language-informed latent actions (LILA) models that use
auto-encoders to learn language & state-conditioned low-DoF latent spaces for meaningful control.

To address this concern, we consider incorporating natural language within this framework to add an
additional conditioning variable for structuring the control space. Prior works integrate language in
robotics settings for similar purposes within the full autonomy paradigm [9, 10, 11, 12, 13]. Unfor-
tunately, these approaches suffer from poor sample efficiency, failure recovery, and generalization;
many issues that shared autonomy methods including learned latent actions seek to address. By
joining language and latent actions, a user can express an utterance u = “grab the cereal bowl” and
obtain a control space that is both state and language conditioned (Fig. 1 [Right]).

We introduce Language-Informed Latent Actions (LILA), a framework for incorporating language
into learned latent actions. Key to LILA is the principle that language modulates a user’s low-level
controller based on their provided utterance; as intuition, given the utterance “grab the cereal bowl”
as in Fig. 1, our assistive robot might learn a semantically meaningful, low-dimensional (2-DoF)
control space where one dimension (one joystick axis) may control the distance from the robot’s
end-effector to the cereal bowl, whereas the other might control the angle of the end-effector relative
to the bowl such that the robot’s gripper can obtain a solid grasp of the object. Other utterances can
modulate the controller in similar ways – “pour the milk into the cup” might result in a learned
control space where one joystick dimension controls the jug’s pouring angle, while the other may
control its height. Language not only serves as a natural means for a human to communicate their
intent to the robot, but also helps disambiguate across a wide variety of objectives as well, by
inducing language and state-conditioned control spaces.

A core part of our method is its ability to handle diverse, realistic language. To this end, we collect a
small, crowdsourced dataset of natural language descriptions to describe each of our training demon-
strations; we use this real, natural language as the only input while training our models. To allow for
out-of-the-box generalization to novel user utterances such as those that describe similar behaviors
but with different words or phrases, we tap into the power of pretrained models [14, 15]. We per-
form a comprehensive user study across 10 users who use natural language and our learned LILA
controllers to complete a variety of diverse manipulation tasks in a simplified assistive “breakfast
buffet” setting. Our results show that LILA models are not only more reliable, performant, and sam-
ple efficient than fully autonomous imitation learning and fully human-driven end-effector control
baselines, but are qualitatively preferred by users as well.

2 Related Work

We build LILA within a shared autonomy framework [2, 16], applied to assistive teleoperation
[17, 18]. We additionally build off of work at the intersection of language and robotics [19, 20, 21].
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Figure 2: [Left] Stylized example: navigating toward four points on a cross with a 1-DoF latent
action, where disambiguation is required. Standard latent action models fail, while LILA accurately
reaches the corners with the help of language. [Right] LILA decoder architecture. We embed
an utterance using a pretrained language model, then identify the closest exemplar in the training
set via similarity search. We feed the embedding for this exemplar through a feature-wise linear
modulation, or FiLM [46], layer that fuses language and state representations within the decoder.

Shared Autonomy & Assistive Teleoperation. Shared autonomy casts robot control as a collabo-
rative process between humans and robots [2, 4, 16, 22]. While other work focuses on “blending”
human inputs with possibly task-agnostic policies within the same action space [23, 24], in this work,
we focus on assistive teleoperation, where a user is provided a low-dimensional controller (e.g., a
joystick, sip-and-puff device) to directly control a high-dimensional robot manipulator. Using these
controllers for end-effector control – e.g., via operational space control [25] – is incredibly difficult,
requiring frequent mode-switching to control specific robot DoFs [3, 26]. Instead, we adopt learned
latent actions [5, 7, 8, 27, 28] a framework that uses conditional auto-encoders [29] to learn task-
specific latent “action” spaces from demonstrations. These latent spaces match the dimensionality
of the low-DoF interface and provide semantically meaningful control. However, existing methods
fail to differentiate between tasks with overlapping states, hindering the ability to perform diverse
behaviors in a workspace (e.g., manipulating a jug of milk in different ways – pouring, placing in the
fridge, etc.). In this work, we use language for disambiguation; users naturally speak their intent,
conditioning latent action models to produce intuitive control spaces that align with user objectives.

Language-Informed Robotics. A variety of methods have sought to combine language and
robotics, spanning approaches that map language to planning primitives [9, 30, 31, 32, 33], per-
form imitation learning from demonstrations and instructions [11, 34, 35, 36], and pair language
instructions with reward functions for reinforcement learning [12, 37, 38]. Other approaches use
language in more nuanced ways, such as learning language-conditional reward functions directly
[39, 40, 41], or within adaptive frameworks, where language is used to correct or define new be-
havior [42, 43]. This list is not exhaustive; we present further discussion – including approaches
that combine language with other modalities – in the supplementary material. However, all these
approaches fall within full autonomy: after providing an instruction, human users cede control over
to the robot policy, which then takes the actions necessary to perform a task.

While robots trained with these approaches can perform diverse tasks and generalize to new instruc-
tions, it is not without cost. Paramount is sample efficiency; imitation learning approaches often
require hundreds to thousands of demonstrations for learning to navigate [35, 44], and reinforce-
ment learning approaches can require millions of episodes of experience to learn robust policies
[12, 45]. Whereas coarse behaviors are easy to learn, learning to recover from slight deviations from
the training data, or to perform precise motions in a sequence, is incredibly difficult. By casting our
approach, LILA, within a shared autonomy framework instead, we intelligently offload these parts
that are harder for robots – but easier and intuitive for humans – onto the user.

3 Formalizing Language for Assistive Teleoperation

Formalism. We formulate a user’s objective, or task, (on a per-user basis) as a fully-observable,
language-augmented, Markov Decision Process (MDP) M defined by the tuple (S,U ,A, T,R, γ)
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similar to prior work in language-conditional robotics [10, 34, 42]. Let u ∈ U denote a user’s
language utterance provided at the start of each episode, where U is the full set of language utterances
a user could provide to a robot. Let s ∈ S ⊆ Rn be the robot’s state, and a ∈ A ⊂ Rm be the robot’s
action: taking action a in state s results in a next state s′ according to the transition function T (s, a).
Given the language utterance u, the user implicitly defines a reward function R(s, u, a) ∈ R; the
human and robot collaboratively maximize this reward subject to discount factor γ ∈ [0, 1].

Problem Statement. This MDP forms the basis of a shared autonomy task wherein a human is
equipped with a low-dimensional control interface for the robot. Let z ∈ Z ⊂ Rd where d ≪ m be
the human’s control input to the robot, such as the d = 1 DoF controller in Fig. 2. Previous work
on learning latent actions for assistive teleoperation [5, 28] learn a decoder Dec(s, z) : S × Z → A
that maps user low-dimensional inputs z ∈ Z and current state s ∈ S to a high-dimensional action
a ∈ A. However, in situations where state-conditioning is not enough to disambiguate a users’
intent, too low of a control input dimension d may lead to failure. Recalling the milk jug example,
we have multiple different behaviors we could execute if the end-effector were next to the milk. For
example, one might want to pick up the jug, shift it to the side, pour it, etc; conditioning only on the
state with a 2-DoF action space is not enough to recover all possible behaviors.

Instead, we aim to learn Dec(s, u, z) : S × U × Z → A that takes the user’s control input and
utterance u, and predicts the high-DoF action that matches the user’s objective. The utterance u acts
as additional conditioning information, producing control spaces that depend on both language and
state; this circumvents the disambiguation problem above.

4 Language-Informed Latent Actions (LILA)

We are given a dataset of demonstrations, where each demonstration contains an utterance u and
a trajectory τ = {s0, a0, s1, a1 . . . sT }. We split each demonstration into triples of (u, si, ai) and
use these to learn a conditional auto-encoder, consisting of a language-conditional encoder Enc:
S × U × A → Z that maps to a latent z and a decoder Dec: S × U × Z → A that attempts to
reconstruct the original action a. We minimize the mean-squared error between the predicted and
the original action:

LEnc,Dec =
1

N

N∑
i=1

(Dec(si, ui,Enc(si, ui, ai))− ai)
2 (1)

We next discuss how we integrate language into the architecture of the encoder and decoder.

4.1 Integrating Language within the Latent Actions Architecture

We implement the encoder and decoder as multi-layer feed-forward networks, with the ReLU acti-
vation as in prior work [7, 28]. We focus on the decoder here, but the encoder is symmetric. For
the decoder, we first concatenate the robot state s and latent action z, then feed the corresponding
vector through multiple ReLU layers (usually 2-3), upsampling to produce the high-dimensional
robot action. We next discuss how to incorporate language within this simple scaffold.

Pretrained language models such as BERT, T5, and GPT-3 [47, 48, 49] have revolutionized NLP,
providing powerful language representations. Inspired by their success when applied to robotics
and reinforcement learning tasks [38, 50, 51], we use a distilled RoBERTa-Base model [14], from
Sentence-Transformers [15] to encode utterances. This model is fine-tuned on a corpus of para-
phrases, allowing it to pick up on sentence-level semantics. We generate utterance embeddings by
performing mean-pooling over token embeddings for an utterance, as in prior work [38, 50]. We
incorporate these embeddings using feature-wise linear modulation (FiLM) layers [46] that fuse
language information with other features h by mapping language embeddings to parameters (γ, β)
of an affine transformation: h′ = γ ∗ h + β (Fig. 2). Notably, this h is the representation received
after feeding the state and latent action (s, z) through the first layer of the decoder as described
above. Once the language transforms h → h′, we feed h′ to the subsequent layers of the decoder.2

2Implementation can be found in the open-source code repository: https://github.com/siddk/lila.
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Task Name Success Example User Study Input Mapped Training Data
Pick Banana 100% yellow in purple → pick up the yellow banana

and place it into the purple
basket

Pick Fruit Basket 100% bring basket to center of pan → place the basket onto the
tray

Pick Cereal 100% go to the left side of the cream bowl,
go down, grab the cereal bowl, and
place it on the try

→ grab the cereal bowl and
put it on the tray

Pour Bowl 67% pick up the cup of marbles and pour
them into the cereal bowl

→ pick and pour the cup of
white balls into the bowl of
cereal

Pour Cup 100% pick up the clear cup with marbles
in it and pour it in the black mug
with the coffee beans in it

→ pick up the cup and pour
the contents in the mug

Table 1: Example utterances provided by study participants paired with the retrieved exemplar per
§4.1. Success rate refers to the percentage of the time a user study utterance (over all utterances
in the study) was grounded to the correct task via our retrieval method. As each participant only
attempted 2 tasks, success rate can fluctuate significantly, as is the case with the Pour Bowl task.

Nearest-Neighbor Retrieval at Inference. A major concern for work in language-conditioned
robotics is generalizing to novel language inputs. While it may be unreasonable to expect gen-
eralization to completely new tasks, for user-facing systems with a clear set of behaviors seen at
train time as in our work, there is an expectation that any language-informed system is capable of
handling moderate variations of utterances from the training set. To do this, adding linguistically
diverse data has been the gold standard [44, 51]; however, a new class of approaches have emerged
that sidestep additional data requirements by tapping into the potential of pretrained language mod-
els [43, 50]. These approaches frame language interpretation at inference, when interfacing with
real users, as a retrieval problem: each new user utterance u′ is embedded(with the same pretrained
model as above, then used to query a nearest neighbors store containing all training exemplars; once
the nearest neighbor ui has been identified, it replaces u′ as an input to LILA.

The key benefit of such an approach is the minimal mismatch between train and test language inputs:
all “test inputs” are drawn from the training set. This does mean, however, that user utterances that
describe new tasks, or are otherwise unachievable also get mapped to language seen at training.
While this limits the ability to perform novel tasks, it again highlights the benefits of the shared
autonomy paradigm – doubly so, considering the cost of a mistake in an assistive domain like the
one we consider in this work: if, while providing control inputs to the robot, a user feels the robot is
not acting in alignment with the user’s desired objective, they can always stop execution.

5 User Study

We evaluate LILA with a real-world user study on a 7-DoF Franka Emika Panda Arm, on a series
of 5 complex manipulation tasks. Each user is provided a 2-DoF joystick for control. We compare
against a non-learning, end-effector (EE) control baseline where users “mode switch,” controlling
the velocity of 2 axes of the end-effector pose at a given time – [(X, Y), (Z, Roll), (Pitch, Yaw)]. Lan-
guage utterances u are typed into a text console for simplicity; future work could extend this work
by using off-the-shelf speech recognition systems. We also compare against a fully autonomous
imitation learning (IL) strategy where users solely provide language inputs, and the robot attempts
to perform a task without additional input. Ostensibly missing is a no-language variant of the latent
actions model, in keeping with prior work; however, upon evaluating this model, we found it to
be unintuitive and unable to make progress or solve any task, so we omit it from our user study.
However, further experiments and analysis can be found in the supplementary material.3

3Experiments with the no-language baseline and extra analysis showing the necessity of extra conditioning
information can be found here: https://sites.google.com/view/lila-corl21/home/no-lang-baseline
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Figure 3: Quantitative Results. We average success rate [Left] across all sub-tasks for each control
method, and find that LILA is significantly (p < 0.05) more performant. However, the steep drop
in performance when completing the full task shows the difficulty of fine-grained control. We also
calculate jerk as an indicator of controller smoothness, for both user control inputs [Middle] and
end-effector position [Right]. Averaged across tasks and users, we find LILA leads to significantly
smoother control for users than end-effector control.

Environment. Fig. 1 shows our “breakfast buffet” setting, a scaled down version of an assistive
feeding domain. We define 5 tasks: 1) Place Banana: placing the banana in the purple fruit basket,
2) Place Basket: grasping the purple basket by the handles and dropping it on the tray, 3) Place
Bowl: grasping the green cereal bowl by its edge and moving it to the tray, 4) Pour Bowl: pouring
the blue cup of marbles (a proxy for milk) into the cereal bowl positioned on the tray, and 5) Pour
Cup: pouring the blue cup of marbles into the yellow coffee cup. Fig. 1 shows idealized example
trajectories for the Place Bowl (blue) and Place Banana (orange) tasks.

These tasks vary in difficulty, requiring precise grasping and dexterous manipulation. We evalu-
ate partial success based on how many of the following 4 subtasks users are able to complete: 1)
Reaching: touching the desired object, 2) Grasping: executing a successful grasp, 3) Bring to
Target: successfully transporting the manipulated object, and 4) Task Completion.

Demonstration Collection. Both LILA and IL models require learning from (language, demon-
stration) pairs for all 5 tasks. We collect demonstrations kinesthetically as in prior work [7, 28],
recording joint states at a fixed frequency. We initially collected 15 demonstrations per task for each
method. However, on testing the IL model, we found it incapable of performing even rudimentary
reaching behaviors. To give IL the best chance, we collected twice the number of demonstrations
(30 per task; 150 total), requiring an extra 2 hours of labor.

Crowdsourcing Language Annotation. To build a natural language interface for human-robot
collaboration, we collect language annotations for each task by crowdsourcing utterances. Our goal
was to capture the diverse ways users may refer to the objects and actions our tasks entail without
any additional information, simulating a real user interacting with our environment for the first time.
We recruited 30 workers on Amazon Mechanical Turk, showing only a video of a recorded demon-
stration, and asked them to provide “a short instruction that you would want to provide the robot to
complete this task independently in the box below.”. However, this procedure resulted in some an-
notations containing “spam”, or extremely out-of-domain text. To address this without introducing
our own bias on what constitutes “spam”, we filtered the data to identify workers who consistently
provided “noisy” annotations, measured by the cosine distance between the sentence embedding
(using any pretrained embeddings) of an annotator’s provided text and the average sentence em-
bedding aggregated over all other annotators for a given video. We used annotations from the 15
least “noisy” annotators under this metric as our ground-truth utterances. Further details, as well
as example “spam” annotations that were filtered out, are in the supplementary material. Table 1
provides examples of crowdworker utterances from our final dataset (rightmost column).

Participants & Procedure. We conducted our study with a participant pool of 10 university stu-
dents (5 female/5 male, age range 23.2 ± 1.87). Four subjects had prior experience teleoperation a
robot arm.4 We conduct a within-subjects study, where each participant completed 2 tasks, chosen

4Due to the COVID-19 pandemic and university restrictions, only those with pre-authorized access could
participate. See the COVID-19 considerations document in the supplementary material for more details.
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Figure 4: Qualitative Results. Using a 7-point Likert scale, we ask users to evaluate each of the
3 control methods for different properties. With high significance (p < 0.05), we find that LILA
outperforms both imitation learning and end-effector control baselines on several metrics, including
degree of helpfulness provided and ease in completing tasks.

randomly, with each of the three methods. Users were given 2 trials to complete each tasks, and an
allotted 3 minutes per control strategy to practice. Users were also given a sheet describing con-
troller inputs and details for each control method, which we include in the supplementary material.
For imitation learning and LILA controllers, which require language inputs, participants provided a
natural language utterance which which a proctor entered into the model – participants were allowed
to verify the proctor entered their input accurately. This user-provided language utterance is used as
the query in the nearest-neighbor retrieval described in §4.1; the retrieval set consists of all training
utterances collected via the crowdsourcing procedure above. In addition to tracking quantitative
success rates (normalized, based on progress relative to each of the 4 defined subtasks), time taken
per task, and controller logs, we ask users to fill out a qualitative survey evaluating each method at
the end of each study. We present both quantitative and qualitative results below.

Quantitative Results. Fig. 3 summarizes our objective results. We evaluate both full- and partial-
task success rates for each task across all control methods, in addition to computing smoothness
metrics directly on the logged user inputs and robot actions. Smoothness is a measure for intu-
itiveness when measured on user 2-DoF joystick inputs, ease of use when measured on the robot’s
end-effector pose, and implicit safety: a trajectory with high discontinuity in acceleration can lead to
rapid, unpredictable changes in the environment. Smoothness is negatively correlated with jerk, the
time-derivative of acceleration. We compute jerk by taking the second-order derivative of velocity,
and report average jerk across fixed windows. Our results show that LILA significantly (p < 0.05)
outperforms both methods across all sub-tasks, and is also smoother to use both in control input
space (2-DoF input) and end-effector space (6-DoF). However, the relative drop in performance of
LILA for the final sub-task “Complete Task” shows the room for improvement in fine-grained con-
trol, such as pouring motions. Additionally of note is the poor performance of imitation learning.
To explore this fully, we perform an ablation, and show that sample inefficiency is a likely cause
– especially since we are in a low-data regime. These results and arguments can be found in the
supplementary material.5

Qualitative Results. Fig. 4 summarizes our subjective results. We administered a 7-point Likert
scale survey after users finished performing tasks with each method; this survey included questions
around the perceived helpfulness of the model in completing the tasks (helpful) and whether the
participant would use the control method again (use again). The results show that LILA outperforms
both imitation learning and end-effector control across most qualitative metrics, with significant
results (p < 0.05) marked with an ∗. We additionally visualize samples of the observed end-effector
trajectories by individual users collected during our study for 3 of our 5 tasks in Fig. 5. Across all
tasks, LILA results in smoother end-effector trajectories than end-effector control, while imitation
learning comes close to the target object but is unable to complete the entire trajectory for the task.

5Additional experiment videos, and a results of the imitation learning ablation can be found here:
https://sites.google.com/view/lila-corl21/home/il-ablation
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pour cup pick cereal pick banana 

LILA Imitation Learning End Effector

Figure 5: Trajectories from one user comparing three different control methods 3 out of our 5 tasks
– Pour Cup, Pick Cereal, and Pick Banana. LILA provides smooth actions that immediately
approach the target object for a task, while end-effector control shows more rigid motions that result
in users diverging from their intended paths. While imitation learning also enables smooth motions,
it often fails shortly after reaching objects, hence the shortened trajectories.

6 Discussion

Summary. We present Language-Informed Latent Actions (LILA) a framework that marks the
first step in combining the expressiveness and naturalness of language for specifying and execut-
ing on a human user’s objective within the context of assistive teleoperation. Our user study re-
sults show that when compared to fully autonomous, imitation learning approaches, LILA is more
sample-efficient and performant, training on half the number of task demonstrations, but obtaining
significantly higher success rates. Compared with no-learning end-effector control methods, we
again show LILA’s effectiveness at obtaining high success rates, but also demonstrate its ability to
produce intuitive low-dimensional control spaces from language input. Qualitatively, we find that
users prefer LILA to alternative methods across the board, opening the door for additional work on
language & latent actions.

Limitations and Future Work. Currently, LILA uses language as a mechanism for task disam-
biguation – in the current results, there is no mechanism for generalizing to completely unseen
tasks or language specifications. We believe that the ability to disambiguate with language, and the
integration of language within the latent actions framework is a strong research contribution, and
hope that future work looks to dynamic states – perhaps by leveraging visual latent actions [28] –
and to adapting to new utterances and tasks dynamically [43, 52]. Furthermore, while users found
LILA intuitive and natural, they found themselves wanting to further modulate the robot’s behavior
with language instructions during the course of execution. Many users, upon seeing the robot make
slight deviations from a desired path would instinctively provide spoken corrections – “a little to the
right”, “no, grasp it by the handle!” – indicating a desire for multi-resolution language control.

Shared Autonomy and LILA. LILA fits within the shared autonomy paradigm, where the role of
language has been underexplored. With LILA and shared autonomy approaches in general, humans
retain agency – they are responsible for robot motion, and if the robot moves in a way that is not
safe, or does not align with their objectives, they stop providing control and possibly reset, give a
new instruction, or drop into a more complex control mode. Behavior is interpretable – the latent
actions model, critically informed by language, produces intuitive control spaces that humans can
quickly grasp. Finally, language is natural – users specify their objectives as they would if speaking
to another person, and the robot uses that language to shape their control space. These properties
– preserving agency, maintaining interpretability, and leveraging the expressive and natural features
of language for specifying objectives – are critical for widespread human-robot collaboration, and
we hope this work presents a concrete step towards achieving that goal.
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