
3x3	conv,	
stride	1

3x3	
conv,	
stride	1	

3x3	
conv,	
stride	1	

Max	Pool	2D Max	Pool	2D

(16,	24,	24) (16,	24,	24) (16,	12,	12)

𝑎

𝜙#(𝑠)

3	fully	connected
ReLU	layers

(256,	256,	256)

𝑄(𝑠, 𝑎)
Im

ag
e	
in
pu

t	(
s)

𝜙)(𝑠)

~	𝑧

Information	Bottleneck 𝑧~	𝒩 𝜙# 𝑠 , 𝑑𝑖𝑎𝑔 𝜙) s
4x4	conv,	
stride	2

4x4	
conv,	
stride	2	

3x3	
conv,	
stride	1	

(64,	24,24) (128,	12,	12)

ReLU ReLU

ReLU

(128,	12,	12)

5	fully	connected
ReLU	layers

(1024,	512,	256,	
256,	256)

3x3	
conv,	
stride	1	

1x1	
conv,	
stride	1	

(64,	12,	12) (128,	12,	12)

Residual	Block

ReLU

Residual	
Block

Im
ag
e	
in
pu

t	(
s)

Figure 10: Architectures for addressing (Left) underfitting, using an information bottleneck regu-
larizer, and (Right) overfitting, using a residual network.

Figure 11: Standard architecture for the Q-function used in our experiments. We build on the code
provided in Singh et al. [3] and utilize their default architecture.

Appendices
A Additional Discussion of Overfitting and Underfitting

In this section, we shall discuss additional details pertaining to various metrics and protocols for
detecting overfitting and underfitting discussed in Section 3. We first formalize our insight as to why
decreasing Q-values as a result of more gradient steps are indicative of overfitting in offline RL and
then provide additional discussion about underfitting.

A.1 Overfitting in CQL

Our proposed workflow in Section 3 characterizes overfitting in CQL as a non-monotonic, first
increasing and then decreasing trend in the average dataset Q-value. To understand why this trend
can be used to characterize overfitting, i.e., a reduction in the test objective J(π) (the actual return of
the learned policy) as per our definition in Section 2, Table 1, we first characterize conditions under
which CQL (Equation 1) Q-values averaged over the samples in the training dataset cannot exhibit
a decreasing trend with more iterations of of training. To derive these conditions, we operate in the
regime where the policy πφ is trained to exactly maximize the Q-value, Es∼D,a∼πφ(·|s)[Qθ(s,a)].

Notation and Assumptions. In order to understand the trend in the average dataset Q-value ob-
served in our experiments, we consider a slightly modified variant of Equation 1 marked with indices
that denote the iteration of learning k = 1, 2, · · · :

Qk+1 ← arg min
Q

α (Es,a∼D,µ[Q(s,a)]− Es,a∼D[Q(s,a)])+
1

2
Es,a,s′∼D

[
(Q− BπkQk)2

]
,(5)

where πk is the policy that maximizes the current Q-function, Qk. Thus, variant of CQL shown
in Equation 5 implements exact policy optimization at each step of training k: ∀s,a, πk(a|s) =
δ[a = arg maxa′ Q

k(s,a′)]. Arguably, this is closer to how CQL (and other actor-critic algorithms)
are performed in practice – rather than performing a complete evaluation of the learned policy and
only then performing policy improvement, these practical approaches perform alternating iterations
of policy evaluation and improvement. The Q-learning variant of CQL [2] actually performs exact
policy improvement for each step, which is exactly what is shown in Equation 5. As a result, we

13

analyze Equation 5. Our goal will be to understand the conditions under which the learned Q-values,
averaged over the dataset, can exhibit a decreasing trend with more training.
Theorem A.1 (Characterizing a decreasing trend in Q-values). When running CQL using updates
in Equation 5 in a tabular setting, using the policy πk(a|s) = δ[a = arg maxa′ Q

k(s,a′)], the
expected Q-value on the dataset, i.e., f(k) := Es,a∼D[Qk(s,a)], is a non-decreasing function of
iteration k, i.e., f(k + 1) ≥ f(k), whenever either of the two conditions hold:

1. The learned average dataset Q-value is smaller than the Monte-Carlo return of the dataset:
f(k) ≤ 1

1−γEs,a∼D[r(s, a)] (expected dataset return), or,

2. The gap between the maximal value of the learned Q-function maxaQ
k(s,a) and the Q-

function value at a different action a′ at a given state s in expectation over all dataset states
is large enough, i.e., Es∼D[maxaQ

k(s,a)−Qk(s,a′)] ≥ ζ, where ζ depends inversely on
the density of the action arg maxaQ

k(s,a) under the behavior policy πβ(·|s).

Proof. To prove this result, we build on the analysis in Kumar et al. [2] and find that the Q-function
at iteration k + 1 can be written as follows:

Qk+1(s,a) :=
(
BπkQk

)
(s,a)− α

(
µ(a|s)
πβ(a|s) − 1

)
,

where πβ(a|s) denotes the behavior policy action-conditioned on state marginal in the dataset D.
The average Q-value in the dataset is thus given by:

f(k + 1) = Es,a∼D[Qk+1(s,a)]

= Es,a∼D

[(
BπkQk

)
(s,a)

]
− αEs∼D,a∼πβ(a|s)

[
µ(a|s)
πβ(a|s) − 1

]
= Es,a∼D

[
r(s,a) + γEs′∼P (s′|s,a)[max

a′
Qk(s′,a′)]

]
− 0.

Now, we consider the behavior of the above quantity f(k), when the reward function r(s,a) ≥ 0,
and in particular, for our domains of interest, ∀s,a, r(s,a) = 0 or r(s,a) = 1. When the initial
value function ∀s,a, Q0(s,a) = 0, we now wish to characterize conditions under which the Q-
function iterates Q1, · · · , Qk, · · · are monotonically increasing in expectation, i.e.,

∀s,a, Es,a∼D[Q1(s,a)] ≤ Es,a∼D[Q2(s,a)] ≤ · · · ≤ Es,a∼D[Qk(s,a)] ≤ · · · .
We can analyze this progression using mathematical induction. To first prove the base case, note
that since Q0(s,a) = 0 (initialization), f(1) = Es,a∼D[r(s,a)], and

f(2) = Es,a∼D[r(s,a) + γmax
a′

Q1(s′,a′)] ≥ Es,a∼D[r(s,a)]︸ ︷︷ ︸
=f(1)

+γ Es′,a′∼DPπβ [Q1(s′,a′)]︸ ︷︷ ︸
≥0

,

since in expectation, Es′,a′∼DPπβ [Q1(s′,a′)] = Es,a∼D[r(s,a)], where (s′,a′) ∼ DPπβ = D,
since the dataset distribution is the stationary state-action visitation distribution of the behavior pol-
icy πβ . Thus, we find that f(2) ≥ f(1), proving the base case for induction,

Now we assume that upto a given k, ∀j ∈ [k], f(j) ≥ f(j − 1). Then, our aim is to derive the
condition that f(k + 1) ≥ f(k). To show this, we write out the expressions:

f(k + 1) = Es,a∼D

[
r(s,a) + γEs′

[
max
a′

Qk(s′,a′)
]]

f(k) = Es,a∼D

[
r(s,a) + γEs′

[
max
a′

Qk−1(s′,a′)
]]
, (6)

and then expand f(k + 1)− f(k):

f(k + 1)− f(k) = Es,a∼D[r(s,a)] + γEs′ [max
a′

Qk(s,a)]− Es,a∼D[Qk(s,a)]

= Es,a∼D[r(s,a)]− (1− γ)f(k)︸ ︷︷ ︸
(a)

+γ Es∼D

[
max

a
Qk(s,a)− Eπβ [Qk(s,a)]

]
︸ ︷︷ ︸

(b)

.

14

First, by definition note that (b) ≥ 0. And term (a) ≥ 0 for iterations k where f(k) ≤ Es,a∼D[r(s,a)]
1−γ ,

which occurs whenever the average dataset Q-value, f(k) is smaller than the dataset discounted cu-
mulative reward. Thus, whenever the dataset Q-value is smaller than the average dataset discounted
cumulative reward, (a) ≥ 0, (b) ≥ 0 implying that f(k + 1) ≥ f(k).

Now, let’s consider the case when the average dataset Q-value is smaller than the expected cumu-
lative reward in the dataset and characterize the conditions under which the Q-values will exhibit a
non-decreasing trend in this case. To characterize this condition, we begin with a direct difference
of the expressions for f(k) and f(k − 1) in Equation 6 and analyze the difference in Q-values from
consecutive Q-function iterates at arg-max actions a′ at the next state s′. For all iterations k, where
(a) ≤ 0, i.e., the average dataset Q-value is higher than the dataset discounted cumulative reward,
consider the expressions for f(k + 1) and f(k) from Equation 6 again, and note that there are two
cases for each state s′ appearing in the RHS of the expressions:

Case 1: arg maxa′ Q
k(s′,a′) = arg maxa′ Q

k−1(s′,a′): In this case, using the expression for the
Q-function obtained in CQL, we can express Qk as:

Qk(s′,a′)−Qk−1(s′,a′) = γEs′′

[
max
a′′

Qk−1(s′′,a′′)−max
a′′

Qk−2(s′′,a′′)
]
,

which is a similar expression to what already exists in an expansion of f(k) − f(k − 1) analogous
to Equation 6.

Case 2: arg maxa′ Q
k(s′,a′) 6= arg maxa′ Q

k−1(s′,a′): Let a1 = arg maxa′ Q
k(s′,a′) and let

a2 = arg maxa′ Q
k−1(s′,a′). Then, we can split their difference as:

Qk(s′,a1)−Qk−1(s′,a2) = Qk(s′,a2)−Qk−1(s′,a2)︸ ︷︷ ︸
(i)

+Qk(s′,a1)−Qk(s′,a2)︸ ︷︷ ︸
(ii)

.

Term (ii) in the above expression is non-negative, since a1 is the action with the highest Q-value
Qk at state s′. Term (i) in the above expression can be split further:

Qk(s′,a2)−Qk−1(s′,a2) := − α

πβ(a2|s′)
+ γEs′′

[
max
a′′

Qk−1(s′′,a′′)−max
a′′

Qk−2(s′′,a′′)
]
.

The second term in the above expression is similar to the term in f(k) − f(k − 1), and thus if the
offset − α

πβ(a2|s′) does not fully compensate for the increase due to term (ii), by induction we can
claim that f(k + 1) ≥ f(k) if the inequality holds for all j ≤ k.

To summarize, we can group the two cases to list down conditions under which the learned average
dataset Q-value can decrease in a given iteration k of CQL. This means that it is not necessary that
the Q-values would decrease when these conditions are met, but if these conditions are not met, then
the Q-values cannot necessarily decrease with more training. For a given iteration k of CQL, the
average Q-value under the dataset can decrease when:

f(k) ≥ Es,a∼D[r(s,a)]

1− γ and Es′∼D

[
max

a
Qk(s′,a)−Qk(s′,a2)

]
≤ Es′

[
α

πβ(a2|s′)

]
︸ ︷︷ ︸

ζ

.(7)

Thus, if the difference of Q-values across different actions in expectation over all states in the dataset
is large enough, the condition in Equation 7 is not met and we would expect Q-values to increase,
and not decrease. Similarly, in the phase of learning where the Q-value is smaller than the average
dataset return, we would expect the Q-values to continue increasing. Thus, the average dataset Q-
value should be non-decreasing if either of the two conditions in Equation 7 are not satisfied, which
corresponds to conditions (1) and (2) in the theorem statement.

Interpretation of Theorem A.1: Early stopping and the peak in Q-values. Now we shall deduce
the conclusion of overfitting from Theorem A.1. The Q-values decrease only if the gap between
Q-values at actions taken by two consecutive policy iterates is smaller than a quantity ζ that depends
inversely on the likelihood of the action under the behavior policy. This means that if and once

15

the Q-function finds a good policy π, better than the behavior policy πβ , the average dataset Q-
values can start to decrease if π is not close enough to πβ , since the actions from the learned policy
π(a′|s′) will not have a high likelihood under the behavior policy πβ(·|s′), and thus the ζ term in
Equation 7 can easily become larger than the gap between Q-values. Thus, we would expect that
the peak in the Q-values would correspond to this a performing policy π, that is potentially different
from the behavior policy. One would also expect that a decrease in the Q-function would cause the
learned policy π to gradually move towards the behavior policy as this would increase πβ(a2|s′) by
selecting action a2 highly likely under the behavior policy and would thus reduce ζ. On the other
hand, if the Q-values continuously increase, the learned Q-values are either smaller than the dataset
Monte-Carlo return or exhibit high gaps between Q-values. In such scenarios, we would expect
more gradient steps of policy evaluation and improvement to actually improve the policy, and more
training would lead to improved performance. Thus, this discussion implies that a non-monotonic
trend in Q-values is indicative of overfitting towards the behavior policy (Metric 3.1) and that policy
selection can be performed near the peak of the Q-values (Guideline 3.1).

A.2 Underfitting in CQL

The metric used to characterize underfitting in Section 3 is to compute the value of TD error, LTD(θ)
and the CQL regularizer,R(θ) and inspect if these values are large either relative to a model with an
increased capacity or on an absolute scale. To understand why this corresponds to underfitting, note
that a large value of TD error corresponds to a Q-function that does not respect Bellman consistency
conditions and hence may be arbitrarily worse, whereas a large positive value of the CQL regularizer
corresponds to a Q-function that is not close to the behavior policy and hence may be choosing out-
of-distribution actions. In either case, we would aim to learn a Q-function that minimizes both the
TD-error and the CQL regularizer.

Minimizing only one of the two objectives is not sufficient in this setting: (1) a Q-function that min-
imizes training TD error to a small enough value but attains a large value of the CQL regularizer is
not sufficient since this Q-function may take erroneously high values on out-of-distribution actions,
leading to a worse policy, and, (2) a Q-function that minimizes the CQL regularizer to a small value
and attains a high value of the training TD error may not correspond to a valid Q-function which may
lead to a worse policy, potentially close to the behavior policy. As a result, our Metric 3.2 suggests
tracking both of these values independently and utilizing a correction for underfitting if either of the
two objectives (TD error and CQL regularizer) are not minimized to low-enough values.

Utilizing a fix for underfitting by default in CQL. Similar to supervised learning, precisely quan-
tifying the amount of underfitting is hard in offline RL as well. It is an additional challenge in offline
RL that the two objectives (TD error and CQL regularizer) may impose conflicting gradients, mak-
ing it hard to identify the optimal value of these loss values. As a result, we would suggest that some
of the proposed solutions for underfitting discussed in Section 4 such as utilizing more expressive
architectures be used even in cases where it is ambiguous as to whether the loss values are large or
not, provided that there are no clear signs of overfitting (per Metric 3.1).

B Additional Background

In this section, we provide additional background for the conservative Q-learning (CQL) [2] al-
gorithm that we use as the base algorithm for devising our workflow. We utilize the actor-critic
instantiation of CQL that trains a conservative Q-function Qθ(s,a) and a policy πφ(a|s) that max-
imizes the Q-function. This algorithm proceeds in alternating steps of policy evaluation and policy
improvement and our practical instantiation of this algorithm operates as per the following (policy
evaluation and policy improvement) updates:

θk+1 ←arg min
θ

αEs∼D

[
log
∑
a

exp(Qθ(s,a))− Ea∼D [Qθ(s,a)]

]
+

1

2
Es,a,s′∼D

[(
Q− BπkQ̄

)2]
φk+1 ← arg max

φ
Es∼D,a∼πk

φ
(a|s)

[
Q̂k+1
θ (s,a)

]
(policy improvement)

In practice, these updates are performed via alternating gradient descent on the actor (πφ(a|s)) and
the critic (Qθ(s,a)). While the hyperparameter α in the update above also needs to be chosen offline,
we utilize the value of α = 1.0 from prior work, fixed across all our experiments in both simulated

16

and real-world domains, and focus on tuning other decisions such as network size, regularization
and policy selection.

C Related Work
Robotic RL with offline datasets. Learning-based methods have been applied to a number of
robotics problems, such as grasping objects [31, 32], in-hand object manipulation [33, 34, 35, 36],
pouring fluids [37], door opening [38], and manipulating cloth [39]. While the majority of these
works use standard online RL, a number of works have leveraged robotic datasets to train skills in
addition to active environment rollouts. Kalashnikov et al. [31], Julian et al. [40], and Cabi et al. [41]
use offline pre-training followed by a finetuning phase. Visual foresight [42, 43, 44, 45, 46] train
a video-predictive dynamics model for offline planning. Young et al. [47], Johns [48] lean skills
in an offline manner and use it for imitation. Mandlekar et al. [49, 50] learn hierarchical skills for
imitation. Our work is complementary to these prior works, in that our workflow can be applied to
any robotic offline RL system and we do not propose a new imitation algorithm.

Offline deep RL algorithms and model selection in offline RL. Algorithms for offline deep
RL [51, 15] can be divided into three categories: those that constrain the policy to the dataset [52,
53, 16, 54, 55, 56], those that perform critic regularization [2, 20, 57] and those that train dynamics
models [58, 59]. These methods have been applied in robotics, for example when learning from un-
labeled data [3], robotic manipulation [60, 31], goal-conditioned RL [4, 30] and multi-task RL [1].
Rather than developing a new offline RL method, our work develops criteria and workflow rules that
simplify the application of such methods to new robotics tasks. Prior work that attempts to tackle
model-selection in offline RL has focused exclusively on devising off-policy evaluation (OPE) meth-
ods. These methods utilize importance sampling [61, 62, 12] or learn a dynamics model or a value
function [13, 9, 7, 63] to estimate the policy return. However, empirical studies by Fu et al. [14]
and Qin et al. [64] show that none of these OPE methods actually perform reliably and consistently
across tasks and offline datasets of the kind we are likely to find in the real-world, and present tuning
challenges of their own. Our workflow does not perform direct off-policy evaluation, and instead
utilizes comparative metrics across checkpoints and training runs based on observations about the
behavior of specific types of offline RL algorithms.

D Additional Experimental Details

D.1 Simulated Domains

In this section, we provide a detailed discussion of the domains used in our simulated experiments
in Section 5.

Pick and place task. As detailed in Section 5, our first simulated domain consists of a 6-DoF
WidowX robot in front of a tray containing a small object and a tray. The objective is to put the
object inside the tray. The reward is +1 when the object has been placed in the tray, and zero
otherwise. The offline dataset consists of trajectories that grasp the object with a 35% success rate
and place it with a success rate of 40%. We collected the dataset using scripted policies that we
briefly discuss below. For more detail, please refer to Appendix A.1 in Singh et al. [3].

Scripted grasping policy. Our scripted policy is identical to the policy in Singh et al. [3]. This policy
is supplied with the object’s (approximate) coordinates and can localize the object using background
subtraction. Once the policy localizes the objects, it goes to the objects by executing actions with
added noise and then closes the gripper when it is within some pre-specified distance of the object.
This distance threshold is randomized similar to Singh et al. [3] and the grasp can fail or succeed
with about a 35% chances of success.

Scripted pick and place policy. As previously used in Singh et al. [3], our scripted pick and place
policy attempts a grasp as described above, and then tries to place the object randomly at some
location in the workspace. Only if it places the object on the tray does it get a +1 reward, and after
placing the object, it moves up and tries to hover around by executing small magnitude random
actions until the episode terminates.

Grasping from a blocked drawer. The scripted policies we use for this task are borrowed from
Singh et al. [3]. These policies can open and close both the drawers with 40-50% success rates,

17

can grasp objects with about a 70% success rate, and place those objects at random locations in the
workspace. Since we use the datasets from Singh et al. [3] directly, the prior data does not contain
any interactions with the object inside the drawer and contains data such as behavior that blocks the
drawer by placing objects in front of it.

Scripted drawer opening and closing. Our scripted policy for drawer opening and closing moves the
gripper to the handle, then pulls or pushes it to open/close the drawer. At each step, Gaussian noise
is added to the data collection and it does not succeed 70% of the times.

Pesudocode and more details of these policies, which are directly used from prior work [3] is pro-
vided in Algorithms 1-3 of Singh et al. [3].

D.2 Real-World Domains

Sawyer tasks. As detailed in Section D.2, the dataset used for our Sawyer tasks is the same as
Khazatsky et al. [30]. We emphasize that we directly utilize the previously collected datasets from
Khazatsky et al. [30] to mimic the real-world use case of offline RL, where we are supposed to
learn effective policies from a previously collected dataset. The datasets for each of two tasks (put
lid on pot, open a drawer) consist of 100 trajectories which were collected using a 3Dconnexion
SpaceMouse device. Each trajectory in both the datasets is of length 80, which is also the number
of time steps provided to the learned policy for solving the task. We then label the trajectories using
0-1 reward indicating a success when the task is complete (i.e., the lid is on the pot, and the drawer
is sufficiently open). We present some examples of trajectories in the dataset on the associated
supplementary website https://sites.google.com/view/offline-rl-workflow.

Real WidowX Pick and Place task. We collect data for this task by utilizing a scripted policy that
first localizes the object, then reaches for this object using noisy actions and then attempts a grasp
(with added noise) and places the object on the tray imperfectly. The success rate of the policy is
35% in both the grasping and the placing of the object on the the tray. A reward of +1 was provided
when the policy was able to place the object in the tray. Each trajectory in this dataset is of length
15, which is also the time-limit provided to the learned policy for solving the task at evaluation time.
We provide videos of sample trajectories in the dataset in the associated supplementary website
https://sites.google.com/view/offline-rl-workflow.

E Detailed Empirical Results

In this section, we provide additional empirical results for various components of our workflow,
including missing evidence from the main paper.

E.1 Simulated Domains

Addressing overfitting in the grasping from blocked drawer task in Scenario #1. We first dis-
cuss the efficacy of the proposed correction for overfitting via the variational information bottleneck
regularizer (Equation 3) on the grasping from blocked drawer task. As shown in Figure 12, utilizing
the bottleneck regularizer gives rise to a stable trend in Q-values (Q-values no more decrease with
more training) as shown in the blue curve compared to the orange curve for base CQL, and as is
evident from the policy performance plot, utilizing our fix for overfitting also leads to higher and
stable performance.

Scenario #2, multiple object pick and place task. We provide the details (loss curves and Q-value
trends) for this task on our anonymous project website linked here: https://sites.google.com/
view/offline-rl-workflow.

E.2 Real-World Experiments

Sawyer tasks. We present the missing CQL regularizer (R(θ)) plot for this task from the main
text (Section 6) below. Note that even the CQL regularizer eventually increases (dashed lines in the
figure below) in the case of the base CQL algorithm that does not utilize a large ResNet architecture.
On the other hand, utilizing the ResNet architecture leads to a clearly decreasing trend in the value
of the CQL regularizer as is evident below. Thus, utilizing a larger network addresses underfitting.

18

https://sites.google.com/view/offline-rl-workflow
https://sites.google.com/view/offline-rl-workflow
https://sites.google.com/view/offline-rl-workflow
https://sites.google.com/view/offline-rl-workflow

0.0M 0.2M 0.5M 0.7M 1.0M
Gradient Steps

−600

−400

−200

0

A
v
g.

Q
-v

al
u

e
in
D

,
E s

,a
∼
D

[Q
θ
(s
,a

)]

Grasping from Blocked Drawer Task

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Gradient Steps

0

10

20

30

40

50

A
ve

ra
ge

R
et

u
rn

s

Grasping from Blocked Drawer Task

Figure 12: Trend in average dataset Q-value (left) and the performance of the policy (right) for base CQL
(orange) and base CQL + overfitting correction using VIB (Equation 3) (blue). Note that using the VIB
regularizer addresses overfitting in that the Q-values increase and then stabilize and this stabilization effect is
also observed in the performance of the policy, which also increases around two fold.

0K 50K 100K 150K 200K 250K

Gradient Steps

−25

−20

−15

−10

−5

0

5

10

C
Q

L
R

eg
u

la
ri

ze
r
R

(θ
)

Average CQL-Regularizer

Pot : CQL + ResNet

Pot: CQL

Drawer : CQL + ResNet

Drawer: CQL

More results and videos for each task can be found on our anonymous website located here:
https://sites.google.com/view/offline-rl-workflow.

F Applying Our Workflow to Other Offline RL Algorithms

In this section, we discuss how to apply our workflow to other offline RL algorithms beyond CQL.
Our workflow is applicable to conservative offline RL algorithms that can be interpreted as abstractly
optimizing the objective in Equation 2 in some form. We elaborate on this class of algorithms in
the next section (Appendix F.1) and then present, in Appendix F.2, an application of our workflow
for detecting and correcting overfitting with BRAC [16], a policy-constraint conservative offline RL
method.

F.1 Which Algorithms Does Our Workflow Apply To?

Our workflow guidelines are intended to be applicable to “conservative offline RL algorithms” that
can be abstractly represented using the policy optimization objective shown in Equation 2, which is
restated below for convenience of the reader:

π∗ := arg max
π

JD(π)− αD(π, πβ) (Conservative offline RL). (8)

D(π, πβ) in Equation 8 represents the divergence between the learned policy π(·|s) and the behavior
policy πβ(·|s) averaged over the state-visitation distribution of the learned policy π. This is given
by D(π, πβ) = Es,a∼dπD(s)π(a|s) [D(π(·|s), πβ(·|s))]. Thus, Equation 8 can be expressed as:

JD(π)− αD(π, πβ) = Es,a∼dπD

r(s,a)− αD (π(·|s), πβ(·|s))︸ ︷︷ ︸
effective new reward function

This can be viewed as solving the RL problem with a modified reward function that penalizes devi-
ation between the learned policy π and the behavior policy πβ . Thus, optimizing the policy against
Equation 8 requires utilizing the long-term, cumulative estimate of divergence D.

Which algorithms are covered by our definition of conservative offline RL from Equation 8?
Two algorithms covered under this definition are BRAC-v [16] and CQL [2]. While CQL ap-

19

https://sites.google.com/view/offline-rl-workflow

plies a Q-function regularizer (Equation 1) to learn a conservative Q-function that directly mod-
els the combined effect of environment reward r(s,a) and divergence from the behavior policy
D(π(·|s), πβ(·|s)) in the learned Q-function, BRAC-v instead exploits an explicit policy constraint.
We discuss BRAC in detail below and demonstrate how to effectively apply our workflow to tune
overfiting in BRAC in the next section.

Details and background on BRAC. Unlike CQL, BRAC-v explicitly subtracts the divergence
D(π(·|s′), πβ(·|s′)) from the target value while performing the Bellman update. Additionally, since
the divergence between the learned policy and the behavior policy at the current state is not a part of
the Q-function, BRAC-v also explicitly adds the divergence value at the current state to the policy
update. We instantiate the version of BRAC that uses the KL-divergence:

D(π(·|s), πβ(·|s)) = DKL(π(·|s), πβ(·|s)) = Ea∼π(·|s) [log π(a|s)− log πβ(a|s)] .
The first term in this divergence DKL corresponds to an entropy regularizer on the policy π(·|s)
that standard MaxEnt RL algorithms like Soft Actor-Critic (SAC) [65] already apply. To estimate
the second term, BRAC estimates a model of the behavior policy, that we denote as π̂β , and uses
it to explicitly compute this divergence. Denoting the policy and the Q-function as πφ and Qθ, the
BRAC-v training objectives are (practical implementations use different values for α and β):

Q-function: min
θ

Es,a∼D

[(
r(s,a) + γEa′∼πφ(·|s′)[Q̄θ(s

′,a′) + β log π̂β(a′|s′)]−Qθ(s,a)
)2]

.

Policy: max
φ

Es∼D,a∼πφ(·|s)

Qθ(s,a) + β log π̂β(a|s)︸ ︷︷ ︸
conservative Q-value;Qc(s,a)

− α log πφ(a|s)︸ ︷︷ ︸
policy entropy; standard MaxEnt RL

 .
(9)

We will refer to the estimate Qc(s,a) := Qθ(s,a) + β log π̂β(a|s) as the conservative Q-value,
that estimates the combined effect of both the reward and the divergence from the behavior policy.
Qc(s,a) is analogous to the Q-function trained via CQL which directly estimates this combined
effect. To note further similarities, observe that CQL optimizes the policy against the conservative
Q-value estimate, predicted directly by the Q-network, along with an added entropy regularizer,
whereas BRAC uses Qc (Equation 9) in its place. Qc will play a crucial role in adapting our work-
flow for overfitting to BRAC which we discuss in the next section.

Which offline RL methods is our workflow not applicable to? The formulation of conservative
offline RL in Equations 2 and 8 does not encompass offline RL algorithms that only utilize a “my-
opic” behavior regularization, such as BCQ [52], BEAR [53], AWR [66], TD3+BC [67]. These
methods only apply the behavior constraint locally at the current state and do not propagate its effect
through the Bellman backup. The Q-functions for such myopic behavior-regularized algorithms are
trained in a similar fashion as standard online actor-critic algorithms, and so we would not expect
the Q-values of these algorithms to exhibit similar trends as conservative Q-functions. Our pro-
posed workflow is not designed to handle such methods, though extending it to address them is an
interesting direction for future work.

F.2 Empirical Demonstration: Applying Our Overfitting Workflow to BRAC

In this section, we adapt our proposed workflow (Metrics 3.1 and Guidelines 3.1 and 4.1) for de-
tecting and addressing overfitting to the behavior-regularized actor-critic (BRAC) algorithm and
empirically verify the efficacy of these metrics and guidelines. Per the discussion above, the main
modification needed to apply our workflow from CQL to BRAC is to utilize the conservative Q-value
estimate Qc(s,a) for BRAC, instead of the Q-values estimated by the Q-network which worked in
the case of CQL. Barring this modification, the key principles of our workflow remain the same for
BRAC. We detail these below, and present a comparison against our workflow for CQL in Table 3.

Detecting overfitting in BRAC. Unlike CQL, where the learned Q-values represent a conservative
Q-estimate that accounts for both the reward and the divergence from the behavior policy, BRAC
estimates these quantities separately as shown in Equation 9, with the Q-value not accounting for
the divergence against the behavior policy at the current state. Therefore, to apply our workflow
guidelines (Metric 3.1, Guideline 3.1) to BRAC, we track the “conservative Q-value estimate” dis-
cussed in the previous section (Qc(s, a) := Qθ(s, a) + β log π̂β(a|s)), which is BRAC’s analogue

20

Metric/Guideline CQL (Main paper) BRAC-v (Appendix F.2)
Metric 3.1 (Detecting overfitting) Low average dataset Q-value,

Es,a∼D[Qθ(s,a)], decreasing
with more gradient steps

Low average conservative Q-
value, Es,a∼D[Qc(s,a)] on
the dataset, that is decreasing
with more gradient steps

Guideline 3.1 (Policy selection) If overfitting is detected, se-
lect the checkpoint with high-
est average dataset Q-value
before overfitting

If overfitting is detected, se-
lect the checkpoint with high-
est average dataset conserva-
tive Q-value before overfitting

Guideline 4.1 (Addressing overfitting) Use some form of capacity-
decreasing regularizer on the
Q-function, e.g., VIB regular-
izer, Dropout, etc

Use some form of capacity-
decreasing regularizer on both
the estimated behavior policy
π̂β and Q-function Qθ(s,a),
since both combine to form
the conservative estimate Qc

Table 3: Summary of how our proposed overfitting workflow for CQL in the main paper can be adapted to
BRAC, with main modifications from CQL to BRAC highlighted in red. The primary modification is to utilize
conservative Q-value estimates, Qc(s,a) for BRAC (Equation 9), instead of the outputs of the Q-network.

of the Q-value learned by CQL. Similar to CQL, overfitting in BRAC-v can be detected via a non-
monotonic trend in average dataset conservative Q-value: if the average dataset conservative Q-value
first increases and then decreases with more training, this indicates the presence of overfitting. We
summarize this in Table 3, first row.

Policy selection for BRAC. When overfitting is detected, i.e., the conservative Q-value estimates
first increase and then decrease with more gradient steps, we utilize early stopping to find a good
policy checkpoint within this run for deployment. Analogously to CQL, our policy checkpoint
selection guideline (Table 3, second row) suggests that a good checkpoint can be found by picking
the one that attains the highest average conservative Q-value on the dataset before overfitting begins.

Figure 13: Left: Overfiting and policy selection for BRAC-v: Pol-
icy performance (top) and average dataset conservative Q-value (bot-
tom) with varying number of trajectories (100 and 200). The conser-
vative Q-value for the run with 100 trajectories (blue) eventually de-
creases, while it is relatively stable for 200 trajectories (orange). Verti-
cal bands indicate regions around the peak Q-value and observe that
these regions correspond to policies with good actual performance.
Right: Addressing overfitting in BRAC-v by using the capacity-
decreasing dropout regularizer leads to stable and non-decreasing con-
servative Q-values and improved policy performance.

To empirically verify if the
adaptation of our workflow is
effective for BRAC-v, we ran
experiments on the simulated
grasping from drawer task from
Scenario #1, with offline datasets
containing 100 and 200 trajecto-
ries. Observe in Figure 13 (left),
that with 100 trajectories, the
average dataset conservative Q-
values Es,a∼D[Qc(s,a)] first in-
creases and then drops with more
gradient steps. This observation
is consistent with what we expect
to happen if the run of BRAC-v
overfits per the guideline in Ta-
ble 3. In the figure, the vertical
dashed lines indicate the policy
checkpoints that will be selected
by our policy selection guide-
line (Table 3). We also visual-
ize the performance of the cho-
sen checkpoints against the ac-
tual policy return in the top row
for analysis purposes. Note that
the selected policy checkpoint in-
deed attains close to the peak per-
formance achieved over the entire training run of BRAC-v. This indicates the efficacy of our work-
flow for detecting overfitting and performing policy selection for the BRAC-v algorithm.

21

Addressing overfitting in BRAC-v. Once overfitting is detected, we need to find an method to
alleviate it. As in our workflow for CQL, we can add any capacity-decreasing regularizer such as
dropout [24], variational information bottleneck (VIB), etc to mitigate overfitting. Technically, we
want to apply this regularization on the conservative Q-function estimator, Qc(s,a), but in the case
of BRAC-v, this quantity is not estimated using a single neural network. Thus, we recommend
applying the capacity-decreasing regularization to both the critic (Qθ(s,a)) and the behavior policy
estimate π̂β(·|s) separately. This guideline is summarized in the third row of Table 3.

To empirically validate our guideline for addressing overfitting in BRAC-v, we applied the
capacity-decreasing dropout regularizer on the run of BRAC on the grasping from drawer task with
100 trajectories. We chose the dropout regularizer since it worked for CQL (Figure 19, Appendix J),
and because it is easier to apply than two separate information bottlenecks on the Q-function and the
estimated behavior policy. As shown in Figure 13 (right), applying dropout not only alleviates the
drop in conservative Q-value estimates after many gradient steps, but it also allows us to pick later
checkpoints in training, all of which perform equally well, and much better than the base BRAC-v
algorithm. Crucially note that while the policy performance of BRAC-v degrades to zero with more
training, utilizing dropout improves the policy performance and increases stability. This validates
that overfitting in BRAC-v, as detected via our workflow, can be effectively mitigated by decreasing
the capacity of the conservative Q-function in BRAC, in this case by applying dropout to the Q-
network and the estimated behavior policy.

G What About the Hyperparameter α?

The guidelines in the preceding paragraph suggest how to adjust capacity, but do not tell us how to
tune the multiplier on the CQL term, α, in Equation 1. This multiplier trades off minimizing TD
error with a correction for distributional shift. An inappropriate choice of α will inhibit good policy
performance, since CQL would be insufficiently constrained against out-of-distribution actions with
excessively low values of α, while being too constrained to stay close to the dataset with excessively
high values. In our experiments, both in simulation and in the real-world, we found that a default
value of α = 1.0 taken from prior work [3] worked for all scenarios without any tuning; however, we
do provide guidelines for tuning α values if required. We expect that tuning α is especially needed
when the data is highly diverse or when it is generated from a narrow expert policy.

How can we detect excessively large α values? Since a larger value of α would correspond to
a higher weight on the CQL regularizer R(θ), which minimizes Q-values, we would expect that
Q-values learned with a large α would exhibit an overfitting trend per Metric 3.1, where Q-values
would decrease with more training steps. Thus, if the Q-values on the dataset exhibit a decreasing
(overfitting-like) trend despite applying the mitigation strategies in Section 4, it indicates that α may
be too large and we need to reduce α. This is formalized as:

Guideline G.1 (Guideline for decreasing α). If a run of CQL with α = α0 exhibits a trend
that resembles overfitting per Metric 3.1 and correcting for overfitting based on Guideline 4.1
does not address it, then re-run CQL with a smaller value of α = α1. If this new run with
α = α1 exhibits overfitting as well, decrease α from α0 and α1.

How can we detect excessively small α values? When α is too small, we would expect that the
Q-values do not decrease with more training, since the CQL regularizer has minimal effect. Thus
a run of CQL with a very small α will resemble underfitting, as identified by Metric 3.2. Given a
run with non-decreasing Q-values and a high value of the training CQL regularizer, our first step is
to determine if the run is underfitting due to insufficient capacity or just has a smaller α. Thus, we
first detect underfitting (Metric 3.2) and re-run training with a higher-capacity model (e.g., a Resnet
policy, DR3 [22] capacity-increasing regularizer). If we find that even higher-capacity models are
unable to reduce the value of the CQL regularizer during training, then this indicates that α is too
small. This is expected because, no matter what the capacity of the model, a small αwould cause the
policy to pick unseen, out-of-distribution actions due to erroneous Q-function overestimation. Once
such a scenario is detected, we can increase α, until the value of the CQL regularizer is sufficiently
negative and then utilize the other workflow guidelines.

22

Figure 14: Evaluating our overfitting workflow with multiple values of the CQL hyperparameter α ∈
{0.1, 2, 10, 50} on three tasks from Scenario #1: grasping from drawer task with 50 and 100 trajectories and
the pick-and-place task with 100 trajectories. Observe that with all of these values, the average dataset Q-value
first increases and then decreases, which indicates the presence of overfitting. Also note that policy checkpoints
prescribed by our policy selection guideline perform well, especially when compared to other checkpoints
within the run. The performance of both CQL and our workflow is generally poor in runs with large α = 10,
because large α values constrain the learned policy to be close to the behavior policy and our workflow does
not improve the policy performance in this case. We additionally evaluate α = 50.0 for the pick-and-place task
and observe that the run is overfitting, however, the policy performance is bad for all the checkpoints because
α is too large, making CQL similar to behavior cloning.

Guideline G.2 (Guideline for increasing α). If a run of CQL exhibits a trend that resembles
underfitting per Metric 3.2, and increasing model capacity per recommendations mentioned
in Guideline 4.2 does not reduce the CQL regularizer, then we suggest first increasing the
coefficient of the CQL regularizer α until the final value of the CQL regularizer is lower than
0, and then applying the other workflow guidelines with this new α value.

H Experiments Tuning The CQL α Hyperparameter

In our experiments on both simulated domains and real robots, we utilized a default value of α =
1.0 as the multiplier on the CQL term. This directly follows from the choice made in prior work
[3], without any modification or tuning. However, to understand the effect of α, we now evaluate
our workflow on runs with various α values, α ∈ {0.0, 0.01, 0.1, 2, 10, 50}, using the two tasks
(pick-and-place task and grasping from drawer task) from Scenario #1 with 50 and 100 trajectories.
Generally, we find that our workflow for detecting overfitting and performing policy selection is
reasonably effective for a range of values with 10 ≥ α ≥ 0.1, but fails to learn a good policy
with very low α values (≤ 0.01), for which CQL does not prevent catastrophic overestimation.
Similarly our workflow is unable to improve the policy performance in CQL runs with very high α
values, which lead to Q-functions that overwhelmingly prioritize giving high value to dataset actions
and lead to imitation-like behavior. It is therefore necessary to avoid such extreme α values. In this
section, we apply our proposed guidelines for detecting if α is too small or too large (Guidelines G.1
and G.2) and first adjust α. We first discuss α ≥ 0.1, and then the lower values.

H.1 Values of α That Are Not Too Small

We present the trend in average dataset Q-values in Figure 14 for α ≥ 0.1. Observe that for α ∈
{0.1, 2, 10}, the average dataset Q-value first increases and then decreases with more gradient steps,
indicating the presence of overfitting per Metric 3.1. Since overfitting is detected, we can perform
policy selection using Guideline 3.1 by choosing the policy checkpoint that appears near the peak
in the average dataset Q-value for deployment. For each α, these checkpoints are marked with a

23

vertical dashed line. Observe that the selected policy checkpoint indeed performs well compared to
all other checkpoints within each training run. This indicates that Metric 3.1 and our policy selection
rule in Guideline 3.1 work well across these α values. However, the performance of CQL with large
α values is worse compared to smaller α values, likely because CQL finds a policy close to the
behavior policy when the α values are too large (e.g., α = 50 for the pick-place task in Figure 14,
or α = 10 for the drawer task with 50 trajectories in Figure 14). Thus, no matter how we select
the policy checkpoint, the performance would be bad, since no checkpoint in the run actually attains
good performance. We will shortly discuss how we can detect if α is large and decrease it, but we
first present results of applying the VIB overfitting correction to runs with various α values.

Since overfitting is detected, we would attempt alleviate overfitting by utilizing the VIB regularizer
(Equation 3) following Guideline 4.1. As shown in Figure 15, the VIB regularizer leads to improved
policy performance for α ∈ {0.1, 2}. However, the VIB regularizer is ineffective with α = 10.0,
where it does not improve performance.

Figure 15: Utilizing the VIB regularizer from Equation 3 to correct overfitting in CQL runs with
α ∈ {0.1, 2, 10} for the grasping from drawer task with 100 trajectories. Applying the VIB regularizer to
decrease capacity and correct overfitting improves performance with α = 0.1 and α = 2.0, but does not
improve performance with a larger value of α = 10.0.

The above evidence indicates that our overfitting workflow can fail if the α value is too large (α ≥
10.0), but our workflow improves the performance of CQL when α ∈ {0.1, 1.0, 2.0}. Hence, for
large αs we first follow Guidelein G.1 to decrease α before applying our overfitting workflow.

To validate the efficacy of Guideline G.1, we point the reader to Figure 14. If we start with α = 10.0
or 50.0 on the the drawer task with 50 trajectories or the pick-and-place task, Guideline G.1 would
prescribe reducing α, since smaller α values such as α = 0.1, 1.0, 2.0 also exhibit overfitting per
Metric 3.1. Doing so also does improve the policy performance, especially when starting from
α = 50.0, indicating that this guideline is effective.

H.2 Small values of α
Next, we evaluate our workflow with the two smallest values of α = 0.0, 0.01. In both cases, as
shown in Figure 16, we find that the value of the CQL regularizer is large (close to 0, which means
out-of-distribution actions have similar values as in-distribution actions), and average dataset Q-
value does not decrease with more gradient steps. As expected, the corresponding policy performs
poorly in each case, since a high CQL regularizer value implies that the out-of-distribution actions
have a higher Q-value than in-distribution actions, which in turn means that policy optimization
will select out-of-distribution actions. In this case, our underfitting workflow will not improve the
performance of CQL, and the value of α would need to be raised. We thus follow Guideline G.2
first, to tune α before applying the rest of our workflow.

To empirically demonstrate the efficacy of Guideline G.2, we attempt to correct the apparent under-
fitting in the run of CQL with α = 0.01 by rerunning it with increased model-capacity and present
the results in Figure 17. Observe that the value of the CQL regularizer is still close to 0, identical
to the the naı̈ve CQL run without the underfitting correction. Since underfitting correction does not
reduce the value of the CQL regularizer, according to Guideline G.2, we need to increase α to allow
for better minimization of the CQL regularizer. As we have already seen in the earlier runs in this
section in Figure 14, if we increase α to 0.1 or 1.0, the value of the CQL loss would be small and
sufficiently negative attaining values around −5.0, and overfitting is detected. Our policy selection
guideline would then allow us to find a good policy for deployment.

To summarize, while our workflow for detecting overfitting, performing policy selection, and cor-
recting overfitting works well across several α values, CQL can fail when α is too small, and will
reduce to behavior cloning when α is too large. This is expected because smaller α values are in-

24

Figure 16: CQL fails to prevent erroneous overestimation in the Q-function with small α values and
hence performs poorly. For α = 0.0, the Q-function positively diverges. For α = 0.01, the average Q-value is
stable and does not decrease with more gradient steps. Note the vastly different trend in the average Q-value for
α = 2.0 for contrast. Additionally, observe that the value of the CQL regularizer is close to 0 for α = 0.0 and
α = 0.01, which means Q-values for out-of-distribution actions are high compared to in-distribution actions,
for contrast see the much smaller value of the CQL regularizer with α = 2.0.

Figure 17: Validating Guideline G.2 by attempting to fix underfitting in CQL with a small α = 0.01.
To verify if the run of CQL with α = 0.01 is underfitting or if it requires increasing α, we re-run it with a
capacity-increasing measures. However, even in this case, the value of the CQL regularizer is large. The value
of the CQL regularizer is close to 0, which means the values of out-of-distribution actions is not small enough
compared to in-distribution actions. Since underfitting correction does not help in this case, we conclude that
is the case where the value of α needs to be raised to obtain improved performance.

sufficient to prevent overestimation and will cause the policy to choose unseen out-of-distribution
actions and extremely large α values will strongly update the policy towards the behavior policy. To
detect and handle if α is too small or too large, we proposed Guidelines G.1 and G.2, which prescribe
increasing α if (a) the value of the CQL regularizer is large, and (b) utilizing capacity-increasing
measures does not lead to reduction in the CQL regularizer value and decreasing α if (a) overfitting
is observed with the current run, and (b) re-running CQL with a smaller value of α also exhibits an
overfitting trend, with average Q-value decreasing with more gradient steps. After modifying the
value of α, we prescribe following the recommendations of the rest of our workflow.

I Underfitting With 10 and 20 Objects in Scenario #2

In this section, we present our results on applying the proposed capacity-increasing measures on
the simulated experiments with multiple training objects (10 and 20 objects) from Scenario #2. The
plot for 35 objects is shown in the main paper. In the case of 10 and 20 objects, we also observed
a high value of TD error (see Figure 5), with relatively stable Q-values. In this case, our workflow
would prescribe correcting for underfitting. In Figure 18, we present results of running CQL with
the capacity-increasing DR3 regularizer and a ResNet policy to address underfitting in the case of
10 and 20 objects. We find that in both cases the performance of the policy improves and our
capacity-increasing measures also generally lead to a slight decrease in the value of the TD error.

J Other Capacity-Decreasing Regularizers for Addressing Overfitting

In this section, we present a study that evaluates different choices of capacity-decreasing regularizers
to prevent overfitting in CQL. The candidate capacity-decreasing regularizers we evaluate are:

• dropout [24] with masking probability p on the layers of the Q-function Qθ,

25

Figure 18: Correcting underfitting by utilizing a ResNet policy + DR3 regularizer for the case of 10
and 20 objects from Scenario # 2. Note that the addition of these underfitting corrections improves policy
performance, while also reducing the training TD error by some amount.

• `1 regularization on the parameters θ of the Q-function (i.e., minθ LCQL(θ) + ρ||θ||1), and
• `2 regularization on the parameters θ (i.e., minθ LCQL(θ) + ρ||θ||22).

We apply each of these regularizers to the run of CQL on the pick-and-place task from Scenario
#1, with 100 trajectories and report the average dataset Q-value, the corresponding performance of
the policy (for analysis purposes) and the value of the training CQL regularizer for each of dropout,
`1 and `2 regularization schemes in Figure 19. To find a good value of ρ and p completely offline,
we run each regularizer with different values of the hyperparameter ρ ∈ {0.1, 0.01, 1.0} (for `1/`2
regularization) and p ∈ {0.01, 0.1, 0.2, 0.4} (for dropout) and pick the value that stabilizes the trend
in the average dataset Q-value, while not inhibiting the minimization of the training CQL regularizer.
That is, we require the value of CQL regularizer to be sufficiently negative (ideally ≤ −2 or −3).
This is essential since excessive capacity-decreasing regularization can inhibit the minimization of
the training CQL objective which would cause the policy to execute bad out-of-distribution actions.
Using the scheme described above, we obtained p = 0.2 for dropout and ρ = 0.01 for the case of `2
regularization.

Observe in Figure 19 that utilizing dropout (left column) or applying `2 regularization (middle col-
umn) mitigates the drop in average Q-value that is observed with naı̈ve, untuned CQL on this task
while also achieving a small CQL regularizer value. Applying dropout and `2 regularization leads
to improved and much more stable policy performance. This indicates that addressing overfitting by
applying capacity-decreasing regularization can lead to improved performance.

We observed that `1 regularization did not give rise to improved performance. Out of all three values
of ρ, all of which are presented in Figure 19 (right column) we found that ρ = 0.01 was likely not
large enough to mitigate the drop in Q-value, and runs with larger values of ρ = 0.1, 1.0 failed to
decrease the training CQL regularizer. We believe that an intermediate value of ρ ∈ [0.01, 0.1] can
possibly alleviate the overfitting issue, and we will run a finer search over ρ for the final version.

K Alternative Metrics for Overfitting

In addition to Metric 3.1 that prescribes tracking the average dataset Q-value for detecting overfitting
and performing policy selection (Guideline 3.1), we can also, in principle, choose to use an estimate
of the policy return estimated using the learned conservative Q-function. Formally, this metric is
given by policy value averaged under the initial state distribution µ0(s): Es∼µ0,a∼π(·|s)[Qθ(s,a)].
We perform a preliminary experimental study comparing metric Es,a∼D[Qθ(s,a)] (Metric 3.1) and
the policy return at the initial state on the drawer and the pick-place tasks from Scenario #1, with
50 trajectories. As shown in Figure 20, we find that both of these metrics closely follow each other
for most of the training iterations, and applying the policy selection guideline on either of them will
choose the same policy checkpoint since these curves heavily overlap near the peak.

26

Figure 19: CQL + different capacity-decreasing regularizers: dropout (left), `2 regularization (middle)
and `1 regularization (right). Comparison of different capacity-decreasing regularization schemes for the run
of CQL on the drawer task with 100 trajectories from Scenario #1. While naı̈ve CQL (shown in blue in the
plots) exhibits overfitting, i.e., the average dataset Q-value first increases and then decreases with more gradient
steps, the addition of `2 regularization or dropout with ρ = 0.01 and p = 0.2 respectively alleviates the drop
in the Q-value (middle row shows the time series of the average dataset Q-value). Additionally observe that
`2 regularization and dropout improve policy performance, especially `2 regularization. For `1 regularization,
none of the ρ values we searched over was able to mitigate the drop in the average Q-value while retaining a
negative value of the CQL regularizer, and thus did not improve in performance.

Figure 20: Preliminary experiments comparing the evolution of the average dataset Q-value in Met-
ric 3.1 (orange) and policy value averaged under the initial state distribution (blue). Observe that both of
these metrics follow each other closely for the most part in training, and exhibit a similar behavior, where the
metric first increases and then decreases with more training. The peak in both of the curves overlap, indicating
that utilizing either of the metrics for policy selection will return the same policy checkpoint.

27

	Additional Discussion of Overfitting and Underfitting
	Overfitting in CQL
	Underfitting in CQL

	Additional Background
	Related Work
	Additional Experimental Details
	Simulated Domains
	Real-World Domains

	Detailed Empirical Results
	Simulated Domains
	Real-World Experiments

	Applying Our Workflow to Other Offline RL Algorithms
	Which Algorithms Does Our Workflow Apply To?
	Empirical Demonstration: Applying Our Overfitting Workflow to BRAC

	What About the Hyperparameter ?
	Experiments Tuning The CQL Hyperparameter
	Values of That Are Not Too Small
	Small values of

	Underfitting With 10 and 20 Objects in Scenario #2
	Other Capacity-Decreasing Regularizers for Addressing Overfitting
	Alternative Metrics for Overfitting

