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Here we provide additional experimental details and results that are complementary to the main text.1

When we refer to figures or tables in the main text, we will explicitly annotate them.2

A Experimental details3

All of the numerical experiments are conducted on a Dell laptop with an Intel i7-10750H at 5.0 GHz4

with 12 cores CPU, 32GB RAM and an NVIDIA GeForce GTX 1650 Ti Mobile GPU.5

The Robot Operating System (ROS) platform is used for the simulation, in which the MoveitIt!6

framework is used as the simulator for manipulator and the Open Motion Planning Library (OMPL)7

is used as the basis for our implementation for the sampling-based motion planners.8

The robotic manipulator used in this experiemnt is the Kinova Jaco arm with a code name of9

j2n6s300. The code name refers to the physical robotic arm settings, which is a jaco v2 6DOF10

service 3 fingers. The robotic arm has 9 degree of freedom (dof ) in total, which include 6 dof11

in the arm and 3 dof in the gripper. The joint limits for the 1st, 4th, 5th and 6th joint are [−π, π)12

and can wrap back without hard constrains; for the 2nd and 3rd joints are [0.820305, 5.46288] and13

[0.331613, 5.95157] respectively; and for the fingers of the gripper the joint limits are [0, 1.2].14

B Numerical evaluation on the Diffeomorphic Sampling Distribution15

Table 1 illustrates two metric on the numerical evaluation on our diffeomoprhic sampling distribution16

compared to the uniform prior distribution that is commonly used in sampling-based motion planning.17

Table 1: Numerical results on (i) the total number of sampled configurations (Num. samples) and
(ii) percentage of feasible samples (Feasible samples) on the original uniform distribution and the
parallelised diffeomorphic distribution. Num. samples denotes the total drawn samples within the
time budget, whereas Feasible samples denotes how good those samples are with regards to collisions.
Results are obtained by repeating 30 times each for both variants and across all three environments,
with a time budget of 20 seconds. Results shown are mean ± one standard deviation (µ± σ).

Environment

Divider Cupboard Lab-setup

Original Num. samples Total 9543 ± 907 22606 ± 1375 13153 ± 554
Feasibile samples Total 52.19 ± 0.41 % 12.77 ± 1.12 % 48.38 ± 0.86 %

PDMP

Num. samples
Total 10554 ± 751 23536 ± 1067 12985 ± 716

(from Prior) 17 ± 11 5322 ± 1278 294 ± 120
(from Morphed) 10536 ± 748 18214 ± 1190 12692 ± 736

Feasibile samples
Total 81.52 ± 1.22 % 31.96 ± 2.23 % 72.83 ± 2.10 %

(from Prior) 51.02 ± 0.85 % 12.98 ± 1.92 % 49.12 ± 0.51 %
(from Morphed) 85.17 ± 1.74 % 37.51 ± 2.09 % 73.35 ± 1.82 %

Submitted to the 5th Conference on Robot Learning (CoRL 2021). Do not distribute.



The results for PDMP in table 1 are broken down into samples that are contributed by the uninformed18

prior and by the diffeomorphic distribution. The prior is used when the concurrent queue (see Figure 219

in main text) is empty, which might be due to the PDMP is still warming up at the beginning or when20

sampled configurations are drawn at a rapid pace. This can be observed in the Cupboard environment,21

where there are a substantial amount of prior samples. Note that the percentage of morphed samples22

is still relatively high at 77% ( 1821423536 × 100%). This phenomenon might have occurred due to the low23

feasibility (highly clutter) nature of the environment with only 12% of samples being feasible in the24

original distribution. This in-turn renders the algorithm needing to draw more samples and spend25

less time in the actual tree-building and rewiring procedure of the algorithm.26

Overall, by comparing Num. samples in table 1 it is clear that PDMP can always keep up with the27

rate of drawing samples even in the event of rapid samples drawing (in which it will revert back to28

prior due to the novel design in the architecture). The morphed samples are then more beneficial to29

the planning problem as they are more likely to be feasible in free space.30

C Continuous Differentiable Occupancy Map details31

We learn a continuous occupancy representation using a neural network, mapping from coordinate32

points to the probability of the coordinate being occupied. The Neural network has the architecture:33

(a) An example reconstructed set-up for our real-world
experiments Lab-setup

Input
Dense(3,150)

Tanh()
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Tanh()
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Tanh()
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Softmax()
Output

(b) Architecture of our continuous occupancy
map neural network model

where Dense(n,m) indicates a fully-connected layer with n inputs and m outputs. We optimise the34

neural network with respect to a binary cross entropy loss, via Adam with a step-size of 1 × 10−3,35

for 625 epochs.36

We treat the map as a binary classifier, and evaluate how well the map predict coordinate points in37

the task space. The performance of the occupancy representation in the environments used in our38

experiments, as measured by accuracy, area under the receiver operating characteristic curve (ROC-39

AUC), and precision is given in table 2. We observe that our neural network can accurately capture40

occupancy information in the environment.41

Divider Cupboard Tower
Accuracy 0.99 0.99 0.98
ROC-AUC 0.99 0.93 0.98
Precision 0.97 0.93 0.99

Table 2: The quality of representing environment occupancy via our neural network model

Next we pick the “Divider” environment and perform an ablation studying on the number of layers,42

and number of units in the hidden layers of our neural network model. To study the effect of the43

number of layers, we consider alternative models with 1 Dense(150,150) layer and 3 Dense(150,150)44

layers, whereas our setup had two of these layers. We also tune the hidden dimension of these layers,45

considering alternative models with hidden dimensions of 100 and 200, instead of the default 150.46

The results are tabulated in table 3. We observe that adjusting both the number of layers or the hidden47

dimension size does not drastically alter performance.48



1-layer 2-layers 3-layers 100 hidden units 200 hidden units
Accuracy 0.99 0.99 0.99 0.98 0.99
ROC-AUC 0.99 0.99 0.99 0.98 0.99
Precision 0.97 0.97 0.98 0.96 0.98

Table 3: Ablation results on the neural network model for occupancy

D Probabilistic Completeness49

We shall demonstrate that drawing sample points from the transformed distribution maintains the50

probabilistic-completeness of the popular RRT sampling-based method.51

We shall begin by considering the support of the prior distribution and the transformed distribution.52

Let Py be the prior probability measure on space Y , with the diffeomorphism F : Y → Z. Let53

Pz(z) := Py(F
−1(z)), with z ∈ Z54

Definition D.1 (Support of probability measure). Let Py be a measure on a topological space Y, then55

the support of Py is the set, suppPy := {y ∈ Y |Py(y) > 0},56

Intuitively, the support of a probability distribution is the set of possible values of a random variable57

having non-zeros probability density. We shall study how the support of the prior and the transformed58

distribution change depending on F . In particular we consider when the support of the prior and59

transformed distributions are equal.60

Lemma D.1 ([1] Equation 4). The support of the prior and transformed probability measure are61

equal, i.e. suppPy = suppPz , if Y and Z are homeomorphic i.e., isomorphic as topological spaces.62

As F : Y → Z is a diffeomorphism, that is a differentiable homeomophism, suppPy = suppPz .63

Theorem 1 (Probabilistic Completeness). If a RRT-algorithm, drawing samples from random vari-64

able y, is probabilistic complete, then the RRT-algorithm drawing samples from f(y), where f is a65

diffeomorphism, is also probabilistic complete.66

Proof. As random variables y and f(y) are linked by diffeomorphism f , by lemma D.1, they have67

the same support. Clearly, as the sampling time t→ +∞, the set of created vertices with the sampling68

distribution y, V (y), and set of created vertices with the sampling distribution f(y), V (f(y)), are69

equal. Then by Theorem 23 from [2], the probabilistic completeness follows directly from the prob-70

abilistic completeness of RRT with sampling distribution y.71

E Numerical Evaluation of Motion Planners72

Table 4 illustrates the numerical results of various motion planners with and without the proposing73

diffeomorphic sampler (complementary to Figure 4 in the main text). Overall, PDMP allows each74

motion planners to utilise sampled configurations that are more likely to be feasible (see table 1),75

which in turn allow PDMP planners to achieve shorter time-to-solution when compared to their76

original counterpart in table 4. Therefore, they are also more likely to successfully obtain a solution77

trajectory within the allocated time budget.78



Table 4: Numerical results on various sampling-based motion planners on each environment. The
time-to-solution refers to the time it took to obtain a solution trajectory (in seconds); and the success
pct. refers to the percentage of runs that had successfully found a solution. The Original refers to
the unmodified planner, whereas PDMP refers to the same planner with a replaced diffeomorphic
sampler. Results are over 30 runs and with a time budget of 20 seconds. Results shown are mean ±
one standard deviation (µ± σ).

Environment

Divider Cupboard Lab-setup

RRT*
Time-to-solution Original 13.83 ± 7.72 18.79 ± 4.53 12.56 ± 7.78

PDMP 5.99 ± 3.98 17.01 ± 6.14 9.26 ± 8.37

Success pct. Original 43.33 % 6.67 % 53.33 %
PDMP 96.67 % 20.00 % 70.00 %

RRT-Connect*
Time-to-solution Original 2.72 ± 0.91 5.51 ± 7.38 1.60 ± 0.63

PDMP 1.60 ± 1.26 3.64 ± 5.76 1.29 ± 0.44

Success pct. Original 100 % 83.33 % 100 %
PDMP 100 % 93.33 % 100 %

Lazy-PRM*
Time-to-solution Original 14.98 ± 7.96 N/A 16.57 ± 6.93

PDMP 13.37 ± 7.44 N/A 14.71 ± 7.07

Success pct. Original 33.33 % 0 % 20.00 %
PDMP 43.33 % 0 % 46.67 %

F PDMP with Various Prior Distribution79

We extend the plots of the angles distribution across different prior distribution and environments80

in Fig. 2 (complementary to Figure 6 in the main text). The plots illustrate the empirical probability81

density of the joint angle distribution for the Divider (Fig. 3) and the Cupboard (Fig. 2b) environment.82

We used three different prior distribution: (i) a Uniform distribution, (ii) a Multivariate Normal distri-83

bution and (iii) a Gaussian Mixture Model to test the versatility of the diffeomorphic transformation.84

The parameters of (ii) and (iii) are randomly chosen and fixed across the two environments.85

The blue Prior line plots refers the probability density of the prior distribution; the orange Occupancy86

Potential refers to the morphed samples with only occupancy potentials (i.e. the main results presen-87

ted by this paper); and the green Bias Center+Occupancy Potentials illustrates morphed samples88

that includes both a potentials to morph towards the center of joints (to inject user bias), and the89

occupancy potentials to avoid collisions.90

All of the green plots should be more concentrated to the center of the joint angles when compared to91

the other two. Sometimes it exhibits a higher feasibility even when compared to the orange occupancy92

potential plots, likely due to the fact that biasing towards center had avoided violating the joint limits93

(e.g. the 2nd and 3rd joints which does not wrap around). The orange occupancy potential plots tends94

to exhibit the highest feasibility across environments. Interestingly, the morphed samples formed a95

Multimodal distribution even when the prior is uniform, of which the multimodality likely resembles96

the likelihood of free space in the C-Space. The multimodality in Fig. 2b seems to be highly varying97

when compared to Fig. 3, which agrees with the low feasibilty results of the Cupboard environment98

in table 1 as the environment is extremely cluttered. Lastly, it is clear that the morphed distribution99

is highly resemblance of the prior distribution, which implies that the diffeomorphic transformation100

is flexible to be applied to any arbitrary prior distribution to inject user bias or avoid collision from101

the occupancy map.102



(a) Divider Environment

(b) Cupboard Environment

Figure 2: Distribution of angles for the first three joint angles, for the uninformed prior, an informed
distribution based on occupancy, and an informed distribution based on both user bias and occupancy
(biasing towards center of joints, which is the middle of each x-axis). For each sub-figure, the rows
from top to bottom refers to morphing different prior distributions, which includes a Uniform, a
Multivariate Normal (MVN) and a Gaussian Mixture Model (GMM) prior. Parameters for MVN
and GMM are randomly picked to be within the range of the joint limits. Each x-axis refers to joint
angles (in radian) and y-axis refers to the emerpical probability density function obtained with KDE.
The right plots on both (a) and (b) refers to the percentage of samples that are feasible.



G Larger plot of the planner performance103

Fig. 4 is a larger plot complementary to Figure 4 in the main text104
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Figure 3: Planner performance

Figure 4: From top to bottom are (i) Divider, (ii) Cupboard and (iii) Lab-setup. The success rate
of the planning algorithm variants, over 30 runs. We observe that PDMP enables all flavours of
sampling-based motion planning algorithms to have improved success rates, particularly at lower
planning times

H Real-world experiment105

Fig. 5 visualises the sequence of motion of the planned solution trajectory by PDMP, in the Divider106

and Lab-setup environment. Videos are also included in the supplementary material.107



(a) Divider

(b) Lab-setup

Figure 5: Sequence of photos that illustrate the lab experiments with the Jaco arm.
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