
Supplementary Material for Beyond Pick-and-Place:
Tackling Robotic Stacking of Diverse Shapes

Anonymous Author(s)
Affiliation
Address
email

1

Abstract: We give details on the benchmark, method, implementation details and2

experimental results. Videos of our experimental result accompany this write-up.3

Our main goal with this appendix is to provide in-depth detail, both for the bench-4

mark and for details regarding our approach. Complementary to this document,5

we will release designs for real cells and objects, and a simulation environment6

upon publication. We hope that this will facilitate adoption of the RGB-Stacking7

environment in the robotics research community.8

9

Table of Contents10
11

A The RGB-Stacking Benchmark 212

A.1 The RGB-objects family . 213

A.2 Benchmark Analysis . 314

A.3 Publicly Released Objects . 515

B Environment Details 616

B.1 Real-World Environment . 617

B.2 Environment Observations . 718

B.3 Object Position Estimation . 919

B.4 Task Evaluation . 920

B.5 Simulation . 1021

C Baselines 1422

C.1 Human performance . 1423

C.2 Scripted Agent . 1424

D Methods 1625

D.1 Details on Training Expert policies from State Features in Simulation 1626

D.2 Details on Interactive Imitation Learning for Sim-to-Real Transfer 1827

D.3 Details on Training Improved Policies from Real Data 1828

E Experimental Details 1829

E.1 Domain Randomization and Image Augmentation 1830

E.2 Additional Network Architecture Details . 2131

E.3 Additional Training Details . 2332

E.4 Detailed Real-Robot Results . 2333

Submitted to the 5th Conference on Robot Learning (CoRL 2021). Do not distribute.

Polygon Axis

Parallelogram Axis

Trapezoid Axis

Rectangle Axis

x-Rectangle & y-Rectangle Axis

Parallelogram & z-Rectangle Axis

Parallelogram & y-Rectangle Axis

Parallelogram & x-Rectangle Axis

Trapezoid & z-Rectangle Axis

Trapezoid & y-Rectangle Axis

Trapezoid & x-Rectangle Axis

Parallelogram & Trapezoid Axis

Polygon & x-Rectangle Axis

Polygon & Parallelogram Axis

Polygon & Trapezoid Axis

Figure S1: Illustration of the deformations applied for each of the 15 axes of the RGB-Objects parametric
family (major axes and their unique pairwise combinations). Each deformation changes the stacking affordance
of RGB-objects.

E.5 Qualitative Analysis . 2534

F Additional Related Work 2735

G Additional Supplementary Material 2736
37
3839

A The RGB-Stacking Benchmark40

In this section, we provide more details on our proposed benchmark and analyze its difficulty in var-41

ious ways. We qualitatively evaluate the grasping affordance based on general principles on force42

closure and object funnels [1], and quantitatively based on the Ferrari-Canny grasp metric [2, 3].43

Similarly, we qualitatively depict the stacking affordance (Figure S5), which is varied by having44

bottom objects, whose top flat surfaces differ in area, shape, and orientation. We also quantita-45

tively evaluate both affordances by evaluating the stacking performance of human teleoperators in46

simulation, and of a carefully scripted agent.47

A.1 The RGB-objects family48

The RGB-objects are all obtained by applying a certain deformation to a cube, which is our seed49

object. We have defined six major axes of deformation (see Figure S1) of the seed object, which50

result in different shapes. These shapes can also be thought of as the vertical extrusion of a 2D51

shape, which is also the name of each axis. As already described in the main paper but reproduced52

here for completion, these are:53

• Polygon-Axis [N]: deformation obtained by transforming the extruded planar shape (i.e.54

the square) into a regular polygon.55

• Trapezoid-Axis [R+]: deformation obtained by progressively morphing the planar square56

to a isosceles trapezoid.57

• Parallelogram-Axis [R+]: deformation obtained by changing the orientation of the extru-58

sion axis, from vertical (i.e. orthogonal to the plane of the planar shape) to progressively59

more slanted axes.60

• Rectangle-Axis [R3
+]: deformation by uniformly scaling the object along the x, y or z-axis.61

These deformations and their combinations define a parametric family of objects. Figure S1 shows62

a representative sampling of this family. For our Skill Generalization task we designate the axes63

of all pairwise combined deformations as the training axes and the ones of single deformation—64

the major axes above—as the held-out axes. The training axes are Polygon & Trapezoid, Polygon65

& Parallelogram, Polygon & x-Rectangle, Trapezoid & Parallelogram, Trapezoid & x-Rectangle,66

2

Polygon
TrapezoidParallelogram

x-, y-, z- Rectangle

Polygon & Trapezoid

Polygon & Parallelogram

Polygon & x-Rectangle

Trapezoid & Parallelogram

Trapezoid & x-Rectangle Trapezoid & y-Rectangle
Trapezoid & z-Rectangle

Parallelogram & x-Rectangle

Parallelogram & y-Rectangle

Parallelogram & z-Rectangle

x-Rectangle & y-Rectangle

Figure S2: The RGB-objects that are included in the benchmark grouped according to each of the 15
chosen axes of deformation. The seed object is at the center; all the other objects are the result of deformations
of this cube. These deformations change the grasping and stacking affordances of the objects. The held-out
objects (major axes) are enclosed in the teal sector; the training objects (pairwise mixing of two major axes)
are enclosed in the blue sector. Some objects cannot be grasped with a parallel gripper with 85 mm aperture
(i.e. the Robotiq 2F-85); these objects are transparent and were omitted in our experiments.

Trapezoid & y-Rectangle, Trapezoid & z-Rectangle, Parallelogram & x-Rectangle, Parallelogram67

& y-Rectangle, Parallelogram & z-Rectangle, and x-Rectangle & y-Rectangle. Pairwise mixing of68

the major axes leads to objects that are duplicates and therefore we omitted certain axes and objects69

(e.g. the x-Rectangle & y-Rectangle and x-Rectangle & z-Rectangle axes). Also note that the x-, y-,70

z- Rectangle axes are the same so we refer to these as a single major Rectangle axis.71

Based on these 15 axes illustrated in Figure S1, we created a training object set, which consists of72

103 different shapes, and a held-out set, containing 40 shapes. Figure S2 shows a depiction of all the73

objects that are included in the benchmark and were used in our experiments. The 5 specific triplets74

chosen for the Skill Mastery task belong to the held-out axes with each object in a triplet being the75

seed or from a different axis1. While final performance is evaluated on these 5 fixed test triplets for76

both tasks, during training for Skill Generalization we hold out not just these objects but the entire77

4 axes of deformation they belong to. That is, during training we can use the 103 objects from the78

training object set, while performance is evaluated still on the 5 specific triplet combinations from79

the Skill Mastery task.80

A.2 Benchmark Analysis81

The design principles outlined above aim at varying the resulting objects’ grasp and stack affordance82

for a parallel gripper. In this section we qualitatively and quantitatively discuss these variations. The83

qualitative evaluations follow from some general principles on force closure2 and object’s funnel84

(see Mason [1] for a definition). Figure S3 shows the graphical notation which we will use to85

1Technically and for legacy reasons, although the objects for the 5 triplets are sampled from the held-out
axes, not all of them are actually depicted in the held-out object set illustrated in Figure S2. As seen in their
figure in the main text, 3 are the seed cube object (itself held out), and 4 out of the 15 are actually in the held-
out object set. These are the 4 top objects that are not the seed cube. The rest 8 objects are almost identical to
existing objects in the held-out object set shown in Figure S2. In the released set of object models, these will
be in their own sub-directory.

2A two-contact stable grasp is achieved if and only if Murray et al. [5, Theorem 5.6] the line connecting the
contact points lies inside both friction cones (Figure S4).

3

Rectangle Axis object funnel Trapezoid Axis object funnel

Figure S3: A visualization of parallel-gripper grasp-affordance. Left: a visualization of how the rectangle-
object grasp-funnel (beam with square section) varies with the object-gripper relative orientation: successful
grasps are invariant to significant orientation differences. Right: a visualization of how the trapezoid-object
(trapezoid section) grasp-funnel varies with the object-gripper relative position: small differences in the relative
pose hamper a successful grasp.

Axes of Deformation

Seed Polygon Trapezoid Parallelogram Rectangle

Q̄ = 0.132 Q̄ = 0.110 Q̄ = 0.041 Q̄ = 0.128 Q̄ = 0.045

Figure S4: A sketch of the design principles adopted to vary RGB-objects’ grasp affordance as a function
of the applied deformation. Top row: keeping in mind object funnels for the parallel gripper, different objects
tolerate different 4-DoF displacements (3D Cartesian and vertical rotation) with respect to the grasping pose
visualized in picture; in green: displacements leading to successful grasps, in red: displacements leading to
unsuccessful grasps. Bottom row: a visualization of the grasp metric used in Mahler et al. [3], Wang et al.
[4]. Each grasp is visualized as a line segment penetrating the object at the grasping locations; the color of the
segment corresponds to the corresponding value of the Ferrari-Canny [2] epsilon grasp metric (robust grasps in
green, weak grasps in red). The displayed value Q̄ is the average of the epsilon metric for all visualized grasps.

4

Axes of Deformation

Seed Polygon Trapezoid Parallelogram Rectangle

Figure S5: A sketch of the design principles adopted to vary RGB-objects’ stacking affordance. Bottom
objects offer support of different shapes. From left to right: curved support, small support, slanted support
and wide support.

qualitatively visualize the grasp affordance with respect to the gripper-object relative pose (left) and86

rotation (right).87

Figure S4 shows this qualitative visualization for some representative RGB-objects: the seed object,88

and 4 maximally deformed objects of the 4 major axes. The visualization aims at showing that the89

seed cube is relatively easy to grasp and forgiving of significant errors in the gripper positioning. The90

Polygon axis requires a precise positioning but it’s relatively robust towards errors in gripper orien-91

tation. The Trapezoid axis offers two non-parallel faces which require accuracy in both positioning92

and orientation. The Parallelogram axis is designed to offer the same grasp affordance of a cube93

but quite different stack affordance. Finally, the Rectangle axis elongates one dimension above the94

gripper maximum aperture thus preventing some grasps at given orientations. Interestingly, these95

qualitative considerations are supported by a quantitative metric, based on the Ferrari-Canny [2]96

epsilon grasp metric. This evaluation is shown for each of the objects considered, using the code97

provided in Mahler et al. [3], at the bottom row of Figure S4. A high Q̄, used to symbolize the av-98

erage metric for all grasps sampled on the object, signifies that the object evaluated is easy to grasp.99

A low Q̄, as is the case e.g. with the Trapezoid, means that the object is harder for grasping.100

Qualitative considerations similar to the ones done above for the grasp-affordance hold for the stack-101

affordance, as shown in Figure S5. In this case, the affordance is varied by having bottom objects102

the top flat surfaces of which differ in area, shape and orientation. The Polygon axis introduces103

a deformation which reduces the top surface and increases the likelihood of the object to roll; the104

Trapezoid axis just reduces the top surface and in some configuration doesn’t afford a grasp at105

all requiring a re-orientation to another configuration which affords a stack; the Parallelogram axis106

offers a stacking surface which has an off-set with respect to the center of mass and therefore requires107

the top object to be carefully placed to avoid objects from tipping over; the Rectangle axis offers an108

augmented stacking surface along one axis and a reduced one on another axis.109

We have discussed how the shapes of objects influence their grasp and stack affordances. Other110

interesting affordances are needed to effectively solve these tasks: (1) the clutter affordance and (2)111

task-oriented affordance. Clutter influences affordance since only a subset of grasps is feasible in112

presence of obstacles (right panel in Figure S6). Additionally, for some objects valid grasps are113

not suitable for stacking and this requires our agent to perform a task-oriented grasp (left panel in114

Figure S6).115

A.3 Publicly Released Objects116

Instead of standardizing the objects purchase as e.g. in Çalli et al. [6], we standardize their man-117

ufacturing procedure. We will be releasing the RGB-Objects described above and used in our ex-118

periments, depicted in their entirety in Figure S2. We decided to choose the objects to be uniform119

color and eventually chose only three colors: red (top objects), green (distractor objects) and blue120

(bottom objects). This facilitates manufacturing since each object can be manufactured with a stan-121

5

Figure S6: Left: a visualization of good stacking-oriented gripper orientations (in green) and good only-
for-pick&place gripper orientations (in yellow) for the slanted cylinder. Right: a sketch to visualize how
affordances vary in the clutter; only a subset of grasps are possible in the clutter.

Figure S7: Overview of the physical system. Left: Front view of the basket. Top right: Neutral pose towards
which the Cartesian controller’s null-space is biased. Bottom right: Detail view of the endpoint tooling: force-
torque sensor and gripper with custom fingertips.

dard 3D printer, a single filament and no additional assembly steps. Additionally, we can provide, to122

interested researchers, instructions on how to have such objects 3D-printed by an external vendor.123

B Environment Details124

In the following, we are going to describe the components of the robot setup that was used to conduct125

experiments, as well as technical considerations such as the procedure for automated evaluations,126

specifics of the actions and observations exposed to the agent, and reward computation.127

B.1 Real-World Environment128

The environment in the real world consists of a robot arm with a gripper, a set of sensors and a129

basket (Figure S7), chosen both for their durability to allow continuous and autonomous operation130

and for safe interaction with human operators.131

Robot arm: assuming that exploration and manipulation require a certain level of physical inter-132

action, we have chosen a robot capable of sensing, controlling and enduring the forces exchanged133

with the surroundings and the manipulated objects. We eventually selected the Sawyer from Rethink134

Robotics3, both for its force and torque sensing capabilities and its use of series elastic actuators that135

provide passive compliance.136

3The Sawyer is now developed and retailed by the Hahn Group.

6

Figure S8: Example image observations provided to the agent. These are captured from the basket cameras,
then cropped and sub-sampled to 128 × 128. From left to right: front left view, front right view, and back left
view. In this work, we only used the front views.

Gripper: the gripper chosen is a Robotiq 2F-85 which guarantees industrial robustness while allow-137

ing additional interaction through a passive-spring retracting degree of freedom. It is outfitted with138

custom fingertips printed from nylon, as the stock fingertips’ rubber coating tends to wear off onto139

the objects and interfere with tracking.140

Sensors: besides the torque and position sensing offered by the Sawyer, we equipped the robot with a141

Robotiq FT 300 force-torque sensor at the wrist. Additional perception is guaranteed by surrounding142

the robot with three Basler ace RGB cameras which give a complete view over the robot playground143

(Figure S8).144

Playground: the basket in front of the robot, also referred to as “playground”, is a laser-cut basket145

with slanted sides to delimit the robot’s working area and to help with objects confinement. It has146

a 25 cm × 25 cm bottom surface; the robot is constrained to moving its TCP inside a 20 cm-high147

virtual cube on top of this surface to ensure safe operation.148

B.1.1 Control Actions149

While the robot’s 7 DoFs are natively controlled in joint space, we implement a Cartesian controller150

to reduce the action space. We restrict the gripper to be oriented vertically, thus allowing only 4-151

DoF motions (3D Cartesian and 1D rotation). This restriction is used in a number of prior works152

studying vision-based manipulation [7, 8, 9]. A control action is fully specified by a 3D Cartesian153

velocity vx, vy, vz , and an angular velocity ωz around a vertical axis parallel to gravity. We use a154

P-controller to compute the horizontal angular velocity components ωx and ωy that keep the gripper155

oriented vertically, and combine it with the agent’s actions to create the command for our Cartesian156

6D velocity controller. Finally, a directional velocity action for the grippers single degree of freedom157

is added, yielding the actions summarized in Table S1.158

At every environment step, after choosing an action, we then solve a constrained least-squares159

problem to compute the joint velocities that best realize a target Cartesian 6D velocity of the160

TCP [10, 11]. The null-space is controlled to bias the robot’s joint positions towards a nominal161

configuration in the center of the joint limits. Constraints are specified to prevent the robot from162

violating the joint position and velocity limits, as well as avoiding collisions between the robot and163

the playground [12, 13]. The constrained least-squares problem is solved using an off-the-shelf QP164

solver [14], and the computed joint velocities are forwarded to the robot’s proprietary joint velocity165

controller.166

B.2 Environment Observations167

The robot, sensors and cameras provide various readings, which are collected at a fixed rate of 20 Hz168

and merged into a single observation. Not all possible observation elements are used in all stages of169

the system; most notably, the Cartesian object positions provided by the tracking system described170

in Section B.3 are only used for computing rewards, for reset, and for the scripted baselines—the171

learned agent cannot access this information.172

7

Component Degrees of Freedom Range Unit

Cartesian translation 3 [−0.07, 0.07] m/s
Cartesian rotation (z-axis) 1 [−1, 1] rad/s
Gripper 1 [−255, 255] ticks4

Table S1: Ranges and units of the different components of the agent action.

Observation Unit Size Obs. History
Observation Set

Full Evaluation

Joint angles rad 7 3 X X
Joint velocities rad/s 7 3 X X
Joint torques N m 7 3 X X
Wrist pose m, quat. 7 3 X X
Pinch pose m, quat. 7 3 X X
Finger angle ticks 1 3 X X
Finger velocity ticks 1 3 X X
Grasp discrete5 1 3 X X
Wrist force N 3 3 X X
Wrist torque N m 3 3 X X
Wrist velocity rad/s 3 3 X X
Front left camera RGB values 128 × 128 × 3 1 X X
Front right camera RGB values 128 × 128 × 3 1 X X
Back left camera RGB values 128 × 128 × 3 1 X X
Object positions6 m 3 × 3 3 X
Joint action7 rad/s 7 2 X X

Table S2: Observations provided by the real-world robot setup.

We distinguish between two observation sets.173

• Full: contains all values provided by the real robot. Parts are used for environment resets,174

reward computation, and scripted baselines.175

• Evaluation: a subset of the full set, with tracker information removed.176

In addition, each observation is stacked over several time steps. Observation stacking was chosen177

since the physical system is subject to actuation delays, and thus would not fulfil the requirements178

of an MDP without stacking. Camera observations are excluded from the observation stacking due179

to real-time and memory constraints.180

The available observations, their units, and the places where each is used, are listed in Table S2.181

Note that all of these sets denote available observations, and agents can choose to omit entries; for182

instance, the image observation from the back camera is omitted by our agent architecture to reduce183

inference time.184

Furthermore, the Robotiq gripper used in our setup has a parallel mechanism that causes a non-linear185

relation between the motor encoder ticks used throughout this work, and the Cartesian distance186

between the fingertips. Since this relation can be hard to visualize intuitively, we present a number187

of poses that were used in Figure S9.188

4The gripper does not allow setting velocities in natural units, but a byte value that is mapped to a corre-
sponding percentage of the maximum speed, which is nominally 150 mm/s.

5The actual values provided by the sensor are 1 for no grasp, 2 for an inward grasp, and 3 for an outward
grasp that is not possible with non-hollow objects.

6Measured relative to the base of the robot.
7This contains the previous 7-DoF joint action sent to the robot, which is distinct from the 4-DoF Cartesian

action selected by the agent, and reduces ambiguity in the state.

8

(a) 0: Maximum opening. (b) 30: Minimum required open-
ing to generate task reward.

(c) 100: Minimum opening for
random initial episode states.

(d) 255: Fully closed.

Figure S9: Overview of various relevant gripper positions.

B.3 Object Position Estimation189

Several components of our setup rely on the availability of a tracking system to determine the 3D190

position of the objects, relative to the robot. Specifically, this is required for the scripted baseline191

used in this work and described in detail in Section C.2, for computing per-timestep rewards (Sec-192

tion B.4), and for automatically resetting the environment in automated evaluations (Section B.4.2).193

We therefore implemented a color-based object position estimation algorithm that provides an esti-194

mate of the 3D centroids of the red, green and blue objects. Given the critical role of this component,195

we calibrate (both intrinsics and extrinsics [15]) and use all three cameras available in our robot196

setup. The position estimation algorithm works as follows:197

1. Convert the RGB into YUV images: this conversion allows finer control over colors us-198

ing the chrominance components UV and robustness over brightness variations trough the199

luminance component Y.200

2. Apply red, green and blue color masking using UV components. It is worth noting that201

we used the same ranges across all robot cells used in this work, while regularly applying202

white balancing.203

3. For each color, find the largest contour and evaluate its centroid using image moments [16].204

4. Estimate the 3D centroids {[xc, yc, zc]}c∈{r,g,b} of the objects in the robot reference frame205

through triangulation [15].206

B.4 Task Evaluation207

The performance of an agent is tested on a number of trials – 200, unless specified otherwise. The208

initial state of the objects is randomized between episodes in the following way:209

• Using a modified variant of the scripted controller (Section C.2), all objects are moved to210

random positions inside the working area.211

• The robot’s TCP is moved to a random position inside the working volume, excluding the212

lowest 8 cm to avoid collisions with objects.213

• The wrist joint is rotated to a random position within
[
−π2 ,

π
2

]
.214

• The fingers are moved to a random opening angle within [0, 100] (i.e. open or half-open;215

see Figure S9 for a visualization).216

Each trial lasts 20 seconds, or 400 steps at a control rate of 20 Hz. Trials are prematurely terminated217

when the wrist force sensor senses horizontal forces of greater than 2 N or a vertical force of greater218

than 2.5 N. In this case, an RL agent receives a discount of zero.219

B.4.1 Reward Definition220

We all can understand what a stacked pair of objects should look like, however it is surprisingly221

difficult to define for a large set of geometric shapes, for the purposes of automated evaluations.222

Here we formalize the definition of “stacking” used in the main paper.223

9

Figure S10: Various success conditions. From left to right: 1. Successful stack with gripper open and the
top object in the cylinder region. 2. The objects are centered but the gripper is closed. 3. The top object is
off-center, with its centroid outside the admissible cylinder. 4. The top object is below the cylinder region.

For objects to be considered “stacked”, the top object’s position (as estimated by the tracking sys-224

tem) must be inside a cylindrical volume of a 3 cm radius, starting 2.5 cm or higher above the225

bottom one, and the gripper must be fully opened. Specifically, for object centroids [xtop, ytop, ztop]226

and [xbottom, ybottom, zbottom], and for finger-opening angle f , we define the sparse, binary, stack227

reward:228

r =

{
1, if (ztop − zbottom > 0.025) ∧ (||(xtop, ytop)− (xbottom, ybottom)|| < 0.03) ∧ (f < 30)

0, otherwise.
(S1)

The open-ended cylinder was chosen to accommodate objects of arbitrary sizes. For instance, the229

top (red) object of Triplet 3 has a length of 15 cm, so the centroid can be a considerable distance230

from the bottom object when standing on its long side. A visual depiction of different stacked pairs231

being considered successful (green) or failures (red) is given in Figure S10.232

B.4.2 Automation for Unattended Learning and Evaluation233

The training and evaluation process used in this work is largely automated. In fact, the experiments234

were continued throughout multiple COVID-19 lockdowns. In particular, the randomization proce-235

dure described above is fully automatic, with a modified version of the PID controller developed for236

the scripted baseline (Section C.2) being used to move objects. Note that the lack of object orien-237

tation provided by the tracker means that pose randomization is not deliberate. Instead, we rely on238

incidental rotation when objects are dropped, and run evaluations for at least 200 trials to reduce239

variance.240

A pool of 10 identical robot cells is used for data collection. To guarantee comparability of results,241

evaluations are always performed on the same five cells, each of which is associated with one specific242

test triplet. Furthermore, tare is performed on the wrist force-torque sensor between episodes, in243

order to prevent drift. All cameras are white-balanced and their brightness adjusted to the same244

level, to counteract both daytime fluctuations in lighting, and differences between individual robot245

cells.246

Evaluation requests are enqueued for each cell, and processed in order of arrival; thus, there is no247

closed training-evaluation loop, but training from any robot data always has to be offline to some248

degree. In the absence of new evaluation requests, old ones are automatically repeated in order249

to gather additional data and reduce variance. A number of consistency checks between episodes250

ensure that all sensors report data at the expected rates, and that actuators are operational—failing251

these checks would trigger the only required human interaction.252

B.5 Simulation253

Our simulation environment was implemented in the MuJoCo [17] physics simulator. Like the254

equivalent real robot environment, it contains a Sawyer arm with a Robotiq 2F-85 gripper mounted255

behind the playground, with three cameras attached to the basket.256

10

C
an

on
ic

al
 S

im
ul

at
io

n
C

am
er

a
O

bs
er

va
tio

n

R
ea

l R
ob

ot
C

am
er

a
O

bs
er

va
tio

n

Front Left Front Right Front Left Front Right

Figure S11: Real and simulated environments. Equivalent real and simulated environments with the camera
observations used during training.

The simulation was designed to provide the same observations as the real robot, with the same ranges257

and shapes. A small number of observations were too dissimilar to be of use, notably the torques,258

and are thus omitted. For the full list of available observations in our simulated environment at259

different stages of training, see Table S5. Like the observations, the simulation exposes the same260

4-DoF Cartesian actions as the real robot’s given in Table S1. It uses the same QP controller as261

described in Section B.1.1 to compute joint velocities from Cartesian velocities at 20 Hz. It was also262

designed to have similar appearance and dynamics to the real environment. However, as Figure S11263

illustrates, the low-level appearance is noticeably different. Likewise, the physics differ in the way264

objects interact and slide off each other.265

The evaluation protocol in simulation follows that of the real robot, with a few key differences.266

1. We perform 1000 evaluation episodes per policy per Triplet8, rather than 200.267

2. The entire 6-DoF pose of the objects is randomized, rather than only the position.268

3. The sparse evaluation reward makes use of privileged information from the simulator,269

which isn’t available on the real system, specifically whether objects are directly in contact270

with each other. This allows us to have a wider admissible cylinder of 5 cm in which the271

top object may be placed, and eliminates the need to check the gripper’s opening angle.272

r =


0,

if ||(xtop, ytop)− (xbottom, ybottom)|| > 0.05

if (ztop − zbottom) < 0.02

if top object is not in contact with bottom object
if top object is in contact with robot or basket

1, otherwise.

(S2)

B.5.1 Shaped Reward273

Our shaped reward, which we designed to use for training our state-based agent in simulation only,274

forms a curriculum leading to a successful stack. It is divided into five progressive stages: reaching275

and grasping the top object, lifting it more than 10 cm above the basket, hovering the top object276

over the bottom object, stacking it, and leaving the objects stacked by moving the gripper away277

from them. Each stage generates a reward in [0, 1], and the highest-level stage to produce a reward278

8When evaluating on the training object set we evaluate 2 episodes for 5000 triplets.

11

Figure S12: Reward trace for 300 steps of an episode. From left to right: 1. Approach during Rreach part
of Rgrasp stage. 2. Rclose grippercomponent of Rgrasp stage becomes active as the gripper is closed while
realigning it to the graspable object faces. 3. Transition to Rlift stage as the object is slightly lifted. 4. Rhover

increases as the object is moved closer to the target. 5. Objects are precisely enough placed to be considered
stacked as per Rstack. 6. Gripper has moved far enough away to enter final Rleave stage.

of 0.1 or more is considered the “active” one.279

r =



4+Rleave
5 , if Rleave > 0.1

3+Rstack
5 , if (Rstack > 0.1) ∧ (Rleave ≤ 0.1)

2+Rhover
5 , if (Rhover > 0.1) ∧ (Rstack ≤ 0.1) ∧ (Rleave ≤ 0.1)

1+Rlift
5 , if (Rlift > 0.1) ∧ (Rhover ≤ 0.1) ∧ (Rstack ≤ 0.1) ∧ (Rleave ≤ 0.1)

Rgrasp
5 , otherwise.

(S3)

Intuitively this amounts to an agent being rewarded incrementally for each of the stages that are280

required to complete a stable stack. A detailed description of each of the stages and the definition of281

the equivalent rewards can be found below. An example reward trace illustrating the different stages282

is also shown in Figure S12.283

We now describe the distinct stages of the shaped reward described above, all of which produce284

rewards in [0, 1]. As laid out in Equation (S3), the stages are combined into a total reward that285

consists of the “highest” of these stages that is currently generating a reward over 0.1, plus a fixed286

amount for each “lower” stage.287

Several of the stage rewards make use of a distance function D(a, b, s, t), which is defined as the288

tanh over the distance between a and b, which decays to 0.05 as the distance reaches s. If the289

distance is below a tolerance of t, the maximum value of 1 is returned. This distance function is290

illustrated in Figure S13.291

D(a, b, s, t) =

{
1, if ||a− b|| < t

1− tanh
(
||a− b|| tanh

−1
√
0.95

s

)2
, otherwise.

(S4)

Reaching and Grasping The first stage Rgrasp provides reward when the tool center point (TCP)292

is moved close to the top object, with an additional bonus for closing the parallel gripper that is293

given only when already very close to the object.294

Rgrasp = Rreach ·

{
0.5 +

Rclose gripper
2 , if Rreach > 0.9

0.5, otherwise.
(S5)

The reaching component Rreach is a shaped distance between the TCP position295

posTCP = (xTCP , yTCP , zTCP) and that of the top object postop = (xtop, ytop, ztop), de-296

caying within 15 cm and with no tolerance. The positions are provided in meters with respect to the297

robot frame of reference, centered around the arm’s base.298

Rreach = D(posTCP , postop, 0.15, 0). (S6)

12

Figure S13: Examples of the distance function used in several reward terms, with the x-axis showing the
distance between two entities a and b. Note how the value always decays to 0.05 (dashed line) as the distance
reaches the shaping tolerance s.

The componentRclose gripper in turn is maximal when the grasp sensor is triggered. If not, a smaller299

shaped reward is given, which approaches its maximum as the gripper opening angle f reaches its300

maximum closing angle of 255.301

Rclose gripper =

{
1, if grasp sensor triggered
D(f,255,255,0)

2 , otherwise
(S7)

Lifting The lift stage Rlift also makes use of the grasp component Rclose gripper, but multiplies it302

with a shaped reward that linearly increases as the designated top object’s centroid moves between303

a minimum height of 5.5 cm and a maximum of 10 cm.304

Rlift = Rclose gripper ·Rmove TOP up (S8)

Rmove TOP up =


1, if ztop > 0.1

0, if ztop < 0.055
ztop−0.055
0.1−0.055 , otherwise

(S9)

where ztop is the height of the top object from the basket.305

Hovering The hovering stage Rhover simply provides reward for the top object being close to a306

position 4 cm above the bottom one. Maximum reward is given with a 1 cm tolerance around this307

position to account for noise in the tracking system. Outside this tolerance, the reward decays within308

20 cm.309

Rhover = D (postop, posbottom + (0.0, 0.0, 0.04), 0.2, 0.01) . (S10)

Stacking The stacking stage Rstack is a sparse reward that is only non-zero when the red object’s310

horizontal position is within 3 cm of the blue one’s, and its vertical position within 1 cm of the point311

4 cm above the blue one. Note that this differs from the open volume in which the red object is312

allowed to be (which is used for the real robot’s evaluation in Equation (S1)).313

Rstack =

0,
if ||(xtop, ytop)− (xbottom, ybottom)|| > 0.03

if (ztop − zbottom + 0.04) > 0.01

1, otherwise.
(S11)

13

Leaving The final leaving stage Rleave is identical to the stacking stage Rstack, but multiplied by314

a shaped term that rewards moving the TCP to a position 10 cm above the red object, thus forcing315

the agent to let go of the object. Since it is not important whether that position is precisely reached,316

maximum reward is given with a tolerance of 3 cm.317

Rleave = Rstack D(zTCP , ztop + 0.1, 0.05, 0.03). (S12)

C Baselines318

C.1 Human performance319

As a rough indication of task difficulty, we collected a few demonstrations of the task in simulation320

from human teleoperators. The demonstrations were collected by 4 individuals who were not part321

of the research team. They used game pads to control the robot arm, and faced the same time limit322

as was used for evaluation of learned or scripted agents. Unlike agents, teleoperators were given a323

single camera view at a high resolution. Teleoperators recorded a total of 846 episodes (the number324

varied from 141 to 331 per participant), with the object set randomly replaced every 10 episodes.325

These demonstrations were not used to train any of the agents mentioned in the paper. Results are326

summarized in Table S3.327

Objects Success Rate Reward Episode Count

(Sim) Triplet 1 37% 23 204
(Sim) Triplet 2 36% 16 160
(Sim) Triplet 3 35% 24 159
(Sim) Triplet 4 59% 39 133
(Sim) Triplet 5 66% 47 190

Table S3: Average success rate and cumulative sparse reward for each of the test object sets, from human
teleoperators.

C.2 Scripted Agent328

The scripted baseline is a classical robotic control approach using a lot of prior knowledge, coded in a329

finite-state-machine. It uses the same observations available to the agent, as well as the 3D positions330

of the blue and red objects’ centroids. In the real environment, the 3D positions of the objects331

are obtained from a centroid estimation algorithm (Section B.3); in the simulated environment, the332

positions are obtained directly from the simulator. The performance of our scripted behaviour is333

meant to be used as a data point to understand how far a task-solver can get when ignoring relevant334

information such as the objects’ orientation and shapes.335

The scripted baseline was implemented through the use of a finite-state machine (FSM) with 9336

states and 12 unique transition functions. A state diagram representation of the FSM is shown in337

Figure S14. During normal execution, the FSM starts at the 0th state and continues through states338

1-6 until the objects are stacked. If the objects are found to be stacked at any point during the339

execution of the FSM, a transition to the final state 7 (“End”) is made. If any of the states fail, the340

FSM immediately transitions to the 8th state, which re-positions the tool-center-point (TCP) of the341

robot and loops back to state 1. Note that states 0, 1, 5, and 8 do not implement transitions or failure342

detection and are always executed until completion.343

The description of each of the states in the FSM is given below:344

0. Init: No-op state that initializes the FSM and immediately transitions to the next state. This345

state always executes until completion;346

1. Move open gripper to top object centroid: Opens the gripper and moves the TCP towards347

the position of the red object. Executes a non-zero angular velocity if step > 100, zero348

otherwise. Completes if the TCP is within a pre-defined threshold of the red object. This349

state always executes until completion;350

14

Figure S14: (Left) Example scripted baseline run for the test object set 1. Each figure shows the state ID on
the top right, and the current step counter on the bottom left. (Right) State diagram for the finite-state machine
used in the scripted baseline.

2. Grasp top object: Closes the gripper while maintaining the TCP position close to the red351

object. Executes a non-zero angular velocity if step > 100, zero otherwise. Completes if352

a grasp is detected based on readings from force reading. Fails if the gripper closes and no353

grasp is detected;354

3. Move closed gripper to safe height: Moves the TCP up while maintaining the gripper355

closed. Completes if the TCP is above 20 cm. Fails if a grasp is not detected, or if the356

distance between the TCP and the red object becomes too large;357

4. Move closed gripper to bottom object hover position: Moves the TCP to a point at an ab-358

solute height of 20 cm directly above the blue object while maintaining the gripper closed.359

Completes if the TCP is above the blue object. Fails if a grasp is not detected, or if the360

distance between the TCP and the red object becomes too large;361

5. Move closed gripper to bottom object stack position: Moves the TCP to a point 3 cm above362

the bottom object while maintaining the gripper closed. Completes if the TCP is within a363

pre-defined threshold of this point. This state always executes until completion;364

6. Open gripper at bottom object stack position: Opens the gripper while maintaining the365

TCP position 3 cm above the bottom object. Fails if the objects are not stacked after open-366

ing the gripper;367

7. End: Opens and lifts the gripper to an absolute height of 30 cm. Final state. Fails if the368

objects are not stacked;369

8. Move open gripper to top object hover position: Opens the gripper and moves the TCP to370

a point at an absolute height of 20 cm directly above the red object. Executes a non-zero371

angular velocity if step > 100, zero otherwise. Completes if the TCP is above the red372

object at a pre-defined height. This state always executes until completion and will result373

in different “random” grasp orientations.374

Position control of the TCP is achieved through a low-gain P-controller on the error between the375

desired 3D Cartesian position and the current position of the TCP. The desired position of the TCP376

is computed on each state individually based on the predefined behaviour of each state and the377

measured position of the objects through our perception pipeline. The orientation of the wrist is378

only actively controlled during the execution of the 1, 2, and 8th states, which execute a random379

angular velocity about the vertical axis after the 100th step, or zero otherwise. The outputs of the380

P-controller are passed directly to the first 3-DoF of the action space exposed by the environment,381

while the angular velocity commands (4th DoF) are set to zero during states that do not actively382

control the orientation.383

15

Objects Success Rate Reward

(Sim) Triplet 1 35% 48
(Sim) Triplet 2 30% 58
(Sim) Triplet 3 27% 40
(Sim) Triplet 4 66% 128
(Sim) Triplet 5 67% 128
(Real) Triplet 1 36% 54
(Real) Triplet 2 23% 39
(Real) Triplet 3 34% 49
(Real) Triplet 4 85% 152
(Real) Triplet 5 77% 143

Table S4: Scripted baseline performance success rate and average cumulative reward for each of the test object
sets in the simulated and real environment.

Observation / Reward State-Based (Simulation) Vision-Based (Simulation) Vision-Based (Real)

Joint angles X X X
Joint velocities X X
Joint torques X
Wrist pose X X
Pinch pose X X X
Finger angle X X X
Finger velocity X X
Grasp X X
Wrist force X
Wrist torque X
Wrist velocity X
Front left camera X X
Front right camera X X
Back left camera
Object positions X
Object pose X
Joint action

Reward Shaped (Simulation)
Equation (S3)

Sparse (Simulation)
Equation (S2)

Sparse (Real)
Equation (S1)

Table S5: Observations and rewards used at different training stages. The state-based teacher is trained
with privileged information in simulation, and is then distilled to a vision-based policy that has access to
images and only proprioception observations that are realistic in simulation and can also be later used for zero-
shot sim-to-real transfer. For this reason, we exclude velocity, force, and torque observations for distillation in
simulation. For the one-step offline policy improvement, a new vision-based policy is trained from a real-world
dataset. This improved policy now includes velocity observations, but excludes force and torque observations
since they too noisy in the real system. We did not use the back camera in our experiments.

Table S4 summarizes the average performance of the scripted approach on the test sets. Each test set384

was evaluated for 1000 episodes in simulation, and for at least 800 episodes in the real setup. The385

agent achieved a success rate of 43% on the training set over 10 000 episodes in simulation.386

D Methods387

D.1 Details on Training Expert policies from State Features in Simulation388

As outlined in the Section 4.1, the first step in our approach is to train a policy, in simulation, either389

specializing on each of the 5 fixed triplets for the Skill Mastery task, or a general one on the 1 092 727390

triplets that are possible with the 103 training objects for the Skill Generalization task. As discussed,391

we found training directly from state features s to be significantly faster than training from vision in392

this step and thus exposed the full simulation state—proprioceptive information from the robot and393

6-DoF pose information about the objects—to the agent. The complete list of observations available394

16

Figure S15: State-based vs Vision-based MPO training. Comparison of average reward (left) and average
task success on the training set (right) for the Skill Generalization task when training from all available state
information (State-based Agent) vs training from vision and proprioception (Vision-based Agent)

to the state-based policy can be found on Table S5. At this stage of the learning pipeline, we are395

mainly concerned with obtaining high-performing experts in a fast manner in simulation. Thus396

on top of access to full state information, we also use a shaped reward which is only available in397

simulation and enables fast learning. The shaped reward is described in Section B.5.1 and visualized398

in Figure S12. We provide a comparison between training with state features vs. training directly399

from vision in Figure S15. As is evident from the comparison training from vision results in a large400

slow-down in terms of training time.401

As mentioned, any off-the-shelf RL algorithm could have been used for training our state-based402

policies. We opted to use MPO [18], which we found to lead to fast policy improvement while403

allowing for stable learning. MPO does not directly optimize the RL objective, but instead considers404

a KL regularized objective that is optimized with a policy iteration approach. Concretely, in iteration405

k we first learn a corresponding Q-function Q
πk−1

φ (s, a, y) for the policy from the last iteration406

(starting from a random policy π0 at k0), which can be learned from a replay bufferD by finding the407

function that minimizes the squared temporal difference error:408

arg min
φ

E
(st,at,st+1)∼D

[(
r(st) + γ E

a′∼πk−1(·|st+1,y)

[
Q
πk−1

φ′ (st+1, a
′, y)

]
−Qπk−1

φ (st, at, y)

)2
]
,

(S13)
where φ′ are the parameters of a target network [19] that are replaced with the current parame-409

ters φ for the Q-function every 200 optimization steps, and we use 20 samples from the policy to410

estimate the inner expectation. Instead of the single transition temporal difference error above, Ab-411

dolmaleki et al. [18] also considered a n-step temporal difference target calculated via the Retrace412

algorithm [20] and we use this target in our MPO implementation. This Q-function is then used to413

define the following KL constrained objective for policy optimization:414

LMPO(q) = E
s∼D

[
E
a∼q

[Qπk−1(s, a, y)]

]
,

s.t. E
ρπk

[DKL(q(·|s, y), πθe(·|s, y))] < εE ,
(S14)

where DKL denotes the KL divergence to the last policy, which restricts changes in the policy and415

induces stable learning. A solution to this problem can be found in closed form as q(a|s, y) ∝416

πk−1(a|s, y) exp(Qπk−1(s, a, y)/α) which can be projected back to a parametric policy by finding417

the expert policy πθe as the maximizer418

πθe(a|s, y) = arg max
πθe

E
s∼D

[
E

a∼πk−1

[exp(Qπk−1(s, a, y)/α) log πθe(a|s, y)]

]
,

s.t. E
ρπk

[DKL(πk−1(·|s, y), πθe(·|s, y))] < εM ,
(S15)

which corresponds to minimizing the KL between q and πθe and where εM specifies an additional419

trust-region constraint placed on the policy (we set πk for each iteration to πθe after 200 optimization420

17

steps). We use a trust-region constraint that splits the influence on the mean and covariance for421

Gaussian policies as in Abdolmaleki et al. [21]. When using the hybrid space of continuous and422

discrete actions, we have a separate third trust-region constraint for the Bernoulli distribution, though423

we found that the discrete component didn’t require a trust-region for stable learning. Optimization424

can be carried out via Monte-Carlo estimation of the objective using samples from the policy πk425

to estimate the inner expectation, and samples from the replay buffer for the outer expectation.426

For a full description of the algorithmic details of solving this optimization problem we refer to427

Abdolmaleki et al. [18, 21].428

D.2 Details on Interactive Imitation Learning for Sim-to-Real Transfer429

After obtaining the experts via MPO, we distill the state-based experts into a single vision-based430

policy πs2r
θ via interactive imitation learning, as described in Section 4.2. In this step the πs2r

θ uses431

only a subset of the available observations (vision and proprioceptive readings but no information432

about object positions; see Table S5 for a complete list). The two key decisions made for distillation433

are: 1) We collect data using πs2r
θ while it is being trained. For this purpose we run a large number of434

“actor” processes (1000) in simulation with the domain randomized environment. These fetch the435

parameters θ from the learner process at the beginning of every episode and send data to a replay436

buffer Ds2r. 2) We train πs2r
θ based on feedback from the expert’s on data sampled from the replay437

(this DAgger style training resulted in best performance as outlined in the experiments). We note438

that this is a purely supervised learning problem on a changing dataset; as is standard the influence439

of πs2r
θ on the dataset collection process is only implicit (i.e. we do not calculate the gradient of the440

sampling process for data-collection).441

D.3 Details on Training Improved Policies from Real Data442

When training improved policies from real data collected by executing πs2r
θ on the real robots, we use443

a slightly different subset of observations for the improved vision-based policy πimp
θ (now including444

velocity information; see Table S5 for a complete list). As described in Section 4.3, we use a filtered445

cloning loss of the data for this purpose, with filtering function f(st, at, τ) where τ corresponds to446

the trajectory data from the executed episode. When using BC-IMP, we simply set f(st, at, τ) =447

r(sT), i.e. it is 1 if the binary sparse reward of the last step in the episode (at time T) is 1, and448

0 otherwise. This sparse reward information is readily available from the recorded episodes. For449

the exponential advantage filter (i.e. CRR-IMP), we use f(st, at, τ) = exp(Aπ
imp
θ (o(st), at)/α), in450

which case we need to learn an estimate of the advantage alongside the policy πimp
θ . We follow the451

implementation of CRR [22] and learn a distributional action-value function [23] from the same data452

that the policy is learned from by gradient descent on the objective:453

LQCRR-IMP(φ) = E
(st,at,st+1)∼Dreal

[
D

(
r(st) + γ E

a′∼πimp
θ (·|o(st+1))

[Qφ′(o(st+1), a′)], Qφ(o(st), at)

)]
,

(S16)
where D denotes the distributional Q-learning operator, φ′ denotes the parameters of a target net-
work (that are swapped for φ every 200 optimization steps) and where Qφ(o(st), at) now is param-
eterized as a categorical distribution with 101 categories representing equally spaced bins of values
from [−150.0, 150.0]. We learn this Q-function alongside the policy, and useQφ′ to calculate policy
improvement (i.e. the advantage used in the exponential filter is also fixed for 200 optimization steps
at a time). We calculate the advantage Aπ

imp
θ (o(st), at) using a Monte-Carlo estimate of

Aπ
imp
θ (o(st), at) = Qφ′(o(st), at)− E

a′∼πimp
θ (·|o(st))

[Qφ′(o(st), a
′)]

where we estimate the expectation with 20 samples from πimp
θ (·|o(st)).454

E Experimental Details455

E.1 Domain Randomization and Image Augmentation456

As mentioned above, our strategy for solving the RGB-stacking tasks in the real world is simulation-457

to-reality transfer. It is therefore of paramount importance to ensure that both stages described above458

18

D
om

ai
n

R
an

do
m

iz
ed

S

im
ul

at
io

n
C

am
er

a
O

bs
er

va
tio

n

C
an

on
ic

al
 S

im
ul

at
io

n
C

am
er

a
O

bs
er

va
tio

n

R
ea

l R
ob

ot
C

am
er

a
O

bs
er

va
tio

n

Front Left Front Right Front Left Front Right

Front Left Front Right Front Left Front Right Front Left Front Right

Figure S16: Visual illustration of our visual domain randomization with different sampling of the properties
listed in Table S6 for the same set of objects - Triplet 2. Although all geometries can vary freely, the RGB-
objects are restricted to a certain range “around” red, blue, and green to aid with the identification of these
colors in the real world as well, as that is the way the vision-based agent knows which objects is the top, the
bottom and the distractor.

will result in policies that are able to bridge the reality gap and perform well in our real-world setup.459

We do so by relying on (a) a simulation environment that is closely aligned to the real robot envi-460

ronment (in terms of camera poses, robot joint limits, etc.); and (b) a sufficient amount of domain461

randomization [24, 25] and visual data augmentation [26]. These ensure that the simulation-trained462

policies can successfully deal with the domain gap that still exists between the simulated and the real463

environments, and the increased stochasticity of the real world. Although we did consider learned464

adaptation methods as used in prior work [27, 28, 29] like using domain-adversarial losses [30, 31]465

and randomized-to-canonical networks [32], preliminary results did not seem to provide clear ben-466

efits on top of domain randomization and data augmentation.467

E.1.1 Domain Randomization468

Domain Randomization (DR) has been shown to be a simple and powerful method to achieve gen-469

eralization of simulation-trained policies to the real world for robotic learning problems [33, 24,470

27, 34]. In our simulated environment we randomized a number of physical properties (e.g. mass,471

friction, damping, armature) for all agents, as well as the delay of executing their actions on the472

environment. We also randomized a number of visual properties (e.g. object colors, object textures,473

camera poses, lighting) for our vision-based agents at the distillation phase. In our randomized en-474

vironments we uniformly sample, from pre-defined ranges, colors and textures for all geometries475

in our simulator, as well as lighting, and camera poses to create a large visual diversity. Action476

execution was randomly delayed 0, 1 or 2 timesteps, the equivalent of 0, 50 or 100 ms. Most physics477

properties did not require any particular tuning and are perturbed uniformly within ±10% of their478

default values in the non-randomized version of our environment. The only exceptions are the ranges479

for the tangential, torsional, and rolling friction of the gripper, which were tuned carefully to pre-480

vent unrealistic grasping behaviours, e.g. grasping and lifting an object by a corner. The ranges for481

these were determined by teleoperating the simulated robot with different friction values. A list of482

all properties randomized, along with the range these were uniformly sampled from, can be found483

on Table S6. A few samples illustrating our object color and texture randomization can be seen in484

Figure S16. Note that MuJoCo multiplies the RGBA values if both texture and rgba properties were485

set, which results in undesirably dark appearance. Thus, for each geom, we alternate sampling tex-486

tures or colors. Our RGB-objects were treated differently in order to maintain their basic color, as487

the task is defined based on the color theme of the objects. Firstly, they are never assigned a texture.488

19

Property Range

RGB [(128, 128, 128), (255, 255, 255)] RGB
Texture set of 117 textures
Red object color [(−35, 0.5, 0.5), (35, 1, 1)] HSV
Green object color [(95, 0.5, 0.5), (165, 1, 1)] HSV
Blue object color [(200, 0.5, 0.5), (270, 1, 1)] HSV
Ambient light color (0.3, 0.3, 0.3) · (1 ± 0.1) RGB
Diffuse light color (0.6, 0.6, 0.6) · (1 ± 0.1) RGB
Camera front left position (1,−0.395, 0.253) · (1 ± 0.1) m
Camera front left Euler (1.142, 0.004, 0.783) · (1 ± 0.05) rad
Camera front right position (0.967, 0.381, 0.261) · (1 ± 0.1) m
Camera front right Euler (1.088, 0.001, 2.362) · (1 ± 0.05) rad
Camera field of view [30, 40]

Gripper friction coefficient [(0.3, 0.1, 0.05), (0.6, 0.1, 0.005)]
Hand friction coefficient (1.0, 0.005, 0.0001) · (1 ± 0.1)
Arm friction coefficient (0.1, 0.1, 0.0001) · (1 ± 0.1)
Basket friction coefficient (1.0, 0.001, 0.001) · (1 ± 0.1)
Objects friction coefficient (1.0, 0.005, 0.0001) · (1 ± 0.1)
Objects mass 0.201 · (1 ± 0.1) kg

Arm joint armature 1.0 · (1 ± 0.1) kg m2

Hand driver joint armature 0.1 · (1 ± 0.1) kg m2

Arm joint damping 0.1 · (1 ± 0.1) N s/m
Hand driver joint damping 0.2 · (1 ± 0.1) N s/m
Hand spring link joint damping 0.00125 · (1 ± 0.1) N s/m
Arm joint friction loss 0.3 · (1 ± 0.1) kg/(m2 s2)
Actuator gear (1, 0, 0, 0, 0, 0) · (1 ± 0.1)

Action delay [0, 2] timesteps

Table S6: Domain randomization properties that are randomized in simulation and their ranges. These
properties were sampled uniformly at the beginning of every episode.

Property Range

Brightness [−32/255, 32/255]
Hue [−1/24, 1/24]
Saturation [0.5, 1.5]
Contrast [0.5, 1.5]
Translation (horizontal and vertical) [−4, 4] pixels

Table S7: Image augmentation properties that are randomized and their ranges. We sample random
offsets from these ranges and apply the same random offsets to the entire sampled trajectory subsequence. We
resample the offsets for each subsequence in the batch. That is, the random augmentations are consistent across
time, but not across the batch.

Secondly, the hue range of each object is predefined in a way that maintains the color theme, and for489

each RGB-object we sample the color in HSV space.490

E.1.2 Image Augmentation491

In order to further increase the diversity of the data and the zero-shot real-world performance of our492

simulation-only trained agents, we applied a number of image transformations to our visual obser-493

vations on top of domain randomization. In addition, we applied the same image transformations494

when directly training from real-world data (e.g. for policy improvement). Unlike domain random-495

ization, image augmentation is applied directly on image observations, so it is applicable to images496

from both simulated data and real-world data.497

The following transformations are applied for image augmentation: random brightness, random498

hue, random saturation, random contrast, and random translation. These transformations are applied499

sequentially in that order. The random translations use bilinear interpolation and “reflect” fill mode500

(i.e. the input is extended by reflecting about the edge of the last pixel). For temporal consistency,501

20

we sample the random augmentations and apply the same random offsets for all images within a502

trajectory subsequence. A list of the image augmentation properties, along with the ranges these503

were uniformly sampled from, can be found on Table S7. We chose these ranges qualitatively504

without any tuning for evaluation success. For the random perturbations of the hue, we chose ranges505

small enough so that the red, green, and blue objects stay reasonably close to their respective colors.506

A few samples illustrating the effect of image augmentation can be seen in Figure S18 for images507

from the real robots, Figure S19 for canonical images from simulation, and Figure S20 for domain-508

randomized images from simulation.509

E.2 Additional Network Architecture Details510

The inputs to the networks are preprocessed in the same way for all the networks. The image obser-511

vations are normalized to [0, 1], whereas the non-image observations are flattened and concatenated512

into a single vector. The actions are normalized to [−1, 1]. The networks operate with normalized513

actions, i.e. critic networks processes normalized actions as inputs, and actor networks output action514

distributions in the normalized space. The agent scales back the actions to the original space when515

executing them in the environment.516

In both the state-based and vision-based agents, we use an input normalization layer for the non-517

image observations. This input normalization layer consists of a linear layer, layer norm layer, and a518

tanh non-linearity. The size of the input normalizer refers to the number of units of the linear layer.519

We use an output distribution layer for the output of the actor networks. The output distribution520

layer for the actor network outputs an independent joint distribution of multivariate normal (MVN)521

distribution with diagonal variance for the continuous action dimensions, and a Bernoulli distribu-522

tion for the binary action dimension. The mean of the MVN is the output of a linear layer and the523

diagonal standard deviation is the output of a fully-connected layer with softplus non-linearity plus524

a bias of σmin. This distribution is not constrained to output normalized actions in [−1, 1]; instead,525

we clip samples from this distribution depending on the context. The logits vector of the Bernoulli526

distribution is the output of a linear layer with output size 2. This distribution is scaled accordingly527

to output normalized actions in {−1, 1}.528

State-based agents. The actor network consists of an input normalization layer, MLP, and output529

distribution layer. The critic network starts with an input normalization layer for the observations530

and clipping of the actions to [−1, 1], then both streams are concatenated, and followed by an MLP531

and a linear layer with 1 output. These MLPs use exponential linear unit (ELU) activations. See532

Table S8 for a full list of network architecture hyperparameters used for the state-based agents.533

Vision-based agents. The actor network consists of an observation encoder, MLP, Transformer,534

another MLP, and output distribution layer. When using a critic (i.e. in CRR), the critic network535

starts with an observation encoder for the observations and clipping of the actions to [−1, 1], then536

both streams are concatenated, and followed by an MLP and discrete-valued output distribution537

layer.538

The actor and critic networks use the same architecture for their observation encoders, but their539

parameters are not shared. The observation encoder consists of two parallel streams—a ResNet stack540

for the image observations and an MLP with a final activation for the proprioception observations—541

and the outputs are merged by concatenation. The ResNet stack consists of a pair of ResNet encoders542

(one for each of the two images), activation, flattening and concatenation (of encodings from both543

images), and MLP with a final activation. Each ResNet encoder consists of 3 ResNet group modules.544

Each group module first applies a convolution followed by downsampling with a max-pooling layer,545

and then applies residual blocks modules twice. Each residual block consists of 2 convolution layers546

interleaved with non-linear activations.547

The output distribution layer for the critic network outputs a discrete-valued distribution with sup-548

port [vmin, vmax] that is uniformly spaced among natoms atoms or bins. The logits vector of this549

distribution is the output of a linear layer with output size natoms.550

See Table S9 for a full list of network architecture hyperparameters used for the vision-based agents.551

We found in preliminary experiments that having each image processed by a ResNet encoder led552

to better sim-to-real transfer performance compared to stacking the two images along the channel553

dimension and processing this stacked image with a single ResNet encoder. We also found that554

21

Hyperparameter Value

actor network
input normalizer size 512
MLP sizes (512, 512, 256, 256)
MVN distribution σmin 10−4

activations ELU
critic network

input normalizer size 512
MLP sizes (512, 512, 256)
activations ELU

Table S8: Network Architecture Hyperparameters for State-Based Agents.

Hyperparameter Value

image observation encoder (actor and critic)
individual ResNet per image? yes
share parameters for the ResNets of both images? yes
ResNet number of channels for each group (64, 128, 256)
ResNet number of blocks per group 2
ResNet convolution kernel size 3 × 3
ResNet max-pooling size 3 × 3
ResNet max-pooling stride 2
post-ResNet MLP sizes (256)
activations ReLU

proprioception observation encoder (actor and critic)
input normalizer size 256
MLP sizes (256)
activations ReLU

actor network (after the observation encoder)
pre-Transformer MLP sizes (512, 512)
Transformer number of heads 4
Transformer number of layers 1
Transformer value size 64
Transformer memory size 8
post-Transformer MLP sizes (256, 256)
—MLP sizes for ablation without Transformer (1024, 512, 512, 256, 256)
MVN distribution σmin 10−4

activations ELU
critic network (after the observation encoder)

MLP sizes (512, 512, 256)
discrete-valued distribution number of atoms natoms 101
discrete-valued distribution range of values [vmin, vmax] [−150.0, 150.0]
activations ELU

Table S9: Network Architecture Hyperparameters for Vision-Based Agents. The critic hyperparameters
are only applicable to the methods that use a critic, i.e. CRR. Although the actor and critic networks use the
same observation encoder architecture, their parameters are not shared.

22

sharing the parameters for the ResNets of both images led to even better transfer performance. This555

parameter sharing also has an additional advantage of computational speedups (this can be achieved556

by applying the ResNet in a single pass to both images concatenated along the batch dimension).557

Note that although the observation encoders use rectified linear unit (ReLU) activations throughout,558

the subsequent MLPs use ELU activations.559

Transformer Architecture. While image augmentation and domain randomization helps with560

bridging visual and physics domain gap, the gap of transition dynamics remains. A potential ap-561

proach is to give agents access to temporal information, which encourages them to “reason” about562

the transition dynamics. It has been shown in prior work on simulation-to-reality transfer [34], that563

doing so can bridge the reality gap further, and might even enable the agents to be performing sys-564

tem identification that can help with transfer in previously unseen environments. The Transformer565

architecture has been widely adopted for natural language processing [35, 36] as well as for com-566

puter vision [37]. However its application to control problems remains limited. Thereby we explore567

the Transformer model, which demonstrated huge power of sequence based data processing with568

attention mechanism, to encode temporal information. In this work, we adapted to the Transformer-569

XL [36]. The transformer network has stacked self-attention module that apply to the input sequence570

repeatedly. The transformer module consists of 1) a multi-head attention submodule followed by 2)571

a multi-layer perceptron network.572

The transformer torso takes encoded observations as input. The multi-head attention module applies573

scaled dot-production attention for every timestep:574

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V (S17)

In addition to perform a single attention operation, it is beneficial to project Q,K, V h times with575

learned linear projections respectively, where h is number of heads:576

MultiHeadAttention(Q,K, V) = Concat(head1, ..., headh)W o (S18)

headi = Attention(QWQ
i ,KW

K
i , V W

V
i) (S19)

Following the multi-head attention module, a residual connection and layer normalization are ap-577

plied. To leverage the order of the sequence, a positional-encoding layer is added to the input578

embeddings. A fixed positional encoding using sine and cosine functions of various frequencies are579

used in this work:580

SelfAttention(Q,K, V) = LayerNorm(MultiHeadAttention(Q,K, V) + PositionalEncoding(V))
(S20)

On top of the self-attention layer, a fully-connected feed-forward network is applied to the output of581

each timestep separately. The MLP consists of two linear layers with a ReLU activation in between.582

E.3 Additional Training Details583

We use a trust-region constraint for the policy update in MPO and CRR. Similarly to Abdolmaleki584

et al. [18], the mean and standard deviation of the multivariate normal (MVN) of the actor distribu-585

tion have separate trust-region constraints. However, we do not use a trust-region constraint for the586

Bernoulli distribution component as we found it was not necessary for stable learning.587

We use different learning rates for optimizing the actor, critic, and dual variables. We anneal the588

learning rates for the actor and the critic, following an exponential decay schedule denoted as589

range(istart, iend, istep), where istart and iend indicate the gradient step iteration at which the annealing590

starts and ends, respectively, and istep indicates the interval at which the learning rate is multiplied591

by the decay factor.592

See Table S10 and Table S11 for a full list of training hyperparameters used for state-based and593

vision-based agents, respectively.594

E.4 Detailed Real-Robot Results595

In Table 2 and Table 3 we provide, for each setting, averages of multiple runs. These are 4 runs for596

sim-trained distilled agents: 2 seeds for each of the 2 state-based teacher policies we distilled these597

23

Hyperparameter Value

MPO
discount factor γ 0.99
actions sampled per state 20
KL constraint εE on non-parametric policy 0.1
trust-region εM on policy (MVN mean) 5 × 10−3

trust-region εM on policy (MVN covariance) 1 × 10−4

trust-region εM on policy (Bernoulli) none
update period for target networks 200

General
batch size 512
trajectory length 10
environment frames per gradient step 250
replay buffer size 2 × 106

optimizer Adam [38]
actor initial learning rate 5 × 10−5

actor learning rate decay factor 0.9
actor learning rate decay schedule range(1000000, 5000000, 300000)
critic initial learning rate 1 × 10−4

critic learning rate decay factor 0.9
critic learning rate decay schedule range(1000000, 5000000, 300000)
dual learning rate 1 × 10−2

Table S10: Hyperparameters for Training State-Based Agents.

Hyperparameter Value

IIL (DAgger) and BC
loss negative log-likelihood
—loss for ablation using MSE loss mean squared error

CRR
discount factor γ 0.99
actions sampled per state 20
KL constraint εE on non-parametric policy 0.1
trust-region εM on policy (MVN mean) 0.1
trust-region εM on policy (MVN covariance) 0.1
trust-region εM on policy (Bernoulli) none
update period for target networks 200

General
batch size 64
trajectory length 10
environment frames per gradient step (online) 250
replay buffer size (online) 1 × 105

dataset size (offline) 85 213 episodes, 58 979 successful (Skill Mastery)
38 446 episodes, 14 381 successful (Skill Generalization)

optimizer Adam [38]
actor initial learning rate 1 × 10−4

actor learning rate decay factor 0.9

actor learning rate decay schedule range(25000, 1000000, 25000) (Skill Mastery)
range(100000, 1000000, 30000) (Skill Generalization)

critic initial learning rate 2 × 10−4

critic learning rate decay factor 0.9
critic learning rate decay schedule range(25000, 1000000, 25000)
dual learning rate 1 × 10−2

Table S11: Hyperparameters for Training Vision-Based Agents. The critic hyperparameters are only appli-
cable to the methods that use a critic, i.e. CRR. We found that CRR doesn’t need a tight trust-region for stable
learning, so we chose a loose constraint of 0.1 without further tuning. The number of environment frames
per gradient step and replay buffer size are only applicable in the online setting, which uses the simulated
environment. The dataset size is only applicable in the offline setting, and the dataset consists of real-world
episodes collected on the robots. The dataset for Skill Mastery only has the test triplets and the dataset for Skill
Generalization only has the training objects.

24

Method Run
Simulation Success Real-Robot Success

Training Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet Triplet
Objects Avg. 1 2 3 4 5 Avg. 1 2 3 4 5

Skill Mastery
IIL-s2r Teacher 1 - Seed 1 N/A 75.1% 80.6% 50.7% 82.1% 74.9% 87.2% 68.1% 74.5% 49.0% 59.5% 87.0% 70.5%
IIL-s2r Teacher 2 - Seed 1 N/A 73.3% 72.3% 49.1% 82.6% 75.7% 86.7% 73.7% 78.0% 64.0% 69.5% 86.0% 71.0%
IIL-s2r Teacher 1 - Seed 2 N/A 74.7% 77.1% 54.4% 81.2% 74.5% 86.6% 66.1% 67.5% 49.0% 57.5% 82.0% 74.5%
IIL-s2r Teacher 2 - Seed 2 N/A 73.7% 74.2% 51.0% 82.6% 74.4% 86.2% 63.7% 71.0% 33.0% 57.5% 85.5% 71.5%
No Transformer Teacher 1 - Seed 1 N/A 74.3% 74.9% 52.9% 82.6% 73.6% 87.5% 72.8% 73.5% 52.5% 65.5% 86.5% 86.0%
No Transformer Teacher 2 - Seed 1 N/A 72.5% 70.4% 51.5% 81.3% 73.2% 86.2% 66.6% 72.5% 40.5% 57.0% 83.5% 79.5%
No Transformer Teacher 1 - Seed 2 N/A 73.4% 78.5% 48.6% 80.9% 73.0% 85.9% 70.2% 72.5% 51.0% 64.0% 86.5% 77.0%
No Transformer Teacher 2 - Seed 2 N/A 73.1% 76.3% 48.8% 82.1% 72.2% 86.0% 67.6% 69.5% 38.0% 58.0% 87.5% 85.0%
No image augmentation Teacher 1 - Seed 1 N/A 74.1% 79.4% 50.2% 81.4% 73.3% 86.1% 66.6% 77.5% 44.0% 69.5% 81.0% 61.0%
No image augmentation Teacher 2 - Seed 1 N/A 71.4% 76.5% 47.8% 81.6% 65.0% 86.2% 60.1% 67.5% 32.0% 44.5% 86.0% 70.5%
No image augmentation Teacher 1 - Seed 2 N/A 74.1% 74.4% 51.0% 82.4% 72.9% 89.6% 70.3% 78.0% 52.0% 61.5% 90.0% 70.0%
No image augmentation Teacher 2 - Seed 2 N/A 71.6% 76.2% 45.8% 80.6% 70.2% 85.1% 56.9% 63.0% 26.5% 48.5% 79.0% 67.5%
No action delay Teacher 1 - Seed 1 N/A 74.5% 79.9% 50.6% 83.9% 72.8% 85.3% 71.1% 74.5% 52.5% 71.5% 83.5% 73.5%
No action delay Teacher 2 - Seed 1 N/A 72.1% 75.2% 47.8% 81.3% 70.7% 85.3% 67.2% 73.0% 45.5% 56.5% 89.5% 71.5%
No action delay Teacher 1 - Seed 2 N/A 74.0% 77.5% 51.3% 83.6% 73.7% 84.1% 68.9% 75.0% 43.5% 69.5% 80.5% 76.0%
No action delay Teacher 2 - Seed 2 N/A 73.3% 74.8% 52.3% 82.6% 71.3% 85.4% 67.6% 66.5% 57.5% 58.5% 81.5% 74.0%
No binary gripper Teacher 1 - Seed 1 N/A 74.4% 77.2% 53.1% 81.4% 73.4% 87.0% 43.6% 61.5% 36.5% 0.0% 61.5% 58.5%
MSE & no binary gripper Teacher 1 - Seed 1 N/A 72.2% 74.9% 53.6% 78.4% 71.3% 82.8% 30.8% 44.5% 23.5% 7.0% 20.0% 59.0%
MSE & no binary gripper Teacher 2 - Seed 1 N/A 58.96% 74.75% 0.27% 72.57% 65.36% 81.82% 24.20% 36.00% 0.00% 0.00% 24.50% 60.50%
MSE & no binary gripper Teacher 1 - Seed 2 N/A 72.4% 73.8% 55.5% 78.0% 71.0% 83.7% 24.4% 45.0% 24.0% 0.5% 13.5% 39.0%
MSE & no binary gripper Teacher 2 - Seed 2 N/A 59.13% 73.18% 0.18% 75.00% 66.27% 81.00% 23.20% 27.00% 0.00% 0.50% 24.50% 64.00%
No binary gripper Teacher 2 - Seed 1 N/A 57.78% 72.18% 1.00% 68.00% 66.82% 80.91% 8.80% 10.00% 0.00% 0.50% 19.00% 14.50%
No binary gripper Teacher 1 - Seed 2 N/A 74.5% 76.5% 52.5% 82.2% 74.3% 86.9% 16.4% 55.5% 12.5% 0.0% 8.0% 6.0%
No binary gripper Teacher 2 - Seed 2 N/A 57.70% 70.18% 1.00% 69.85% 67.45% 80.00% 13.90% 24.00% 0.00% 0.50% 29.00% 16.00%

Skill Generalization
IIL-s2r Teacher 1 - Seed 1 65.7% 58.9% 38.1% 38.5% 44.7% 82.5% 90.5% 54.8% 30.0% 42.5% 42.0% 93.0% 66.5%
IIL-s2r Teacher 1 - Seed 2 64.4% 59.2% 35.2% 42.3% 48.0% 80.8% 89.8% 49.6% 22.4% 44.5% 29.5% 91.5% 60.0%
IIL-s2r Teacher 2 - Seed 1 64.8% 53.8% 15.7% 40.9% 40.7% 81.4% 90.5% 54.6% 27.0% 41.0% 39.5% 89.0% 76.5%
IIL-s2r Teacher 2 - Seed 2 63.8% 52.1% 12.5% 40.8% 36.4% 80.0% 91.0% 48.4% 20.5% 30.5% 35.0% 91.0% 65.0%
No Transformer Teacher 1 - Seed 1 61.5% 52.7% 22.9% 38.3% 34.4% 79.2% 88.6% 43.6% 30.0% 22.5% 14.0% 82.5% 69.0%
No Transformer Teacher 1 - Seed 2 57.0% 45.1% 11.7% 35.7% 16.7% 75.5% 85.7% 44.4% 24.5% 28.5% 16.0% 79.0% 74.0%
No Transformer Teacher 2 - Seed 1 64.4% 54.2% 15.3% 41.1% 40.9% 81.2% 92.3% 47.8% 31.5% 36.0% 17.5% 88.5% 65.5%
No Transformer Teacher 2 - Seed 2 63.6% 53.2% 17.8% 39.4% 38.3% 80.6% 90.3% 45.7% 24.5% 26.5% 27.5% 87.5% 62.5%
No object parameters Teacher 1 - Seed 1 65.0% 50.8% 29.9% 15.0% 38.3% 82.6% 88.0% 32.1% 23.0% 18.5% 24.0% 36.0% 59.0%
No object parameters Teacher 1 - Seed 2 65.0% 58.0% 29.9% 41.0% 49.9% 81.9% 87.4% 29.3% 24.5% 21.0% 21.5% 27.5% 52.0%
No object parameters Teacher 2 - Seed 1 61.7% 52.2% 24.0% 33.3% 39.0% 78.5% 86.0% 53.5% 29.5% 42.0% 29.0% 87.5% 79.5%
No object parameters Teacher 2 - Seed 2 62.3% 53.8% 24.0% 38.7% 38.6% 80.6% 86.9% 49.6% 30.0% 33.5% 30.0% 84.0% 70.5%

Table S12: Sim-to-Real Transfer Success. Ablations of the components of the sim-to-real policy. This table
gives a full account of all evaluations for the equivalent Table 2 in the main paper. We execute the stochastic
and deterministic policies in simulation and on the robots, respectively, unless otherwise specified.

from, and 2 runs for vision agents trained from real data. Here, we provide the results for each of the598

runs in each setting, and also present the results for each specific triplet. We hope that this provides599

a better sense of the variance in each setting. Entries in Table S12 correspond to Table 2, whereas600

entries in Table S13 correspond to Table 3.601

E.5 Qualitative Analysis602

In the main text we described different challenges posed by the test triplets. Aside from the quan-603

titative success scores above, it is therefore also interesting to look at the resulting policies qualita-604

tively, and examine whether our agent visibly learns to overcome these challenges. Even if such an605

approach is naturally to be taken only as anecdotal, it nevertheless provides an indication of open606

challenges that are worth pursuing further.607

We therefore performed a number of evaluations with the best-performing agent, the Skill Mastery608

CRR-IMP policy trained on sim-to-real agent data (see Table S13). We adversarially moved the609

objects to generate challenging situations and observed the agent’s behaviour.610

Triplet 1. The main challenge of this triplet is the need to precisely orient the gripper, since closing611

them on the slanted sides of the object will fail. The agent exhibits this behaviour, waiting to close612

the gripper until the wrist is properly aligned (Figure S17(a)).613

Triplet 2. The bottom object in this triplet can be oriented in such a way that its top surface is614

slanted, making it impossible to stack without first tipping it over. The agent can be seen to perform615

this kind of behaviour, although not perfectly reliably; if the object is already oriented so that it616

can be tilted by pushing it against the basket’s slope, it will do so (Figure S17(b)). However, if the617

bottom object’s orientation is unfavourable, it will not rotate it to achieve this (Figure S17(c)), and618

instead try to naively stack the objects.619

Triplet 3. The main challenge in this triplet lies in the asymmetry of the top object, and needing to620

balance it onto the bottom one in such a way that their centroids are aligned. Even if disturbed into621

an off-center grasp, the agent still aligns both objects precisely (Figure S17(d)).622

25

Method Run
Real-Robot Success

Triplet Triplet Triplet Triplet Triplet Triplet
Avg. 1 2 3 4 5

Scripted agent N/A 51.2% 36.3% 23.0% 34.4% 84.9% 77.6%
Skill Mastery

BC (scripted agent data) Seed 1 50.8% 25.5% 22.5% 35.0% 85.5% 85.5%
BC (scripted agent data) Seed 2 55.9% 43.5% 31.0% 41.5% 83.5% 80.0%
CRR (scripted agent data) Seed 1 40.4% 17.0% 11.4% 41.5% 66.0% 66.0%
CRR (scripted agent data) Seed 2 46.4% 24.0% 44.5% 35.0% 62.0% 66.5%
—Sim-to-real agent for test triplets data N/A 69.5% 76.4% 52.3% 60.4% 86.5% 72.0%
BC-IMP (sim-to-real agent data) Seed 1 75.1% 76.0% 59.5% 70.0% 90.5% 79.5%
BC-IMP (sim-to-real agent data) Seed 2 74.1% 75.0% 62.0% 71.5% 85.0% 77.0%
CRR-IMP (sim-to-real agent data) Seed 1 81.0% 88.0% 66.5% 74.0% 88.0% 88.5%
CRR-IMP (sim-to-real agent data) Seed 2 82.1% 86.5% 70.0% 76.5% 88.5% 89.0%

Skill Generalization
—Suboptimal agent for training set data N/A 32.6% 21.5% 16.5% 17.0% 60.0% 48.0%
BC-IMP (suboptimal agent data) Seed 1 48.2% 23.0% 33.0% 37.0% 82.0% 66.0%
BC-IMP (suboptimal agent data) Seed 2 49.8% 23.0% 45.5% 41.5% 73.0% 66.0%
CRR-IMP (suboptimal agent data) Seed 1 55.0% 33.0% 34.5% 49.5% 88.0% 70.0%
CRR-IMP (suboptimal agent data) Seed 2 57.3% 36.5% 36.0% 46.5% 86.5% 81.0%

Table S13: Real-Robot Success. Different approaches for solving our RGB-stacking tasks in the real world.
This table gives a full account of all evaluations for the equivalent Table 3 in the main paper. All the evaluations
for IIL-s2r is given in Table S12.

(a) Agent aligns gripper to the graspable faces of the object.

(b) The bottom object is tipped over during approach.

(c) Failed attempt to stack onto a sloped bottom object.

(d) Objects are aligned even after forced into off-center grasps.

(e) No attempt to adjust off-center stack.

(f) Agent supports the top object for the rest of the episode.

Figure S17: Agent behaviour during challenging situations.

Triplet 4. Considered the easiest triplet, the main challenge is to align the centroids, even when623

the top object can be placed far off-center on the larger bottom object. Perhaps surprisingly, while624

the agent usually places the object in the center, it shows no attempts to recover from occasional625

off-center stacks (Figure S17(e)).626

Triplet 5. Due to the rounded cross-section of the top object, there is a high risk of it rolling off627

after stacking. As a testament to this, the agent will often stay close to the object after stacking,628

sometimes (but not always) even supporting it with the gripper until the end of the episode when the629

bottom object is on a slope and a stack thus otherwise impossible (Figure S17(f)).630

26

F Additional Related Work631

Our work deals with real-world vision-based stacking with a diverse set of objects and a learned632

policy. We therefore did not discuss, in the main text, prior work on e.g. stacking from extracted633

features or in simulation. For completeness, we discuss such works here.634

Furrer et al [39] is a very interesting paper on pick-and-place strategies with classical robotics meth-635

ods that we have now included in our main text discussion. We should highlight here that it deals636

with only 6 specific stones that offer wide support and have high friction - in contrast to the 152637

objects with diverse geometry we propose in our benchmark. To the best of our understanding, their638

method would neither be able to handle Triplet 2 (flipping the bottom object if needed), nor gener-639

alize to unseen objects, as is the case for our “Skill Generalization” task. We should also note that640

the evaluation on that work was done on a total of 11 episodes (or a maximum of 33 possible stacks641

in that setup) - in contrast to the more than 54,000 episodes we have evaluated our various choices642

with.643

Duan et al [40] deals with cube stacking in simulation only with policies that have access to task644

demonstrations, the state information of each cube and no visual input. Later work by Li et al [41]645

in the same environment shows that reinforcement learning without demonstrations can learn to646

stack the cubes from state. Our stacking task is also related to other manipulation tasks, such as dry647

stacking [42, 43] where rocks of irregular shapes must be stacked to form a wall, but these methods648

do not address. However, while these methods deal with high-level planning and goal understanding,649

our benchmark task requires dealing with low-level contact dynamics and perception to make real650

object stacking possible with strategies that emerge from RL training in simulation.651

Noseworthy et al [44] also deals with high-level planning for stacking cubes, this time in the real652

world. The challenge in this work is that each cube was created with a slightly different center653

of mass, requiring precise stacks. However, this is not a vision-based task: each cube is also AR-654

tagged and therefore privileged information about each cube are known during evaluation. Similarly,655

Macias et al [45] use a combination of binary markers on objects as well as high level planning to656

perform pick and place stacking.657

Some vision-based methods have addressed a related but distinct problem of predicting stack sta-658

bility [46, 47, 48, 49]. Lerer et al [47] deal with intuition around physics and identifying whether a659

tower block will collapse, and even the trajectory the blocks will take, focusing primarily on simu-660

lation experiments. Similarly, Hamrick et al [49] deal with identifying stability of simulated block661

towers, with the aid of Graph Neural Networks and without using vision. They also attempt to ad-662

dress which parts of the tower to “glue” in order to fix an unstable tower. Groth et al [48] classify663

structures as stable or unstable from visual inputs and learn “stackability affordances” for objects of664

various shapes. However, this line of work does not address the dynamic aspects of manipulation,665

as there is no physical robot interacting with the objects.666

G Additional Supplementary Material667

In this appendix we attempted to provide as much detail as we could regarding our benchmark,668

our environments, and our implementation and experimental details. As part of the material that669

supplement this paper, we also include a video file that shows our agents in action, as well as670

designs and instructions for recreating the real robotic cell and the STL files for the RGB-Objects in671

Figure S2.672

Here is a list of what is included in the supplementary material as part of this submission:673

• Video that supplements the main text.674

• BOM (Bill of materials, list of things and quantity) to build:675

– Cell676

– Basket677

• Building instructions:678

– Cell679

– Basket680

27

– Wiring diagram681

We will further release, post-submission under an Apache Licence, the following:682

• 3D Assembly drawing to complete / integrate assembly instruction683

• 3D models and Manufacturing drawing for all the parts (cell and Basket) that need to be:684

– Machined685

– 3D printed686

– Laser Cut687

• All STL files for the training set, held-out set, and the specific triplets, in separate folders.688

• A version of the simulated environment.689

28

(a) Real-world image sequences without image augmentations.

(b) Real-world image sequences with image augmentations.

Figure S18: Real-world image sequences without and with the image augmentations listed in Table S7. Note
that we randomly sample different color and translation perturbations for each sequence in a batch, but we use
the same random perturbations for all the images within a sequence.

29

(a) Image sequences from the simulation without image augmentations.

(b) Image sequences from the simulation with image augmentations.

Figure S19: Image sequences from simulation without and with the image augmentations listed in Table S7.
Note that we randomly sample different color and translation perturbations for each sequence in a batch, but we
use the same random perturbations for all the images within a sequence. Although in our experiments we always
use image augmentation in combination with domain randomization, here we show example sequences without
domain randomization for visualization clarity. See Figure S20 for examples with domain randomization.

30

(a) Image sequences from the domain-randomized simulation without image augmentations.

(b) Image sequences from the domain-randomized simulation with image augmentations.

Figure S20: Image sequences from the domain-randomized simulation without and with the image augmen-
tations listed in Table S7. Note that we randomly sample different color and translation perturbations for each
sequence in a batch, but we use the same random perturbations for all the images within a sequence. See
Figure S19 for examples without domain randomization.

31

References690

[1] M. Mason. The mechanics of manipulation. In Proceedings. 1985 IEEE International691

Conference on Robotics and Automation, volume 2, pages 544–548, March 1985. doi:692

10.1109/ROBOT.1985.1087242.693

[2] C. Ferrari and J. Canny. Planning optimal grasps. In Proceedings 1992 IEEE International694

Conference on Robotics and Automation, pages 2290–2295 vol.3, 1992. doi:10.1109/ROBOT.695

1992.219918.696

[3] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg. Dex-697

net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp698

metrics. CoRR, abs/1703.09312, 2017. URL http://arxiv.org/abs/1703.09312.699

[4] D. Wang, D. Tseng, P. Li, Y. Jiang, M. Guo, M. Danielczuk, J. Mahler, J. Ichnowski, and700

K. Goldberg. Adversarial grasp objects. In Proc. IEEE Conf. on Automation Science and701

Engineering (CASE), pages 241–248. IEEE, 2019.702

[5] R. M. Murray, S. S. Sastry, and L. Zexiang. A Mathematical Introduction to Robotic Manipu-703

lation. CRC Press, Inc., USA, 1st edition, 1994. ISBN 0849379814.704

[6] B. Çalli, A. Walsman, A. Singh, S. S. Srinivasa, P. Abbeel, and A. M. Dollar. Benchmarking705

in manipulation research: The YCB object and model set and benchmarking protocols. CoRR,706

abs/1502.03143, 2015. URL http://arxiv.org/abs/1502.03143.707

[7] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen. Learning hand-eye coordination for robotic708

grasping with deep learning and large-scale data collection. CoRR, abs/1603.02199, 2016.709

URL http://arxiv.org/abs/1603.02199.710

[8] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700711

robot hours. CoRR, abs/1509.06825, 2015. URL http://arxiv.org/abs/1509.06825.712

[9] A. Zeng, S. Song, K. Yu, E. Donlon, F. R. Hogan, M. Bauzá, D. Ma, O. Taylor, M. Liu,713

E. Romo, N. Fazeli, F. Alet, N. C. Dafle, R. Holladay, I. Morona, P. Q. Nair, D. Green, I. Taylor,714

W. Liu, T. A. Funkhouser, and A. Rodriguez. Robotic pick-and-place of novel objects in clutter715

with multi-affordance grasping and cross-domain image matching. CoRR, abs/1710.01330,716

2017. URL http://arxiv.org/abs/1710.01330.717

[10] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar. A versatile generalized inverted kinematics718

implementation for collaborative working humanoid robots: The stack of tasks. In Interna-719

tional Conference on Advanced Robotics, Munich, Germany, 2009.720

[11] A. Rocchi, E. M. Hoffman, D. G. Caldwell, and N. G. Tsagarakis. Opensot: a whole-body721

control library for the compliant humanoid robot coman. In IEEE International Conference in722

Robotics and Automation, 2015.723

[12] F. Kanehiro, F. Lamiraux, O. Kanoun, E. Yoshida, and J. Laumond. A local collision avoidance724

method for non-strictly convex polyhedra. In Robotics: Science and Systems, 2008.725

[13] C. Fang, A. Rocchi, E. M. Hoffman, N. G. Tsagarakis, and D. G. Caldwell. Efficient self-726

collision avoidance based on focus of interest for humanoid robots. In International Confer-727

ence on Humanoid Robots, 2015.728

[14] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an operator729

splitting solver for quadratic programs. Mathematical Programming Computation, 12(4):730

637–672, 2020. doi:10.1007/s12532-020-00179-2. URL https://doi.org/10.1007/731

s12532-020-00179-2.732

[15] R. I. Hartley and P. Sturm. Triangulation. Comput. Vis. Image Underst., 68(2):146–157, Nov.733

1997. ISSN 1077-3142. doi:10.1006/cviu.1997.0547. URL https://doi.org/10.1006/734

cviu.1997.0547.735

[16] M.-K. Hu. Visual pattern recognition by moment invariants. IRE transactions on information736

theory, 8(2):179–187, 1962.737

32

http://dx.doi.org/10.1109/ROBOT.1985.1087242
http://dx.doi.org/10.1109/ROBOT.1985.1087242
http://dx.doi.org/10.1109/ROBOT.1985.1087242
http://dx.doi.org/10.1109/ROBOT.1992.219918
http://dx.doi.org/10.1109/ROBOT.1992.219918
http://dx.doi.org/10.1109/ROBOT.1992.219918
http://arxiv.org/abs/1703.09312
http://arxiv.org/abs/1502.03143
http://arxiv.org/abs/1603.02199
http://arxiv.org/abs/1509.06825
http://arxiv.org/abs/1710.01330
http://dx.doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
http://dx.doi.org/10.1006/cviu.1997.0547
https://doi.org/10.1006/cviu.1997.0547
https://doi.org/10.1006/cviu.1997.0547
https://doi.org/10.1006/cviu.1997.0547

[17] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In738

2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–739

5033. IEEE, 2012.740

[18] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. Riedmiller. Maxi-741

mum a posteriori policy optimisation. 2018.742

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,743

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,744

H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through745

deep reinforcement learning. Nature, 518(7540):529–533, 2015.746

[20] R. Munos, T. Stepleton, A. Harutyunyan, and M. G. Bellemare. Safe and efficient off-policy747

reinforcement learning. In Proceedings of the 30th International Conference on Neural Infor-748

mation Processing Systems, NeurIPS’16, page 1054–1062, Red Hook, NY, USA, 2016. Curran749

Associates Inc. ISBN 9781510838819.750

[21] A. Abdolmaleki, J. T. Springenberg, J. Degrave, S. Bohez, Y. Tassa, D. Belov, N. Heess, and751

M. A. Riedmiller. Relative entropy regularized policy iteration. CoRR, abs/1812.02256, 2018.752

URL http://arxiv.org/abs/1812.02256.753

[22] Z. Wang, A. Novikov, K. Zolna, J. S. Merel, J. T. Springenberg, S. E. Reed, B. Shahriari,754

N. Siegel, C. Gulcehre, N. Heess, and N. de Freitas. Critic regularized regression. In Advances755

in Neural Information Processing Systems (NeurIPS), 2020.756

[23] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement757

learning. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Confer-758

ence on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages759

449–458, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL760

http://proceedings.mlr.press/v70/bellemare17a.html.761

[24] F. Sadeghi and S. Levine. Cad2rl: Real single-image flight without a single real image. arXiv762

preprint arXiv:1611.04201, 2016.763

[25] J. Tobin, L. Biewald, R. Duan, M. Andrychowicz, A. Handa, V. Kumar, B. McGrew, A. Ray,764

J. Schneider, P. Welinder, et al. Domain randomization and generative models for robotic grasp-765

ing. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),766

pages 3482–3489. IEEE, 2018.767

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional768

neural networks. Advances in neural information processing systems, 25:1097–1105, 2012.769

[27] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs, J. Ibarz,770

P. Pastor, K. Konolige, et al. Using simulation and domain adaptation to improve efficiency of771

deep robotic grasping. In 2018 IEEE International Conference on Robotics and Automation772

(ICRA), pages 4243–4250. IEEE, 2018.773

[28] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari. Rl-cyclegan: Reinforcement774

learning aware simulation-to-real. In Proceedings of the IEEE/CVF Conference on Computer775

Vision and Pattern Recognition, pages 11157–11166, 2020.776

[29] D. Ho, K. Rao, Z. Xu, E. Jang, M. Khansari, and Y. Bai. Retinagan: An object-aware approach777

to sim-to-real transfer. arXiv preprint arXiv:2011.03148, 2020.778

[30] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand,779

and V. Lempitsky. Domain-adversarial training of neural networks. The journal of machine780

learning research, 17(1):2096–2030, 2016.781

[31] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain adapta-782

tion. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages783

7167–7176, 2017.784

33

http://arxiv.org/abs/1812.02256
http://proceedings.mlr.press/v70/bellemare17a.html

[32] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz, S. Levine,785

R. Hadsell, and K. Bousmalis. Sim-to-real via sim-to-sim: Data-efficient robotic grasping786

via randomized-to-canonical adaptation networks. In Proceedings of the IEEE Conference on787

Computer Vision and Pattern Recognition, pages 12627–12637, 2019.788

[33] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz, S. Levine,789

R. Hadsell, and K. Bousmalis. Sim-to-real via sim-to-sim: Data-efficient robotic grasp-790

ing via randomized-to-canonical adaptation networks. CoRR, abs/1812.07252, 2018. URL791

http://arxiv.org/abs/1812.07252.792

[34] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,793

A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.794

The International Journal of Robotics Research, 39(1):3–20, 2020.795

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-796

sukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.797

[36] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-xl:798

Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860,799

2019.800

[37] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-801

hghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transform-802

ers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.803

[38] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International804

Conference on Learning Representations, 2015.805

[39] F. Furrer, M. Wermelinger, H. Yoshida, F. Gramazio, M. Kohler, R. Siegwart, and M. Hutter.806

Autonomous robotic stone stacking with online next best object target pose planning. In 2017807

IEEE International Conference on Robotics and Automation (ICRA), pages 2350–2356, May808

2017. doi:10.1109/ICRA.2017.7989272.809

[40] Y. Duan, M. Andrychowicz, B. Stadie, O. Jonathan Ho, J. Schneider, I. Sutskever, P. Abbeel,810

and W. Zaremba. One-shot imitation learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-811

lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Pro-812

cessing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.813

neurips.cc/paper/2017/file/ba3866600c3540f67c1e9575e213be0a-Paper.pdf.814

[41] R. Li, A. Jabri, T. Darrell, and P. Agrawal. Towards practical multi-object manipulation using815

relational reinforcement learning. In 2020 IEEE International Conference on Robotics and816

Automation (ICRA), pages 4051–4058. IEEE, 2020.817

[42] Y. Liu, S. M. Shamsi, L. Fang, C. Chen, and N. Napp. Deep q-learning for dry stacking818

irregular objects. pages 1569–1576, 10 2018. doi:10.1109/IROS.2018.8593619.819

[43] A. Menezes, P. Vicente, A. Bernardino, and R. Ventura. From rocks to walls: A model-820

free reinforcement learning approach to dry stacking with irregular rocks. In Proceedings of821

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,822

pages 2057–2065, June 2021.823

[44] M. Noseworthy, C. Moses, I. Brand, S. Castro, L. Kaelbling, T. Lozano-Pérez, and N. Roy.824

Active learning of abstract plan feasibility. In RSS, 2021.825

[45] N. Macias and J. Wen. Vision guided robotic block stacking. In 2014 IEEE/RSJ International826

Conference on Intelligent Robots and Systems, pages 779–784, 2014. doi:10.1109/IROS.2014.827

6942647.828

[46] Z. Jia, A. C. Gallagher, A. Saxena, and T. Chen. 3d reasoning from blocks to stability. IEEE829

Transactions on Pattern Analysis and Machine Intelligence, 37(5):905–918, 2015. doi:10.830

1109/TPAMI.2014.2359435.831

34

http://arxiv.org/abs/1812.07252
http://dx.doi.org/10.1109/ICRA.2017.7989272
https://proceedings.neurips.cc/paper/2017/file/ba3866600c3540f67c1e9575e213be0a-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/ba3866600c3540f67c1e9575e213be0a-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/ba3866600c3540f67c1e9575e213be0a-Paper.pdf
http://dx.doi.org/10.1109/IROS.2018.8593619
http://dx.doi.org/10.1109/IROS.2014.6942647
http://dx.doi.org/10.1109/IROS.2014.6942647
http://dx.doi.org/10.1109/IROS.2014.6942647
http://dx.doi.org/10.1109/TPAMI.2014.2359435
http://dx.doi.org/10.1109/TPAMI.2014.2359435
http://dx.doi.org/10.1109/TPAMI.2014.2359435

[47] A. Lerer, S. Gross, and R. Fergus. Learning physical intuition of block towers by example. In832

M. F. Balcan and K. Q. Weinberger, editors, Proceedings of The 33rd International Conference833

on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages 430–834

438, New York, New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.835

mlr.press/v48/lerer16.html.836

[48] O. Groth, F. B. Fuchs, I. Posner, and A. Vedaldi. Shapestacks: Learning vision-based phys-837

ical intuition for generalised object stacking. In Proceedings of the European Conference on838

Computer Vision (ECCV), pages 702–717, 2018.839

[49] J. B. Hamrick, K. R. Allen, V. Bapst, T. Zhu, K. R. McKee, J. Tenenbaum, and P. W. Battaglia.840

Relational inductive bias for physical construction in humans and machines. In C. Kalish,841

M. A. Rau, X. J. Zhu, and T. T. Rogers, editors, Proceedings of the 40th Annual Meeting842

of the Cognitive Science Society, CogSci 2018, Madison, WI, USA, July 25-28, 2018. cog-843

nitivesciencesociety.org, 2018. URL https://mindmodeling.org/cogsci2018/papers/844

0341/index.html.845

846

35

https://proceedings.mlr.press/v48/lerer16.html
https://proceedings.mlr.press/v48/lerer16.html
https://proceedings.mlr.press/v48/lerer16.html
https://mindmodeling.org/cogsci2018/papers/0341/index.html
https://mindmodeling.org/cogsci2018/papers/0341/index.html
https://mindmodeling.org/cogsci2018/papers/0341/index.html

	
	Beyond Pick-and-Place: Supplementary Material

	
	The RGB-Stacking Benchmark
	The RGB-objects family
	Benchmark Analysis
	Publicly Released Objects

	Environment Details
	Real-World Environment
	Control Actions

	Environment Observations
	Object Position Estimation
	Task Evaluation
	Reward Definition
	Automation for Unattended Learning and Evaluation

	Simulation
	Shaped Reward

	Baselines
	Human performance
	Scripted Agent

	Methods
	Details on Training Expert policies from State Features in Simulation
	Details on Interactive Imitation Learning for Sim-to-Real Transfer
	Details on Training Improved Policies from Real Data

	Experimental Details
	Domain Randomization and Image Augmentation
	Domain Randomization
	Image Augmentation

	Additional Network Architecture Details
	Additional Training Details
	Detailed Real-Robot Results
	Qualitative Analysis

	Additional Related Work
	Additional Supplementary Material

