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Abstract: Skill chaining is a promising approach for synthesizing complex behav-
iors by sequentially combining previously learned skills. Yet, a naive composition
of skills fails when a policy encounters a starting state never seen during its training.
For successful skill chaining, prior approaches attempt to widen the policy’s start-
ing state distribution. However, these approaches require larger state distributions
to be covered as more policies are sequenced, and thus are limited to short skill
sequences. In this paper, we propose to chain multiple policies without excessively
large initial state distributions by regularizing the terminal state distributions in
an adversarial learning framework. We evaluate our approach on two complex
long-horizon manipulation tasks of furniture assembly. Our results have shown
that our method establishes the first model-free reinforcement learning algorithm
to solve these tasks; whereas prior skill chaining approaches fail. The code and
videos are available at https://clvrai.com/skill-chaining.

Keywords: Long-Horizon Manipulation, Skill Chaining, Reinforcement Learning

1 Introduction

Deep reinforcement learning (RL) presents a promising framework for learning impressive robot
behaviors [1–4]. Yet, learning a complex long-horizon task using a single control policy is still
challenging mainly due to its high computational costs and the exploration burdens of RL models [5].
A more practical solution is to decompose a whole task into smaller chunks of subtasks, learn a policy
for each subtask, and sequentially execute the subtasks to accomplish the entire task [6–9].

However, naively executing one policy after another would fail when the subtask policy encounters
a starting state never seen during training [6, 7, 9]. In other words, a terminal state of one subtask
may fall outside of the set of starting states that the next subtask policy can handle, and thus fail
to accomplish the subtask, as illustrated in Figure 1a. Especially in robot manipulation, complex
interactions between a high-DoF robot and multiple objects could lead to a wide range of robot and
object configurations, which are infeasible to be covered by a single policy [10]. Therefore, skill
chaining with policies with limited capability is not trivial and requires adapting the policies to make
them suitable for sequential execution.

To resolve the mismatch between the terminal state distribution (i.e. termination set) of one policy and
the initial state distribution (i.e. initiation set) of the next policy, prior skill chaining approaches have
attempted to learn to bring an agent to a suitable starting state [7], discover a chain of options [11, 12],
jointly fine-tune policies to accommodate larger initiation sets that encompass terminal states of
the preceding policy [6], or utilize modulated skills for smooth transition between skills [13–16, 9].
Although these approaches can widen the initiation sets to smoothly sequence several subtask policies,
it quickly becomes infeasible as the larger initiation set often leads to an even larger termination set,
which is cascaded along the chain of policies, as illustrated in Figure 1b.

Instead of enlarging the initiation set to encompass a termination set modelled as a simple Gaussian
distribution [6], we propose to keep the termination set small and near the initiation set of the next
policy. This can prevent the termination sets from becoming too large to be covered by the subsequent
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π̃0 π̃1

Widen      to cover I1 β̃0

I2

π2

β̃0 I1

(I3, π3, β3)
Subtask 3

Push       towards I2β1

Ii−1 βi−1 Ĩi β̃i
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Figure 1: We aim to solve a long-horizon task, e.g., furniture assembly, using independently trained
subtask policies. (a) Each subtask policy, πi, works successfully only on its initiation set (green), Ii,
and results in its termination set (pink), βi; thus, it fails when performed outside of Ii (red curve).
(b) To enable sequencing policies, a subsequent policy πi needs to widen its initiation set to cover
the termination set of the prior policy βi−1. But this can result in an increase of its termination
set βi, which makes fine-tuning of the following policy πi+1 even more challenging. This effect
is exacerbated when more policies are chained together. (c) During fine-tuning of a policy πi, we
regularize the terminal state distribution βi to be close to the initiation set of the next policy Ii+1. In
contrast to the boundless increase of β̃i in (b), our approach effectively keeps the required initiation
set small over the chain of policies with the terminal state regularization.

policies, especially when executing a long sequence of skills; thus, fine-tuning of subtask polices
becomes more sample efficient. As a result, small changes in the initiation sets of subsequent policies
are sufficient to successfully execute a series of subtask policies.

To this end, we devise an adversarial learning framework that learns an initiation set discriminator
to distinguish the initiation set of the policy that follows from terminal states, and uses it as a
regularization for encouraging the terminal states of a policy to be near the initiation set of the next
policy. With this terminal state regularization, the pretrained subtask policies are iteratively fine-tuned
to solve the subtask with the new initiation set while keep the terminal states of a policy small enough
to be covered by the initiation set of the subsequent policy. As a result, our model is capable of
chaining a sequence of closed-loop policies to accomplish a collection of multi-stage IKEA furniture
assembly tasks [17] that require high-dimensional continuous control under contact-rich dynamics.

In summary, our contributions are threefold:

• We propose a novel adversarial skill chaining framework with Terminal STAte Regularization,
T-STAR, for learning long-horizon and hierarchical manipulation tasks.

• We demonstrate that the proposed method can learn a long-horizon manipulation task, furniture
assembly of two different types of furniture. Our terminal state regularization algorithms improves
the success rate of the policy sequencing method from 0% to 56% for CHAIR INGOLF and from
59% to 87% for TABLE LACK. To our best knowledge, this is the first empirical result of a
model-free RL method that solves these furniture assembly tasks without manual engineering.

• We present comprehensive comparisons with prior skill composition methods and qualitative
visualizations to analyze our model performances.

2 Related Work

Deep reinforcement learning (RL) for continuous control [18–20] is an active research area. While
some complex tasks can be solved based on a reward function, undesired behaviors often emerge [21]
when tasks require several different primitive skills. Moreover, learning such complex tasks becomes
computationally impractical as the tasks become long and complicated due to the credit assignment
problem and the large exploration space.
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Imitation learning aims to reduce this complexity of exploration and the difficulty of learning from
reward signal. Behavioral cloning approaches [22–25] greedily imitate the expert policy and therefore
suffer from accumulated errors, causing a drift away from states seen in the demonstrations. On the
other hand, inverse reinforcement learning [26–28] and adversarial imitation learning approaches [29,
30] encourage the agent to imitate expert trajectories with a learned reward function, which can better
handle the compounding errors. Specifically, generative adversarial imitation learning (GAIL) [29]
and its variants [30, 31] show improved demonstration efficiency by training a discriminator to
distinguish expert versus agent transitions and using the discriminator output as a reward for policy
training. Although these imitation learning methods can learn simple locomotion behaviors [29] and
a handful of short-horizon manipulation tasks [32, 31], these methods easily overfit to local optima
and still suffer from temporal credit assignment and accumulated errors for long-horizon tasks.

Instead of learning an entire task using a single policy, we can tackle the task by decomposing it
into easier and reusable subtasks. Hierarchical reinforcement learning does this by decomposing a
task into a sequence of temporally extended macro actions. It often consists of one high-level policy
and a set of low-level policies, such as in the options framework [33], in which the high-level policy
decides which low-level policy to activate and the chosen low-level policy generates a sequence
of atomic actions until the high-level policy switches it to another low-level policy. Options can
be discovered without supervision [34–37, 11, 12], learned from data [38–40], meta-learned [41],
pre-defined [7, 42–44], or attained through task structure supervision [45, 10]. For long-horizon
planning capability, the high-level policy can be trained using traditional planning methods [46, 47].

To synthesize complex motor skills with a set of predefined skills, Lee et al. [7] learns to find smooth
transitions between subtask policies. This method assumes the subtask policies are fixed, which
makes learning such transitions feasible but, at the same time, leads to failure of smooth transition
when an external state has to be changed or the end state of the prior subtask policy is too far away
from the initiation set of the following subtask policy. On the other hand, Clegg et al. [6] proposes to
sequentially improve subtask policies to cover the terminal states of previous subtask policies. While
this method fails when the termination set of the prior policy becomes extremely large, our method
prevents such boundless expansion of the termination set.

Closely related to our work, prior skill chaining methods [11, 12, 38] have proposed to discover a
new option that ends with an initiation set of the previous option. With newly discovered options, the
agent can reach the goal from more initial states. However, these methods have a similar issue with
Clegg et al. [6] that discovering a new option requires a large enough initiation set of the previous
option, which is cascaded along the chain of options.

Furniture assembly is a challenging robotics task requiring reliable 3D perception, high-level planning,
and sophisticated control. Prior works [48–50] tackle this problem by manually programming the
high-level plan and learning only a subset of low-level controls. In this paper, we propose to tackle
the furniture assembly task in simulation [17] by learning all the low-level control skills and then
effectively sequencing these skills.

3 Approach

In this paper, we aim to address the problem of chaining multiple policies for long-horizon complex
manipulation tasks, especially in furniture assembly [17]. Sequentially executing skills often fails
when a policy encounters a starting state (i.e. a terminal state of the preceding policy) never seen
during its training. The subsequent policy can learn to address these new states, but this may require
even larger states to be covered by the following policies. To chain multiple skills without requiring
boundlessly large initiation sets of subtask policies, we introduce a novel adversarial skill chaining
framework that constrains the terminal state distribution, as illustrated in Figure 2. Our approach first
learns each subtask using subtask rewards and demonstrations (Section 3.2); it then adjusts the subtask
policies to effectively chain them to complete the whole task via the terminal state regularization
(Section 3.3).

3.1 Preliminaries

We formulate our learning problem as a Markov Decision Process [51] defined through a tuple
(S,A, R, P, ρ0, γ) for the state space S, action space A, reward function R(s, a, s′), transition
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Figure 2: Our adversarial skill chaining framework regularizes the terminal state distribution to be
close to the initiation set of the subsequent subtask. The initiation set discriminator models the
initiation set distribution by discerning the initiation set and states in agent trajectories, while the
policy learns to reach states close to the initiation set by augmenting the reward with the discriminator
output, dubbed terminal state regularization. Our method jointly trains all policies and initiation set
discriminators, pushing the termination set close to the initiation set of the next policy, which leads to
smaller changes required for the policies that follow, especially effective in a long chain of skills.

distribution P (s′|s, a), initial state distribution ρ0, and discount factor γ. We define a policy π : S →
A that maps from states to actions and correspondingly moves an agent to a new state according
to the transition probabilities. The policy is trained to maximize the expected sum of discounted
rewards E(s,a)∼π

[∑T−1
t=0 γtR(st, at, st+1)

]
, where T is the episode horizon. Each policy comes

with an initiation set I ⊂ S and termination set β ⊂ S, where the initiation set I contains all initial
states that lead to successful execution of the policy and the termination set β consists of all final
states of successful executions. We assume the environment provides a success indicator of each
subtask and this can be easily inferred from the final state, e.g., two parts are aligned and the connect
action is activated. In addition to the reward function, we assume the learner receives a fixed set
of expert demonstrations, De = {τe1 , . . . , τeN}, where a demonstration is a sequence of state-action
pairs, τej = (s0, a0, . . . , sTj−1, aTj−1, sTj ).

3.2 Learning Subtask Policies

To solve a complicated long-horizon task (e.g. assembling a table), we decompose the task into
smaller subtasks (e.g. assembling a table leg to a table top), learn a policy πiθ for each subtaskMi,
and chain these subtask policies. Learning each subtask solely from reward signals is still challenging
in robot manipulation due to a huge state space of the robot and objects to explore, and complex
robot control and dynamics. Thus, for efficient exploration, we use an adversarial imitation learning
approach, GAIL [29], which encourages the agent to stay near the expert trajectories using a learned
reward by discerning expert and agent behaviors. Together with reinforcement learning, the policy
can efficiently learn to solve the subtask even on states not covered by the demonstrations.

More specifically, we train each subtask policy πiθ on Ri following the reward formulation proposed
in [52, 53], which uses the weighted sum of the environment and GAIL rewards:

Ri(st, at, st+1;φ) = λ1R
i
ENV (st, at, st+1) + λ2R

i
GAIL(st, at;φ), (1)

whereRiGAIL(st, at;φ) = 1−0.25 · [f iφ(st, at)−1]2 is the predicted reward by the GAIL discrimina-
tor f iφ [53], and λ1 and λ2 are hyperparameters that balance between the reinforcement learning and
imitation learning objectives. We found this reward formulation [53] works most stable among vari-
ants of GAIL [29] in our experiments thanks to its bounded reward between [0, 1]. The discriminator
is trained using the following objective: minfiφ E(s)∼De

[
(f iφ(s)− 1)2

]
+ E(s)∼πi

[
(f iφ(s) + 1)2

]
.
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Algorithm 1 T-STAR: Skill chaining via terminal state regularization

Require: Expert demonstrations De1, . . . ,DeK , subtask MDPsM1, . . . ,MK

1: Initialize subtask policies π1
θ , . . . , π

K
θ , GAIL discriminators f1φ, . . . , f

K
φ , initiation set discrimi-

nators D1
ω, . . . , D

K
ω , initial state buffers B1I , . . . ,BKI , and terminal state buffers B1β , . . . ,BKβ

2: for each subtask i = 1, ...,K do
3: while until convergence of πiθ do
4: Rollout trajectories τ = (s0, a0, r0, . . . , sT ) with πiθ
5: Update f iφ with τ and τe ∼ Dei . Train GAIL discriminator
6: Update πiθ using Ri(st, at, st+1;φ) in Equation (1) . Train subtask policy
7: end while
8: end for
9: for iteration m = 0, 1, ...,M do

10: for each subtask i = 1, ...,K do
11: Sample s0 from environment or Bi−1β

12: Rollout trajectories τ = (s0, a0, r0, . . . , sT ) with πiθ
13: if τ is successful then
14: BiI ← BiI ∪ s0,Biβ ← Biβ ∪ sT . Collect initial and terminal states of successful trajectories
15: end if
16: Update f iφ with τ and τe ∼ Dei . Fine-tune GAIL discriminator

17: Update Di
ω with sβ ∼ Bi−1β and sI ∼ BiI . Train initiation set discriminator

18: Update πiθ using Ri(st, at, st+1;φ, ω) in Equation (3) . Fine-tune subtask policy with terminal
state regularization

19: end for
20: end for

Due to computational limitations, training a subtask policy for all possible initial states is impractical,
and hence it can cause failure on states unseen during training. Instead of indefinitely increasing the
initiation set, we first train the policy on a limited set of initial states (e.g. predefined initial states
with small noise), and later fine-tune the policy on the set of initial states required for skill chaining
as described in the following section. This pretraining of subtask policies ensures the quality of the
pretrained skills and makes the fine-tuning stage of our method easy and efficient.

3.3 Skill Chaining with Terminal State Regularization

Once subtask polices are acquired, one can sequentially execute the subtask policies to complete
more complex tasks. However, naively executing the polices one-by-one would fail since the policies
are not trained to be smoothly connected. As can be seen in Figure 1a, independently trained subtask
policies only work on a limited range of initial states. Therefore, the execution of a policy πi fails on
the terminal states of the preceding policy βi−1 outside of its initiation set Ii.
For successful sequential execution of πi−1 and πi, the terminal states of the preceding policy should
be included in the initiation set of the subsequent policy, βi−1 ⊂ Ii. This can be achieved either by
widening the initiation set of the subsequent policy or by shifting the terminal state distribution of
the preceding policy. However, in robot manipulation, the set of valid terminal states can be huge
with freely located objects (e.g. a robot can mess up the workplace by moving or throwing other
parts away). This issue is cascaded along the chain of policies, which leads to the boundlessly large
initiation set required for policies, as illustrated in Figure 1b.

Therefore, a policy needs to not only increase the initiation set (e.g. assemble the table leg in diverse
configurations) but also regularize the termination set to be bounded and close to the initiation set
of the subsequent policies (e.g. keep the workplace organized), as described in Figure 1c. To this
end, we devise an adversarial framework which jointly trains an initiation set discriminator, Di

ω(st),
to distinguish the terminal states of the preceding policy and the initiation set of the corresponding
policy, and a policy to reach the initiation set of the subsequent policy with the guidance of the
initiation set discriminator. We train the initiation set discriminator for each policy to minimize the
following objective: Li(ω) = EsI∼Ii

[
Di
ω(sI)− 1

]2
+ EsT∼βi−1

[
Di
ω(sT )

]2
.
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With the initiation set discriminator, we regularize the terminal state distribution of the policy by
encouraging the policy to reach a terminal state close to the initiation set of the following policy. The
terminal state regularization can be formulated as following:

RiTSR(s;ω) = 1s∈βiD
i+1
ω (s) (2)

Then, we can rewrite the reward function with the terminal state regularization:

Ri(st, at, st+1;φ, ω) = λ1R
i
ENV (st, at, st+1) + λ2R

i
GAIL(st, at;φ) + λ3R

i
TSR(st+1;ω), (3)

where λ3 is a weighting factor for the terminal state regularization. The first two terms of this reward
function guide a policy to accomplish the subtask while the terminal state regularization term forces
the termination set to be closer to the initiation set of the following policy.

With this reward function incorporating the terminal state regularization, subtask policies and GAIL
discriminators can be trained to cover unseen initial states while keeping the termination set closer to
the initiation set of the next policy. Once subtask policies are updated, we collect terminal states and
initiation sets with the updated policies, and train the initiation set discriminators. We alternate these
procedures to smoothly chain subtask policies, as summarized in Algorithm 1, where changes of our
algorithm with respect to Clegg et al. [6] are marked in red.

4 Experiments

In this paper, we propose a skill chaining approach with the terminal state regularization, which
encourages to match the terminal state distribution of the prior skill with suitable starting states of the
following skill. Through our experiments, we aim to verify our hypothesis that the policy sequencing
fails due to unbounded terminal states, which is cascaded along the sequence of skills, and show the
effectiveness of our framework on learning a long sequence of complex manipulation skills.

4.1 Baselines

We compare our method to the state-of-the-art prior works in reinforcement learning, imitation
learning, and skill composition, which are listed below:

• BC [22] fits a policy to the demonstration actions with supervised learning.
• PPO [54] is a model-free on-policy RL method that learns a policy from the environment reward.
• GAIL [29] is an adversarial imitation learning approach with a discriminator trained to distinguish

expert and agent state-action pairs (s, a).
• GAIL + PPO uses both the environment and GAIL reward (Equation (1)) to optimize a policy.
• SPiRL [55] is a hierarchical RL approach that learns fixed-length skills and skill prior from the

dataset, and then learns a downstream task using skill-prior-regularized RL.
• Policy Sequencing [6] first trains a policy for each subtask independently and finetunes the

policies to cover the terminal states of the previous policy.
• T-STAR (Ours) learns subtask policies simultaneously, leading them to be smoothly connected

using the terminal state regularization.

4.2 Tasks

(a) TABLE LACK (b) CHAIR INGOLF

Figure 3: Two furniture assembly tasks [17]
consist of four subtasks (four table legs for
TABLE LACK; two seat supports, chair seat,
and front legs for CHIAR INGOLF).

We test our method and baselines with two furniture
models, TABLE LACK and CHIAR INGOLF, from the
IKEA furniture assembly environment [17] as illus-
trated in Figure 3:

• TABLE LACK: Four table legs need to be picked
up and aligned to the corners of the table top.

• CHAIR INGOLF: Two chair supports and front
legs need to be attached to the chair seat. Then,
the chair seat needs to be attached to the chair
back while avoiding collision to each other.
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In our experiments, we define a subtask as assembling one part to another; thus, we have four subtasks
for each task. Subtasks are independently trained on the initial (object) states sampled from the
environment with random noise ranging from [−2cm, 2cm] and [−3°, 3°] in the (x, y)-plane. This
subtask decomposition is given, i.e., the environment can be initialized for each subtask and the agent
is informed whether the subtask is completed and successful.

For the robotic agent, we use the 7-DoF Rethink Sawyer robot operated via joint velocity control.
For imitation learning, we collected 200 demonstrations for each furniture part assembly with a
programmatic assembly policy. Each demonstration for single-part assembly consists of around
200-900 steps long due to the long-horizon nature of the task.

The observation space includes robot observations (29 dim), object observations (35 dim), and task
phase information (8 dim). The object observations contain the positions (3 dim) and quaternions (4
dim) of all five furniture pieces in the scene. Once two parts are attached, the corresponding subtask
is completed and the robot arm moves back to its initial pose in the center of the workplace. Our
approach can in theory solve the task without resetting the robot; however, this resetting behavior
effectively reduces the gap in robot states when switching skills and is available in most robots.

4.3 Results

Table 1: Average progress of the furniture assembly task.
Each subtask amounts to 0.25 progress. Hence, 1 represents
successful execution of all four subtasks while 0 means the
agent does not achieve any subtask. Our method learns to
complete all four subtasks in sequence and outperforms the
policy sequencing baseline and standard RL and IL methods.
We report the mean and standard deviation across 5 seeds.

TABLE LACK CHAIR INGOLF

BC [22] 0.03 ± 0.00 0.04 ± 0.01
PPO [54] 0.09 ± 0.11 0.14 ± 0.03
GAIL [29] 0.00 ± 0.00 0.00 ± 0.00
GAIL + PPO [52] 0.21 ± 0.11 0.22 ± 0.08
SPiRL [55] 0.05 ± 0.00 0.03 ± 0.00

Policy Sequencing [6] 0.63 ± 0.28 0.77 ± 0.12
T-STAR (Ours) 0.90 ± 0.07 0.89 ± 0.04

The results in Table 1 show the aver-
age progress of the furniture assembly
tasks across 200 testing episodes for
5 different seeds. Since each task con-
sists of assembling furniture parts four
times, completing one furniture part
assembly amounts to task progress of
0.25. Even though the environment
has small noises in furniture initial-
ization, both BC [22] and GAIL [29]
baselines move the robot arm near
furniture pieces but struggle at pick-
ing up even one furniture piece. This
shows the limitation of BC and GAIL
in dealing with compounding errors in
long-horizon tasks with the large state
space and continuous action space.
Similarly, the hierarchical skill-based
learning approach, SPiRL, also strug-
gles at learning picking up a single furniture piece. This can be due to the insufficient amount of data
to cover a long sequence of skills on the large state space, e.g., many freely located objects. Moreover,
due to the difficulty of exploration, the model-free RL baseline, PPO, rarely learns to assemble one
part. On the other hand, the GAIL + PPO baseline can consistently learn one-part assembly, but
cannot learn to assemble further parts due to the exploration challenge and temporal credit assignment
problem. These baselines are trained for 200M environment steps (5M for off-policy SPiRL).

By utilizing pretrained subtask policies with GAIL + PPO (25M steps for each subtask), skill chaining
approaches could achieve improved performance compared to the single-policy baselines. We train
the policy sequencing baseline and our method for additional 100M steps, which requires in total
200M steps including the pretraining stage. The policy sequencing baseline [6] achieves 0.63 and
0.77 average task progress, whereas our method achieves 0.90 and 0.89 average task progress on
TABLE LACK and CHAIR INGOLF, respectively. The performance gain of our method comes from
the reduced discrepancy between the termination set and the initiation set of the next subtask thanks
to the terminal state regularization.

We can observe this performance gain even clearer in the success rates. Our terminal state regulariza-
tion improves the success rate of policy sequencing from 0% to 56% for CHAIR INGOLF and from
59% to 87% for TABLE LACK. We observe that with more skills to be chained, the success rate of the
newly chained skill decreases, especially in CHAIR INGOLF; the policy sequencing baseline learns to
complete the first three subtasks, but fails to learn the last subtask due to excessively large and shifted
initial state distribution, i.e., terminal states of the preceding subtask.
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Terminal states (Ours, 36M steps)
Terminal states (PS, 36M steps)

(a) 36M steps

Terminal states (Ours, 39M steps)
Terminal states (PS, 39M steps)

(b) 39M steps

Terminal states (Ours, 42M steps)
Terminal states (PS, 42M steps)

(c) 42M steps

Terminal states (Ours, 45M steps)
Terminal states (PS, 45M steps)

(d) 45M steps

Figure 4: To demonstrate the benefit of our terminal state regularization, we visualize the changes in
termination sets over training of the third subtask policy on CHAIR INGOLF. We plot each terminal
state by projecting its object configuration into 2D space using PCA. Through 36M to 45M training
steps, both the policy sequencing baseline [6] and our method successfully learn to cover most
terminal states from the second subtask. However, without regularization, the policy sequencing
method (red) shows the increasing size of the termination set (e.g. spread over horizontally at 39M and
vertically at 42M steps) as more initial states are covered by the policy. In contrast, in our approach
(blue), the terminal state distribution is bounded, which shows that the terminal state regularization
can effectively prevent the terminal state distribution diverging. This bounded termination set makes
learning of the following skills efficient, and thus helps chaining a long sequence of skills.

4.4 Qualitative Results

To analyze the effect of the proposed terminal state regularization, we visualize the changes in
termination sets over training. We first collect 300 terminal states of the third subtask policy on
CHAIR INGOLF both for our method and the policy sequencing baseline for 36M, 39M, 42M, and
45M training steps. Then, we apply PCA on the object state information in the terminal states and
use the first two principal components to reduce the data dimension.

Figure 4 shows that our method effectively constrains the terminal state distribution of a subtask
policy. Before 36M training steps, the policy cannot solve the third subtask due to the shifted initial
state distribution by the second subtask policy. With additional training, at 42M and 45M training
steps, the policy learns to solve the subtask on newly added initial states for both methods. From
36M to 45M steps of training, the termination set of the policy sequencing baseline (red) spreads out
horizontally after 39M training steps and vertically after 42M steps. For successful skill chaining, this
wide termination set has to be covered by the following policy, requiring a large change in the policy
and potentially causing an even larger termination set. In contrast, the terminal state distribution of
our method (blue) does not excessively increase but actually shrinks in this experiment, which leads
to successful execution and efficient adaptation of subsequent subtask policies.

5 Conclusion

We propose T-STAR, a novel adversarial skill chaining framework that addresses the problem of
the increasing size of initiation sets required for executing a long chain of manipulation skills. To
prevent excessively large initiation sets to be learned, we regularize the terminal state distribution of
a subtask policy to be close to the initiation set of the following subtask policy. Through terminal
state regularization, our approach jointly trains all subtask policies to ensure that the final state of
one policy is a good initial state for the policy that follows. We demonstrate the effectiveness of
our approach on the challenging furniture assembly tasks, where prior skill chaining approaches
fail. These results are promising and motivate future work on chaining more skills with diverse skill
combinations to tackle complex long-horizon problems. Another interesting research direction is
eliminating subtask supervision required in our work and discovering subtask decomposition from
large data in a unsupervised learning manner. Finally, transferring our framework to real robot
systems, which involves learning a vision-based policy, improving sample efficiency, and closing
simulation-to-real gaps, is our definite future work.
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