
Appendix A Proof of Theorem

In this section, we provide the proofs of the theorems in this paper.

Remark. We provide the proofs under a tabular setting. Most continuous space can be approximately
discretized to a tabular form, although the cordiality of the tabular form may be large. We define P⇡

as the tabular transition probabilities under the policy ⇡.

A.1 Proof of Theorem 4.1

In Eqn. 5, The Q-function update can be computed in a tabular setting, by setting the derivative of the
augmented objective in Eqn. 5 with respect to Q to zero,

"
�
d�⇡ � d⇡�⇡

�
+ ↵ (d⇡�⇡ � d⇡�⇡�) + d⇡�⇡�

⇣
Q� BQ̂k

⌘
= 0

Therefore, we can obtain Q̂k+1 in terms of Q̂k by rearranging the terms,
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for all s 2 S , a 2 A and k 2 [0,+1). For the state-action pair (s,a) such that d�(s) < d⇡� (s) and

⇡(a|s) < ⇡�(a|s), the last two terms of Eqn. 8, �"
�
d�(s)� d⇡� (s)

�
⇡(a|s)

d⇡� (s)⇡�(a|s)
� ↵


⇡(a|s)
⇡�(a|s)

� 1

�

is positive, so that we cannot simply lower bound the true Q-function Qk+1(s,a) by the estimated
one Q̂k+1(s,a) point-wise. However, we can prove that the value function, which is the expectation
of the Q-function, can be lower bounded. Taking the expectation of both sides of Eqn. 8 under the
distribution a ⇠ ⇡(a|s), we have
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The first goal is to prove that V̂ k+1  B⇡V̂ k which implies that each iteration introduces some
underestimation, and V̂ k could eventually converge to a fixed point. Therefore, we need to prove the
last two terms on the right hand side of Eqn. 9 is negative. We denote � to be the opposite of the last
two terms on the right hand side of Eqn. 9, then
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From the proof in [1], we know that the second term in Eqn. 10 is non-negative when ↵ > 0, that is
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Hence, when d�(s)� d⇡� (s) � 0, it is obvious that � � 0 for all " > 0. When d�(s)� d⇡� (s) < 0,
if " satisfies
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then we have � � 0.

In summary, we have � � 0 when Eqn. 12 holds. Since the exact Bellman update operator B⇡ is a
contraction [4], we have

||B⇡V̂ k+1 � B⇡V̂ k|| = ||(B⇡V̂ k+1 ��)� (B⇡V̂ k ��)||  �||V̂ k+1 � V̂ k||
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which implies that each value-function update V̂ k+1 = B⇡V̂ k �� is a contraction. According to
the contraction mapping theorem, the recursive update in Eqn. 9 will always lead value function to
converge to a fixed point V̂ ⇡. Now that V ⇡ = B⇡V ⇡ for the true value functions, by subtracting
them from both side of Eqn. 9 and substitute V̂ k+1 and V̂ k with the fixed point V̂ ⇡ , we have
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In Eqn. 13, we stretch all notations to be vectors, which means V̂ ⇡ 2 <|S|, V ⇡ 2 <|S|, and
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Therefore, we can conclude from Eqn. 13 that the estimated value function V̂ ⇡(s) is a lower bound
of the true value-function V ⇡(s) without considering any sampling error. Thus, we finish the proof
of Thm. 4.1.

A.2 Value Lower Bound in Existence of Sampling Errors

We now take sampling error into account. First, we introduce a lemma from [1]:

Lemma A.1 If with high probability � the reward function r(s,a) and the transition function
T (s0|s,a) can be estimated with bounded error, then the sampling error of the empirical Bellman
operator is also bounded:
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where Cr,T,� is a constant related to r, T , and �, and Rmax is the maximum possible reward in the
environment.

Note that the bound of the error
���B̂⇡V (s)� B⇡V (s)

��� in Lemma A.1 only holds for states and actions
in the training datasets, i.e. s,a 2 D. We have no reward or transition pair collected at unseen states
or actions outside the training dataset, so it is impossible to bound the error outside the training
dataset when consider the sampling error introduced by the reward function and the transition function.
Therefore, we can lower bound the true value function by the learned value function at states and
actions in the training datasets as in the following corollary.

Corollary A.1 When the sampling error defined in Lemma A.1, for any state and any action in the
training dataset, s,a 2 D, the learned value function via Eqn. 5 is a lower bound of the true one, i.e.,
V̂ ⇡(s)  V ⇡(s), if the trade-off factor " and ↵ satisfy the constraints

"  ↵min
s2D

 
X

a

⇡(a|s)

⇡(a|s)
⇡�(a|s)

� 1

�! ��d�(s)� d⇡� (s)
��

d⇡� (s)

X

a

⇡2(a|s)
⇡�(a|s)

!�1

↵ � max
s,a2D

Cr,T,�Rmax

(1� �)
p
|D(s,a)|

· max
s,a2D

 
X

a

⇡(a|s)

⇡(a|s)
⇡�(a|s)

� 1

�!�1

.

(16)

12



We now show the proof of Corollary A.1. From Eqn. 13, we can directly bound the estimated value
function for any s,a 2 D by
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when " and ↵ satisfy the constraints in Eqn. 16. Note that in Eqn. 17, we use vector notations similar
to those in Eqn. 13.

Therefore, when we consider sampling error introduced by the reward function and the transition
pair, the learned value function by PessORL still lower bounds the true one for any states and actions
in the training dataset. Thus, we finish the proof of Corollary A.1.

A.3 Proof of Theorem 4.2

We begin the proof from Eqn. 9. We first take the expectation of both side of Eqn. 9 under the
distribution d�, then
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Similarly, we take the expectation of both side of Eqn. 9 under the distribution d⇡� , then we have
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If we subtract Eqn. 19 from Eqn. 18, we get
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A.4 Existence of Feasible Trade-off Factor

Note that both Eqn. 21 and Eqn. 16 put constraints on the trade-off factor ". We show that we
can choose an appropriate value of ↵ to ensure that a feasible " that satisfies both constraints exist.
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Formally, we denote
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for simplicity. From Eqn. 16 and 21, we have

(X � ↵Y )Z�1  "  ↵W
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Appendix B Implementation Details of the Algorithm

The implementation of our algorithm is based on the original implementation of CQL: https://
github.com/aviralkumar2907/CQL. We first train a bag of dynamics models {P1,P2, . . . ,Pn},
and then train the Q-network and policy network. When we train the Q-network and policy network,
the uncertainty estimation model u⇡(s) is induced by the pre-trained dynamics models. We found
in the experiments that a fixed trade-off factor " would cause the learned value function to be too
conservative and hence the learned policy to fail, so we choose to use a varying " which is adjusted
by dual gradient-descent. Following the implementation of CQL, we introduce a “budget” parameter
⌧ to automatically control " as below:
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From Eqn. 24, we can see that if the discrepancy between values is less than ⌧ , then " will be set
to zero. When the discrepancy is larger than the threshold ⌧ , " will be increased to a large value to
penalize harder on the value function. This automatic mechanism ensures a reasonable choice of ",
and reduce the tedious procedure to tune the hyperparameter ". In the Gym MuJoCo domain, we
choose ⌧ = 0.0 for the Hopper environment, and ⌧ = 10.0 for the Walker2d, Halfcheetah and Ant
environment. In the Adroit domain, we choose ⌧ = 20.0 for all four environments.

For the dynamics models learning part, we follow the convention in model-based reinforcement
learning domain, and adopt a four layers MLP with a size of 400 each. We choose to train five
bootstrap models and collect them in a bag to estimate uncertainty later in the policy evaluation and
improvement steps. Each dynamic model is a Gaussian model which outputs the mean and the logstd
of the next state deviation. When we train the models, we iterate through all training data for 10
epochs with a learning rate of 1e� 4 and a batch size of 256.

For the Q-function learning part of the algorithm, we inherit the twin Q-function trick and soft target
updates from the original SAC implementation on D4RL tasks. The Q-functions are optimized by
Adam with a batch size of 256, and the learning rate is chosen to be 3e� 4 across the environments.
We design the Q-functions to have three layers with a size of 256 each. When we evaluate the
logsumexp term in Eqn. 24, we need to sample states from the state space. However, the state
space is unbounded on the gym domain and Adroit domain, so we set the sample range to be
[µ� 10 ⇤ �, µ+ 10 ⇤ �], where µ and � are the mean and the standard deviation of the current batch
sampled from the training dataset.

For the policy learning part of the algorithm, we do not need an explicit policy network to model
the policy, but just an implicit argmax policy in discrete settings such as Pointmass environment. In
continuous settings on the Gym and the Adroit domain, we adopt a Tanh-Gaussian policy structure
by the rlkit repository: https://github.com/vitchyr/rlkit. Since the action spaces in these
domains are all bounded by �1 and 1, the Tanh-Gaussian policy can capture this constraint naturally.
The policy network is designed to have three layers with a size of 256 each. The policy network is
also optimized by Adam with a batch size of 256, with a learning rate of 3e� 4 for the Pointmass
and the Gym domain, and 3e� 5 for the Adroit domain.
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Appendix C Ablation Studies

C.1 What if d�(s) is induced by a uniform distribution?

In Sec. 5, we introduced a practical method to construct d�(s). Alternatively, we may simply set ⇣(s)
as a uniform distribution, which also satisfies our requirement and leads to d�(s) / exp

⇣
V ⇡̂k

(s)
⌘

.

A uniform distribution could be more convenient if it is time consuming to construct d�(s) from data.
Formally, if we choose d�(s) / exp

⇣
V ⇡̂k

(s)
⌘

which is induced by a uniform distribution, then the
practical PessORL policy evaluation step becomes:
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We name this variant of PessORL as PessORL-uniform. We evaluate the variant PessORL-uniform on
two D4RL MuJoCo environments, and compare its performance to the original PessORL algorithm,
CQL, BEAR, and BC based on the average returns over three random seeds. In Fig. 3, we show the
learning curves and the value gap �k in hopper-medium-v0 and walker2d-medium-v0. The value
gap �k = maxs2S [V (s)] � Es⇠D[V (s)] follows the same definition in Sec. 6.2, which evaluates
whether a method can assign high values at the states in the training data and low values at the
out-of-distribution states.

In Fig. 3(a) and (c), we can see that the average return of PessORL-uniform is lower than those of
CQL and PessORL. Fig. 3(b) and (d) show that the value function learned by PessORL-uniform
is either not pessimistic enough or too pessimistic, causing the average return to be lower than the
other two rivals. We believe the reason is that a uniform distribution in PessORL-uniform does not
discriminate between OOD states and in-distribution states, so the objective function in Eqn. 25
works differently from the original one in PessORL. Eqn. 25 increases the values at in-distribution
states, instead of penalizing the values at OOD states as before. This mechanism cannot guarantee an
accurate penalization on most OOD states, so we observe different gaps �k in different environments.

In conclusion, constructing d�(s) via a uniform distribution leads to worse performance, but it could
be a cheap alternative in terms of computational cost.

C.2 What if an uncertainty term is directly subtracted from the learned Q-function?

In Sec. 1 and Sec. 3.2, we discussed two main categories of method to obtain pessimistic value
functions. Besides adding a regularization term in policy evaluation step as in the proposed PessORL,
we can also improve the policy by a pessimistic estimate of Q-function. This pessimistic Q-function
can be obtained by directly subtracting an uncertainty term from the learned value function, i.e.,
Q̂c

✓(s,a) = Q̂k
✓(s,a) � �Unc(s,a), where we use the superscript c to denote a conservative Q-

function, and � is a trade-off factor that makes the scale of the Q-function and the uncertainty term
comparable. In this section, we first introduce two variants of the proposed PessORL algorithm,
named PessORL-unc and PessORL-OPIQ, in which we used the aforementioned pessimistic Q-
function to improve the policy. Then we compare the variants PessORL-unc and PessORL-OPIQ to

Figure 3: (a) and (c): The learning curves in hopper-medium-v0 and walker2d-medium-v0, respec-
tively. (b) and (d): The value gap �k in hopper-medium-v0 and walker2d-medium-v0, respectively.
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the original PessORL, and discuss why we choose to obtain a pessimistic Q-function via adding a
regularization term in policy evaluation step instead of directly subtracting an uncertainty term from
the original learned value function.

We first introduce a variant of our algorithm, named PessORL-unc, in which the additional regular-
ization term in the original PessORL policy evaluation step is removed. The policy evaluation step in
PessORL-unc then becomes as follows:

min
Q

E(Q, B̂⇡Q̂k
✓) + C(Q). (26)

Actually, Eqn. 26 is the same as the policy evaluation step in CQL. In the ablation studies, we use
this optimization problem to learn a Q-function first, and then we directly subtract an uncertainty
term from the learned Q-function to get the final Conservative Q-function to be used in the policy
improvement step:

⇡̂k+1  argmax
⇡

Es⇠S,a⇠⇡(a|s)

h
Q̂k+1

✓ (s,a)� �Unc(s,a)
i
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where the uncertainty term Unc(s,a) is similar to the one in the original PessORL, but
we no longer take the expectation over the action. Therefore, it becomes Unc(s,a) =
1
n

Pn
i=1

⇣
f̂�i(s,a)� f̄�(s,a)

⌘2
. This term evaluates the uncertainty of the dynamics model about

a state-action pair. If the sampled state is not in the training dataset, the uncertainty about it will
be larger than those in the training data. Therefore, the Q-function is constrained to be lower at
out-of-distribution states in this way.

Second, we introduce the variant PessORL-OPIQ. It is inspired by the work in [5], which uses a pes-
simistic initialization and an optimistic component on the Q-function. Since in the offline settings we
need a pessimistic component in the Q-function, we set the PessORL-OPIQ uncertainty term Unc(s,a)

to be the opposite of the optimistic component in OPIQ, i.e., Unc(s,a) = � Caction

(N(s,a) + 1)M
, where

Caction and M are hyperparameters in OPIQ, and N(s,a) is the pseudo count of the state-action pair
(s,a). Here, we use the continuous version of the OPIQ to obtain state-action counts. We adopt the
pessimistic initialization from the OPIQ and update the Q function via similar policy evaluation step
in Eqn. 26, but with an PessORL-OPIQ uncertainty term.

We evaluate the variants PessORL-unc and PessORL-OPIQ on two D4RL MuJoCo environments,
and compare their performance to the original algorithm PessORL, CQL, BEAR, and BC based
on the average returns on three random seeds. From Fig. 3(a) and (c), we can see that the variants
PessORL-unc and PessORL-OPIQ both converge to similar returns which are lower than CQL and
the original PessORL. Actually, the performance of these two variants are close to each other. We
believe the reason is that they both require a super accurate uncertainty estimation and a stringent
trade-off factor �. A rough uncertainty estimation may sometimes be harmful to the performance.
As we discussed in Sec. 6.2, our uncertainty estimation method based on bootstrapped dynamics
models still cannot guarantee an extremely precise estimation. Therefore, directly subtracting the
uncertainty term from the learned Q-function to obtain a conservative Q-function may cause the
algorithm to perform poorly. On the other side, the original PessORL mitigates the requirement of
an accurate uncertainty estimation method because of the additional regularization term in Eqn. 7.
We also noticed that PessORL-unc and PessORL-OPIQ still outperform the BEAR algorithm. The
reason is that we implement PessORL-unc and PessORL-OPIQ on top of CQL, which is a strong
offline RL method, so we can attribute most of their good performance to CQL.

From Fig. 3(b) and (d), we can see that PessORL-unc maintains a value gap that is among the highest.
PessORL-OPIQ is not pessimistic enough as shown in Fig. 3(b), but is too pessimistic as shown in
Fig. 3(d). This indicates that they cannot effectively control the gap and thus cannot assign lower
values to out-of-distribution states. The original PessORL algorithm can successfully maintain a
value gap that is close to zero, indicating that it shape the value function to be the desired shape.

17



Appendix D Generalization to Real Robots

Figure 4: Screen shots of Adroit tasks. (a) Door;
(b) Relocate; (c) Pen; (d) Hammer.

Although the Adroit environments are robotic
manipulation simulations, they are considered
to be complex enough so that the performance
of an offline RL method on these tasks can be
viewed as a strong evidence of how the perfor-
mance will be on real robots. There are actu-
ally prior works [2] that use Adroit environ-
ments to demonstrate the ability of RL algo-
rithms to adapt to complex tasks. The Adroit
environments, as shown in Fig. 4, contains four
challenging dexterous robot manipulation tasks,
which include controlling a 24-DoF simulated
manipulator to twirl a pen, open a door, ham-
mer a nail, and relocate a ball. The simulator of
Adroit environments provides carefully modeled
kinematics, dynamics, and sensing details of the
physical hardware to encourage physical realism.
The observations contain joint angles, position
and orientations of the hand, the object and the
target. The actions include the desired position
of hand joints. These are all considered to be
highly realistic. Therefore, the performance of
our proposed PessORL on the Adroit domain
compared to other offline RL methods can indi-
cate a good evidence of how it will behave when transferred to real robots.

Besides, our proposed method PessORL matches the simulation results of prior methods that have
been demonstrated to work on real robots. Singh et al. [3] showed that CQL can chain behaviors
from data and the learned policy can work on a real robot WidowX. From Fig. 1, Fig. 2, and Tab. 1,
we can see that PessORL achieves similar or higher performances on all three domains. Therefore,
we believe our proposed method should not be too hard to achieve good performance on real robots.

Furthermore, a big advantage of offline reinforcement learning methods is that unlike online RL
methods, they are designed to learn policies from pure data and then can be deployed to real robots.
Learning directly from previously collected data can dramatically reduce the safety risk in the learning
process in safe-critical tasks, such as robotic manipulation and autonomous driving. Actually, it can
be a major block for online reinforcement learning to be deployed on real-world scenarios, because
online interaction can be impractical in many settings. We show the performance of our proposed
PessORL algorithm learned from human demonstrations in Sec. 6. These experiments align with the
motivation of developing offline reinforcement learning methods, and we believe they can provide a
good evidence of the transfer-ability of our method to real-robots.
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