
A Model Details

In the decoder model, we use a similar network architecture as the NeRF paper [19]. As shown in
Figure 8, we send a 3D point x 2 R3, a camera ray d 2 R3, and a state feature representation st into
a fully-connected network and output the corresponding density �t and RGB color ct.

Figure 8: A visualization of our decoder network architecture. All layers are standard fully-connected
layers, where the black arrows indicate layers with ReLU activations, orange arrows indicate layers with no
activation, dashed black arrows indicate layers with sigmoid activation, and “+” denotes vector concatenation.
We concatenate the positional encoding of the input location �(x) and our learned state representation st, and
pass them through 8 fully-connected ReLU layers, each with 256 channels. We follow the NeRF [19] architecture
and include a skip connection that concatenates this input to the fifth layer’s activation. An additional layer
outputs the volume density �t (which is rectified using a ReLU to ensure that the output volume density is
nonnegative) and a 256-dimensional feature vector. This feature vector is concatenated with the positional
encoding of the input viewing direction �(d), and is processed by an additional fully-connected ReLU layer
with 128 channels. A final layer (with a sigmoid activation) outputs the emitted RGB radiance at position x, as
viewed by a ray with direction d, given the current 3D state representation st.

B Environment Details

In the FluidPour environment, we generated 1, 000 trajectories for training. Each trajectory has 300
frames with 20 camera views sampled around the objects with a fixed distance towards the world
origin. The action space for the control task is the position and tilting angle of the cup, which are
randomly generated when constructing the training set.

In the FluidShake environment, we generated 1, 000 trajectories for training. Each trajectory has
300 frames with 20 camera views sampled around the objects with a fixed distance towards the world
origin. The action space for the control task is the 2D location of the container in the world coordinate,
which is also randomly generated when constructing the training set.

Figure 9 shows some example visual observations for FluidPour and FluidShake used during training.
We also include some example images from viewpoints outside the training distribution, which are
then used to evaluate our model’s extrapolated generalization ability.

In RigidStack, we generated 800 trajectories for training. Each trajectory has 80 frames with 20
camera views sampled around the objects with a fixed distance towards the world origin.

In RigidDrop, we generated 1, 000 trajectories for training. Each trajectory has 50 frames with 20
camera views sampled around the objects with a fixed distance towards the world origin.

C Training Details

For the encoder and decoder model described in Figure 2, we use the Adam optimizer with the
initial learning rate 5e�4 and decreased to 5e�5 for all the experiments. The batch size is 2. The
hyperparameters in the decoder are the same as the original NeRF model [19] except the near and
far distance between the objects and cameras are different in our environments. In our FluidPour
environment, we have near = 2.0 and far = 9.5. In our FluidShake environment, we have near = 2.0
and far = 7.0. In our RigidStack environment, we have near = 2.0 and far = 7.0. In our FluidPour
environment, we have near = 2.0 and far = 6.0.

13



Figure 9: Comparison between the viewpoints used for training and the subsequent viewpoint extrap-

olation experiments. (a) We show some example images that the model used during training. For both
environments, the camera is placed from a fixed distance and facing towards the world origin. (b) To evaluate
the model’s ability for viewpoint extrapolation, i.e., processing visual observations from viewpoints that are
outside the training distribution, we generate another set of viewpoints that are closer, higher, and facing more
downwards. It is clear from the figure that the images from viewpoints used during training are very different
from the ones used for viewpoint extrapolation when measured using pixel difference. Therefore, it is essential
to build a model that can directly reason over 3D to provide the desired extrapolation generalization ability.
Although the model has access to visual observations from multiple cameras during training, it can only observe
the environment from one camera when performing the downstream control task.

D Control Details

As discussed in Section 4.1, we use model-predictive path integral (MPPI) [57] to solve the MPC
problem. MPPI is a sampling-based, gradient-free optimizer that considers temporal coordination
between time steps when sampling action trajectories. At time t, the algorithm first samples M action
sequences based on the current actions at, . . . ,aT�1 via âk

h = ah + nk
h, k 2 {1, . . . ,M}, h 2

{t, . . . , T � 1}. Each noise sample nk
h, denoting the noise value at the h

th time step of the k
th

trajectory, is generated using filtering coefficient � as the following:

uk
h ⇠ N (0,⌃) 8k 2 {1, . . . ,M}, h 2 {t, . . . , T � 1}

nk
h = � · uk

h + (1� �) · nk
h�1,where nk

h<t = 0.
(5)

We then roll them out in parallel using the learned model on the GPU to derive ŝkT , k 2 {1, . . . ,M},
and then re-weight the trajectories according to the reward to update the action sequence using a
reward-weighting factor �: ah = (

PM
k=1 exp (� ·Rk) · âk

h)/(
PM

k=1 exp (� ·Rk)), h 2 {t, . . . , T �
1}, where R

k = �kŝkT � sgoalk22. This procedure is repeated for L iterations at which point the best
action sequence is selected.

The number of updating iteration for the auto-decoding test-time optimization K is 500. The number
of sampled trajectories M during MPPI optimization is set to 1, 000. The number of iterations L for
updating the action sequence is set to 100 for the first time step, and 10 for the subsequent control
steps to maintain a better trade-off between efficiency and effectiveness. The reward-weighting factor
� is set to 50 and the filtering coefficient � is specified as 0.7. The control horizon T is set as 80 both
for FluidPour and FluidShake. The hyperparameters are the same for all compared methods.

14



Figure 10: Qualitative results on auto-decoding test-time optimization. Following from the pipeline
illustrated in Figure 3b, if the input image It is outside the training distribution as shown on the left column,
the encoder won’t be able to generate the most accurate state representation. When passing the predicted state
embedding st and the same viewpoint as the input to the decoder, the generated image does not match the
underlying scene as shown in the second column. We then calculate the L2 distance of the pixels between the
generated image and true observation, backpropagating the gradient until the state representation and making
updates to st using SGD. As discussed in Section 4.2, the translational equivariance nature of the decoder allows
it to effectively optimize the latent representation to make it better reflect the 3D contents in the scene. After the
optimization, the generated visual observation is much closer to the ground truth, as shown in the third column.
On the contrary, the vanilla autoencoder that uses a CNN-based decoder won’t be able to capture the underlying
scene even with test-time auto-decoding optimization, as shown on the right.

E Additional Experimental Results

E.1 Auto-Decoding Test-Time Optimization for Viewpoint Extrapolation

Figure 10 shows the qualitative results on auto-decoding test-time optimization. When encountering
an image from a viewpoint outside the training distribution, this mechanism can help us derive a better
representation of the scene that holds a more accurate description of the 3D contents. The obtained
representation after the optimization can then be used as the goal embedding sgoal in Equation 4 that
the agent needs to achieve.

E.2 Validation of the Dynamics Prediction on Real-World Data

We further evaluate our model’s dynamics prediction ability by conducting experiments on real-world
data. As shown in Figure 11, we use four D415 RGBD cameras to record a human subject pouring
water from one cup to another. The cameras are calibrated and synchronized with the frequency of 15
Hz. We recorded 50 pouring episodes of length 15 seconds, resulting in a dataset of 43,400 frames.
We use the first 45 episodes for training and the remaining for testing.

To obtain the action, i.e., the movement of the cup that pours water out, we attached an AprilTag
[59] on the cup to obtain the 6 DoF pose of the cup at each time step. From the supplementary
video, you can see that our model can make open-loop future predictions on the testing trajectories
in the representations space, i.e., given a latent scene representation of the current time step, the
subsequent action sequence, our dynamic model can accurately predict the evolution of the latent
scene representation and render the corresponding frames that closely resemble the ground truth.

15



Figure 11: Dynamics prediction using real-world data. (a) We build a data recording set up containing
four D415 RGBD cameras to record a human subject pouring water from one cup to another and then use the
recorded data to evaluate our model’s dynamics prediction ability. (b) We show a side-by-side comparison
between the ground truth data and our model’s prediction when predicting the future from the four camera views.
Our model correctly identifies when the fluids pour out and start to fill the bottom container. Please see our
supplementary video for better visualizations.

Figure 12: Nearest neighbor (NN) results using our learned state representation. Given a query image (red
boundary), we search its nearest neighbors based on their state representation. Our learned scene representations
can retrieve reasonable neighbor images, indicating that our state representations retain a good estimation of the
contents inside the 3D scene and are invariant to camera poses.

E.3 Comparison With a PID Baseline That Only Matches the Robot’s State

To show the necessity of modeling the fluid dynamics in our task, we include an additional baseline
that uses PID control [60] to reach the robot state in the target image without worrying about the fluid.
Note that this baseline uses additional information, including the ground truth state of the robot in
both the current and the target image.

Our supplementary video shows a controlling trial where the goal is to leave a small amount of fluid
in the container at the end of the control episode. Naively matching the container’s position and
orientation will not work, as shown in the PID baseline that the top container did not pour any fluid
into the bottom container. In contrast, our model first learns to pour a certain amount of fluid out and
then tilt the container back to match the target configuration. We further use the Chamfer distance
to measure the models’ performance in matching the fluid shape in the 3D point space, where our
method significantly outperforms the PID baseline (Ours: 0.048237 vs. PID: 0.085727).

E.4 Nearest Neighbor Search Using the Learned Representations

When the goal image is specified from a viewpoint different from the agent’s view, to ensure the
planning problem defined in Equation 4 still work, it is essential that the distance in the learned feature
space reflects the distance in the actual 3D space, i.e., scenes that are more similar in the real 3D
space should be closer in the learned feature space, even if the visual observations are captured from
different viewpoints. We visualize the nearest neighbor results in Figure 12. Given a query image, we
search its nearest neighbors based on their state representation s (introduced in Section 3.1). Even
if the images look quite different from each other when measured in pixel difference, the learned
3D-aware scene representations can retrieve reasonable neighborhood images that share similar 3D
contents, indicating that the learned 3D-aware scene representations hold a good understanding of
the real 3D scene and are invariant to viewpoint variations.

We conducted additional experiments to quantitatively measure the accuracy in finding the nearest
neighbors (NN) across viewpoints of our proposed method. The results are shown in Table 1.

16



Env Ours NN in pixel space Random

FluidPour 1.772718 147.971993 99.903261
FluidShake 2.584928 132.467998 99.646617

Table 1: Quantitative results on nearest neighbor (NN) search from different viewpoints. We calculate
the accuracy of finding NN using the L1 distance between the ground truth and retrieved time indexes. Our
method measures the distance in the learned representation space, which delivers the best performance, and the
retrieved frame is, on average, around two time steps away from the ground truth.

Specifically, for each query frame, the model is asked to find the closest frame from a randomly
selected viewpoint from a trajectory with 300 frames. We measure the accuracy using the L1 distance
between the time indexes. Randomly selecting the closest frame leads to an averaged distance of
100 times steps between the selected frame and the ground truth frame. Selecting based on the pixel
difference is even worse. Our method can accurately find the nearest neighbor. The average time
step difference between the selected frame and the ground truth frame is 1.772718 in FluidPour and
2.584928 in FluidShake.

F Limitations and Future Works

Similar to many other data-driven methods, our model can deliver reasonable performance in regions
well-supported by the data. However, for cases that our model has never seen before, e.g., more
containers than during training, we wouldn’t expect our model to generalize. Potential solutions may
include (1) adding the examples and increasing the diversity of the training set or (2) using a more
structured/compositional representation space instead of a single vector as in our model, which we
leave for future works.

17


	Introduction
	Related Work
	3D-Aware Representation Learning for Dynamics Modeling
	3D-Aware Scene Representation Learning
	Learning the Predictive Model

	Visuomotor Control
	Online Planning for Closed-Loop Control
	Auto-Decoder for Viewpoint Extrapolation

	Experiments
	Baseline Methods
	Control Results
	Dynamic Prediction and Novel View Synthesis

	Conclusion
	Model Details
	Environment Details
	Training Details
	Control Details
	Additional Experimental Results
	Auto-Decoding Test-Time Optimization for Viewpoint Extrapolation
	Validation of the Dynamics Prediction on Real-World Data
	Comparison With a PID Baseline That Only Matches the Robot’s State
	Nearest Neighbor Search Using the Learned Representations

	Limitations and Future Works

