
A Derivations of Equation (10)

By representing Jπs(st) = ṽπs(st), Equation (9) can be derived by successor states as follows:

Jπs(st) = ṽπs(st) = Eπs [Gt + wsHπs(at|st)]
= Eπs [r(st, at) + wshπs(at|st) + γ{Gt+1 + wsHπs(at+1|st+1)}]
= Eπs [r(st, at) + wshπs(at|st) + γṽπs(st+1)], (21)

where Equation (21) is the Bellman equation for ṽπs(st). By applying the modified Bellman backup
operation in [23] to Equation (21), then ṽπs(st) is identical to the soft state value function in [23] as

Jπs(st) = ṽπs(st) = Eπs [q̃πs(st, at) + wshπs(at|st)] (22)

where q̃πs(st, at) = r(st, at) + γEst+1∼p[ṽπs(st+1)] is the soft Q-function for πs.

B Experimental Details

In this section, we describe experimental details. For the implementation, we use Pytorch as a deep
learning tool and Coppeliasim as a robotic simulator, and we conduct experiments on a workstation
with Intel i9-7920X CPU and Nvidia TITAN Xp GPU.

B.1 Network architectures

B.1.1 Actor networks

We use actor networks for all the methods we used as a three-layered MLP of size 64 with ReLU
activations except the last layer. The last layer outputs two heads, mean and standard deviation, for
an action distribution. Here, the action distribution is designed by a normal distribution.

B.1.2 Critic networks

We design critic networks for all the methods we used as a two-layered MLP of size 64 with ReLU
activations except the last layer.

B.1.3 Discriminator network for DIAYN

When utilizing DIAYN, we design a discriminator network as a two-layered MLP of size 64 with
ReLU activations except the last layer. The last layer outputs two heads, mean and standard devia-
tion, for a skill distribution, where each output has L-dimensionality size. The skill distribution is
designed by a normal distribution.

B.2 Hyperparameters

Hypermaraters are summarized in Table 1.

Table 1: Hyperparameters

Parameters Value

learning rate 3 · 10−4

gradient steps 50
batch size 256
discount factor 0.99
target smoothing coefficient 0.005
replay buffer size 103

L-dimensionality for DIAYN 5
optimizer Adam

11

B.3 Training

The total number of steps for training is 106 and the maximum steps per episode is 102. An episode
ends when the task fails or succeeds. Here, the task fails when one of the following cases occurs:
(1) the task does not succeed until the episode reaches the maximum step and (2) a state corresponds
to one of the failure conditions of the task. In success case that the robot completes a given task,
a huge reward is given for the success. Whenever an episode ends, each method updates its own
neural network models.

C Environment Details

In this section, we describe state-action spaces, a reward design, and a heuristic information design
for more detailed explanation.

C.1 State-action spaces

As we mentioned in the manuscript, the environment for a task contains three types of objects, such
as a robot, a object, and a detection sensor in a target position. A state and an action are described
in more detail as following sections.

C.1.1 State

The state consists of three types of information, as robot information, object information, and target
position information. A size of the robot information is 29, which includes information of the arm
and the gripper. The arm information consists of 6 joint angular positions and 6 joint angular veloci-
ties. The gripper information includes 3-dimensional positions, 4 quaternions, 3 position velocities,
and 3 rotation velocities of an end-effector. In addition, the gripper information includes 2 joint
positions and 2 joint velocities of fingers attached at the end-effector.

A size of the object information is 13, which includes 3-dimensional positions, 4 quaternions, 3
position velocities, and 3 rotation velocities of the object. A size of the target position information
is 13, which includes 3-dimensional positions, 4 quaternions, 3 position velocities, and 3 rotation
velocities of the detection sensor placed on the position.

C.1.2 Action

The action is based on a velocity control for the arm joints and a binary signal for the gripper’s
fingers. A size of the action is 7, which includes 6 joint velocities for the arm and 1 binary signal for
the gripper indicating open or close. To bound the action in the range (−1, 1), we apply hyperbolic
tangent function as the same way in SAC.

D Details of Pick-and-Lift

D.1 Task design

As shown in Figure 4, the environment of Pick-and-Lift consists of a single UR3 arm with 6 DoF
including the two-finger gripper, a cube object on a table, and a target position. To succeed the
task, successive hierarchical sub-tasks are required, such as reaching out the gripper for the cube,
grasping stably the cube, and lifting the cube without pitching, and moving and exactly placing the
cube to the target position. A failure condition is defined as ”the cube falls under the table” or ”the
robot moves the cube by pushing not grasping”.

D.2 Reward design

We design the reward of Pick-and-Lift as the sum of dense and sparse rewards. As we mentioned
in the manuscript, the rewards for reaching and moving are designed by dense rewards and the
reward for grasping is designed by sparse reward. In detail the rewards for reaching and moving are

12

(a) reaching the cube (b) grasping the cube (c) moving to the target position

Figure 4: Pick-and-Lift: it requires reaching out the gripper for the cube, grasping stably the cube,
and moving and exactly placing the cube to the target position.

designed as

rreaching(Og, Oc) = −
√(

pos(Og)− pos(Oc)
)2
,

rmoving(Oc, Ot) = −
√(

pos(Oc)− pos(Ot)
)2
,

where pos(·) is 3-dimensional positions, Og is the gripper, Oc is the cube, and Ot is the target
position. The reward for grasping is designed as

rgrasping(Oc) =

{
1, for the case of the gripper grasping Oc
0, for otherwise

,

where a touch sensor is used in the gripper to recognize whether the gripper grasps the cube.

To encourage a policy to complete the task as soon as possible, a success reward is designed as

rsuccess(Oc, Ot) =

{
Tmax − step(t), for the case of Oc located in Ot
0, for otherwise

,

where Tmax is the maximum number of steps per episode, step(t) is the number of steps taken up
to now, and a detection sensor is used to recognize whether the cube is located in the target position.
If the task is succeed quickly, the higher success reward is given.

To support the cube to be placed in the gripper, an auxiliary reward for the gripper’s fingers is
designed as

rfingers(Oc) = − cosψ(Of , Oc),

where, Of is the gripper’s fingers, and ψ(Of , Oc) is an angle between two vectors from the cube to
two fingers of the gripper. If the cube is located in the center of two fingers, the angle is 180 degrees
and the auxiliary reward for fingers is 1.

Thus, the reward of Pick-and-Lift is given as

r = rreaching(Og, Oc) + rfingers(Oc) + rgrasping(Oc) + rmoving(Oc, Ot) + rsuccess(Oc, Ot).

D.3 Heuristic information design

Heuristic information is a function of a state, zt = f(st). The function can be designed to include
physical relationship between a robot and objects, and binary signals representing specific states.
Using the reward components in the reward design, physical relationships are easily represented as

fdistance(Oi, Oj) =

√(
pos(Oi)− pos(Oj)

)2
,

fgrasping(Oi) = rgrasping(Oi),

ffingers(Oi) = rfingers(Oi),

where Oi and Oj can be the gripper, the cube or the target position.

In addition, to give additional physical information for the gripper, a function for a horizontal pose
of the gripper is designed as

fgripper = cosψ(gv, uv),

13

where gv is a unit vector vertical to the gripper, uv is a unit vector [0 0 1], and ψ(gv, uv) is an angle
between the two vectors. If the gripper’s pose is horizontal, gv is equal to uv and fgripper is equal
to 1.

Based on the above physical information, we compose the heuristic information as

zt = f(st) =

fdistance(Og, Oc)
fdistance(Oc, Ot)
fgrasping(Oc)
ffingers(Oc)
fgripper

 . (23)

Although we use the heuristic information with size 5 in the experiments, the heuristic information
can be extended without limitation by defining and appending new physical information, such as
angular positions and state indicators for the components in the environment.

D.4 Effect of a simple combination of heuristic information with SAC and DIAYN

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of episodes

200

100

0

100

200

Ep
iso

de
 re

wa
rd

EBE-AC(0.1)
EBE-AC(0.2) w/ DIAYN
SAC
DIAYN
SAC w/ z
DIAYN w/ z

Figure 5: Episode rewards comparisons including SAC with z and DIAYN with z.

In addition to the experiments on our method, we conduct additional experiments on SAC with z
and DIAYN with z to verify the performance of our method, where z is heuristic information. The
methods with z use a concatenated input as s′ = (s, z), which means a simple combination of s
with z.

Figure 5 represents episode rewards including SAC with z and DIAYN with z. As observed in the
comparisons, the methods with z show faster convergences than the methods without z for SAC
and DIAYN. Although the methods with z have the enhanced convergence speeds, our methods for
EBE-AC(0.1) and EBE-AC(0.2) with DIAYN show faster convergences than the methods with z.
Therefore, we can conclude that our methods are more sample-efficient than other methods, such as
the simple combinations of SAC and DIAYN with heuristic information, because our methods use
two types of policies and temperature optimization. In addition, we can say that our methods use
heuristic information more efficiently.

D.5 Effect of temperature and probability for selecting policy with bounded exploration

We show additional results for EBE-AC methods according to the probability for selecting policy
with bounded exploration pm(z) = ε in Equation (5) and the temperature wz for the entropy in
Equation (1). In Figure 6, multiple ε in EBE-AC(multiple ε) means that ε is changed in evenly
divided intervals for the total number of training steps. In addition, wz = 0 means that the informa-
tion theoretic reward does not consider the entropy of at for given st and zt, but considers only the
mutual information between at and zt for given st.

As observed in Figure 6, EBE-AC(0.2) for wz = 0 does not have good episode rewards. The
temperature wz = 0 affects to Equations (12) and (16). For the case of wz = 0, the soft value

14

0 1000 2000 3000 4000 5000 6000
Number of episodes

200

100

0

100

Ep
iso

de
 re

wa
rd

EBE-AC(0.2) for wz = 0
EBE-AC(0.0,0.1,0.2,0.3)
EBE-AC(0.2,0.4,0.6,0.8)
EBE-AC(0.1)
EBE-AC(0.2)
EBE-AC(0.5)
SAC

Figure 6: Episode rewards comparisons for EBE-AC methods according to ε and wz .

function in Equation (12) has only a negative weighted entropy, and the constraint in Equation (16)
is removed. Due to these modifications, the entropy of at for given st and zt does not have lower
bound. It means that the policy with zt is not encouraged to explore action spaces, even though at
has a dependency on zt. Thus, only the consideration of the mutual information between at and zt
for given st can not guarantee good performances.

We have conducted additional experiments on our proposed method with different values of ε, as
shown in Fig. 6, in order to obtain better performance for our proposed method. Empirically, we
could gain the best performance for EBE-AC methods with the values ε = 0.1 and 0.2 for EBE-AC
and EBE-AC with DIAYN, respectively. We expect further improvements of the performance for
our proposed method via an optimization for ε. Here, we note that our main contributions of this
manuscript are the utilization of two types of policies with and without heuristic information and the
derivation of dependency between the policies based on temperature optimization.

D.6 Additional results

Figure 7a represents a training curve for episode lengths. As shown in Figure 7a, each method has
a different episode length over the number of episodes due to the terminate conditions8. The case
of an episode length equal to 100 means the task failure. In other words, many training steps are
spent in the episode and it leads to a decrease in opportunities to experience new episodes. Due to
the decrease in opportunities to experience new episodes, SAC having the small number of episodes
obtains low episode rewards as shown in Figure 2b.

Figures 7b-7d represent training curves for three types of rewards, which are the components of
the episode rewards9. As shown in Figure 7b, all the methods have good rewards for reaching the
cube. However, the performances of the methods are represented differently in Figures 7b and 7c.
Some methods including SAC maintain high rewards for grasping the cube, but these methods can
not obtain the rewards for moving the cube to the target position. The high rewards for grasping
means that the robot holds the cube in the gripper. This case is shown that these methods are stuck
in local optimums. EBE-AC(0.2) with DIAYN, EBE-AC(0.1) and DIAYN do not maintain high
rewards for grasping, but obtain the rewards for moving. It means that these methods find better
optimums than those of the other methods. EBE-AC(0.2) with DIAYN and EBE-AC(0.1) pass the
local optimums before DIAYN in order to pursue the success reward at the end of the episode.
However, DIAYN spends more time to obtain the rewards for grasping as shown in Figure 7c. For
this reason, EBE-AC(0.2) with DIAYN and EBE-AC(0.1) obtain slightly lower episode rewards than
DIAYN in Figure 2a, but our methods reach much faster the success condition than DIAYN.

8The episode length means the number of steps per episode. For all methods, the sum of the episode lengths
over the number of episodes are equal to the total number of steps for training

9Because the success condition is the state that the robot moves the cube to the target position, the reward
for moving the cube to the target position include the huge success reward at the end of the episode.

15

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of episodes

0

20

40

60

80

100

120

140

160

Ep
iso

de
 le

ng
th

EBE-AC(0.1)
EBE-AC(0.2) w/ DIAYN
SAC
DIAYN

(a) Episode lengths

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of episodes

50

40

30

20

10

0

Re
wa

rd
 fo

r r
ea

ch
in

g
ob

je
ct

EBE-AC(0.1)
EBE-AC(0.2) w/ DIAYN
SAC
DIAYN

(b) Reward for reaching the cube

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of episodes

20

0

20

40

60

80

100

120

140

160

Re
wa

rd
 fo

r g
ra

sp
in

g
ob

je
ct

EBE-AC(0.1)
EBE-AC(0.2) w DIAYN
SAC
DIAYN

(c) Reward for grasping the cube

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of episodes

50

0

50

100

150

200

Re
wa

rd
 fo

r m
ov

in
g

to
 ta

rg
et

 p
os

iti
on

EBE-AC(0.1)
EBE-AC(0.2) w/ DIAYN
SAC
DIAYN

(d) Reward for moving the cube
to the target position

Figure 7: Training curves for Pick-and-Lift according to the number of episodes.

For all Figures, EBE-AC(0.2) with DIAYN has lower variances than the other methods. Especially,
EBE-AC(0.2) with DIAYN has very low variances in the rewards for grasping as shown in Figure
7c, which is designed by the sparse reward. It means that EBE-AC combined with DIAYN improve
not only the sample efficiency but also the robustness.

E Additional Experiments: Pick-and-Drag

E.1 Task design

In order to validate our method, we present another example task “Pick-and-Drag”, in which there
are a single UR3 arm, a cube object, a stick, and a target position, as shown in Figure 8. A success
condition of the task is “the cube is placed at the target position”. To succeed the task, the robot arm
should pick up the stick and drag the cube by using the stick, because the length of the arm is not
sufficient to move the cube to the target position. A failure condition is defined as ”the cube falls
under the table” or ”the robot drops the sticks on the table”.

E.2 Reward design

We design the reward of Pick-and-Drag in the same manner as that of Pick-and-Lift. Thus, the
reward of Pick-and-Drag is easily defined as

r = rreaching(Og, Os) + rfingers(Os) + rgrasping(Os)

+ rmoving(Os, Oc) + rmoving(Oc, Ot) + rsuccess(Oc, Ot),

where Os is the stick.

16

(a) reaching the stick (b) grasping the stick (c) dragging to the target position

Figure 8: Pick-and-Drag: it requires reaching out the gripper for the stick, grasping stably the stick,
and dragging and exactly placing the cube to the target position by using the stick.

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of episodes

300

200

100

0

100

200

300

Ep
iso

de
 re

wa
rd

EBE-AC(0.1)
EBE-AC(0.2) w/ DIAYN
SAC
DIAYN

(a) Episode rewards

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of episodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Su
cc

es
s r

at
e

EBE-AC(0.1)
EBE-AC(0.2) w DIAYN
SAC
DIAYN

(b) Success rates

Figure 9: Training curves for Pick-and-Drag according to the number of episodes.

E.3 Heuristic information design

We design the heuristic information of Pick-and-Drag in the same manner as that of Pick-and-Lift.
Thus, the heuristic information of Pick-and-Drag is easily defined as

zt = f(st) =

fdistance(Og, Os)
fdistance(Os, Oc)
fdistance(Oc, Ot)
fdistance(Os, Ot)
fgrasping(Os)
ffingers(Os)
fgripper

 . (24)

E.4 Experimental results

Figure 9 represents training curves for episode rewards and success rates. In Figure 9a, a range of
the episode reward in y-axis is roughly divided into three cases as follows:

• Range 1. (episode reward < -100): The robot tries to reach the stick.

• Range 2. (-100 < episode reward < 0): The robot tries to grasp the stick.

• Range 3. (0 < episode reward): The robot tries to move the cube to the target position by
using the stick.

Compared with SAC and DIAYN, EBE-AC methods reach Range 2 faster than the other methods.
SAC can not reach Range 3 and it means that SAC is stuck in local optimums Range 2 during
training. EBE-AC(0.1) and EBE-AC(0.2) with DIAYN methods reach Range 3 faster than DIAYN.
In Range 3, EBE-AC methods have lower variances than DIAYN so that we can say EBE-AC is

17

more robust than DIAYN. The fluctuations in Range 3 are caused by task failures, in which the
robot drops the stick while dragging the cube.

In Figure 9b which represents the success rates, it is also observed that the task failures in Range
3 affect success rates and EBE-AC methods have better success rates than DIAYN. Compared to
Figure 2b, the success rates in Figure 9b are slightly lower than those in Figure 2b, because Pick-
and-Drag is more difficult than Pick-and-Lift due to the interaction between the stick and cube.

Through the additional experimental results, we confirmed that the EBE-AC methods outperform
the baselines in terms of the sample efficiency for not only Pick-and-Lift but also Pick-and-Drag.

18

	Introduction
	Related Work
	Preliminaries
	Notation
	Objective function

	Exploration-Bounded Exploration Actor-Critic
	Problem decomposition
	Learning with exploration entropy
	Learning with bounded exploration entropy

	Automating entropy adjustment
	Exploration-bounded exploration actor-critic algorithm

	Experiments
	Policy evaluation
	Temperature Comparison

	Conclusion
	Derivations of Equation (10)
	Experimental Details
	Network architectures
	Actor networks
	Critic networks
	Discriminator network for DIAYN

	Hyperparameters
	Training

	Environment Details
	State-action spaces
	State
	Action

	Details of Pick-and-Lift
	Task design
	Reward design
	Heuristic information design
	Effect of a simple combination of heuristic information with SAC and DIAYN
	Effect of temperature and probability for selecting policy with bounded exploration
	Additional results

	Additional Experiments: Pick-and-Drag
	Task design
	Reward design
	Heuristic information design
	Experimental results

