Supplementary Document

1 Local Scene Graph Prediction Network

For scene graph generation, we resort to the semantic point cloud information to build the scene
graph. To get 3D semantic point cloud, the RGB frame is fed into the Mask RCNN model to get
the instance segmentation of each pixel in the frame. The segmentation result is then aligned with
the corresponding depth image and the 3D semantic point cloud can be obtained. For each time step
t, the local scene graph prediction network based on current semantic point cloud is proposed to
generate a local semantic scene graph (LSSG). Specifically, the network consists of two point nets
and a graph convolutional network. The generated LSSG includes the current in-sight objects and
their relations with each other.

Specifically, the obtained semantic point cloud includes the point cloud and category information of
the current observed instances. The goal of the local scene graph prediction network (LSGPN) is to
generate a scene graph G = (N, R), which describes the object nodes (V) in the scene as well as
their relation edges (R). The architecture of the proposed LSGPN is shown in Fig.1. The network
consists of three modules, namely embedding module, GCN module and predicting module. The
embedding module consists of two PointNet and two MLPs, aiming at extracting features for every
node and edge. For a scene s, we use the point cloud (P;) of every instance i as the input to encode
the node, and the merged point cloud (£;;) of instance i and j as the input to encode the edge between
instance i and j.

Py =A{prlpe € (PiUP))}_y p) (D

where P represents the entire point cloud of the scene, |P| represents the size of P. The output
vector from the PointNet would be sent into the corresponding MLP to get the features representing
the nodes and edges respectively. It is noted that we have the number of relationships between each
pair of object categories in advance from the ground truth scene graph, and a 3-dimensional tensor
R x N x N is obtained, where R is the number of the relation types and N is the number of the object
categories. Each tuple (7,4, j) corresponds to the number of type r relationship edge that connects
from category ¢ to j. We consider that there might be an edge between two instances of category
and j only if (rx,4,7) > 0,Vk € {1,2,---, R}, which demonstrates that the categories of the two
instances could have relations in some scenes. These possible edges help to build the proposals of
the scene graph and each proposal contains the category information of the two instance, and the
merged point cloud of the two instances.

We employ the GCN module to process the instances and proposed edges. We arrange the extracted
features in triples as (subject, predicate, object), where ¢,, occupy subject / object units, and edge
features ¢, occupy the predicate units. Each convolutional layer consists of two MLPs and propa-
gates the graph features in two steps. The first step projects each triple for information propagation,
and at the second step the features of neighbors are averaged as the new feature for each node.

At the predicting module, features for each node and edge are fed into two MLPs respectively to
predict the category of the node and the relation type of the edge. Note that since there are always
more proposed edges than actual existing edges, we add none into the relation types.

Since the complexity of the detected instances varies with the agent changing its position, we want
the GCN to allow flexibility in the input number of instances and proposals. Each convolutional
layer [of GCN consists of two MLPs and propagate the graph features in two steps. First, each
triple, which contains two object and one proposed edge, is fed into MLP f1(-)

l l l l l l
@0, 0w = e, 6 6")

where ¢ represents the intermediate variables of the triple, s indicates the subject instance, o in-
dicates the object instance. Second, for each node, we aggregate the signals coming from all the

Embedding Module GCN Module

i Proposed Dense Graph Local Scene Grapl
ObjPointNet | &= o\

Toilet

Semantic Point Cloud

Toilet Paper
Category
embedding

Rel PointNet

Figure 1: The architecture for the local scene graph prediction network (LSGPN).

connecting edges of the node (either as a subject or an object) together, compute the average value

o _ 1 o N 3
= e 5 e T o

JERS JER,

where | - | denotes cardinality and R, and R, are the set of the connecting edges in which node i is
severed as subject and object respectively. The result is fed into another MLP f2(-) to generate the
final representation for node ¢

of T = 12" (4)
The output features for each node and proposed edge are then propagated by the next convolutional
layer [4+ 1 in the same fashion. After processed by each layer, the feature of a node propagates
to a further neighbour level. Hence, the visibility of the output feature for each node and edge is
proportional to the depth of GCN.

At the predicting module, in order to let the network capture the semantic relations between each
object and preserve the category and localization information of the objects at the same time, the
feature vector for each node is fed into two fully connected layers respectively to predict the category
and bounding box of the node, and the feature vector for each edge is fed into a fully connected layer
to predict the relation type of the edge. Note that since there are always more proposed edges than
actual existing edges, we add none into the relation types.

We train our model in an end-to-end manner, optimizing an object classification loss L ; as well as
a relation classification loss L,.;

L=)\obj‘cobj +)\bboxﬁbbox + Erel (5)

where Aop; and Ao, are weighting factors. Although the input instance point clouds already have
labels and the classification accuracy of Mask RCNN is significantly higher than LSGPN, we believe
that the model should still pay attention on objects and relationships to extract more informative
features from the point clouds and obtain a better representation of the entire scene graph. Since our
relation space mainly focuses on spatial relations, the relation number between two instances is at
most 1. To deal with class imbalance, we use the weighted cross entropy loss for object category
and relation type classification. The output edges (none type excluded) and the subject and object
instances together can compose a local scene graph which contains the observed instances and their
relations with each other. In practice, the GCN consists of 5 convolutional layers, Aqp; is set to 0.5
and Appo. 1S set to 0.02, and we calculate the weights for each object category and relation type by
an effective sample number based re-weighting method, where S,; is set to 0.99 and f3,; is set to
0.99995. We traverse all the viewpoints in each scene and ask LSGPN to predict the corresponding
local semantic scene graph in one epoch, and eventually train 100 epochs. We use SGD optimizer
with a learning rate of 1073,

2 Global Scene Graph Generation

At each time step, the agent takes an action to move, then the equipped camera would capture the
RGB and depth frames of scene to construct the local scene graph, which is further used to be
merged into the global scene graph. During this period, the alignment between the detected objects

in the local scene graph and the existing objects in the previous global scene graph is extremely
important.

Different from the multi-view consistency considered in other 3D scene graph construction works
that have the multi-view visual information known in advance, in this work, we do not have any
prior information about the concerned scene and the information of each object is incrementally
collected and updated. Considering this situation, we propose a point cloud based weighted voting
mechanism which utilizes the number of the pixels in the point cloud to measure the confidence of
the object category. In practice, for each detected object, we maintain a score distribution across the
predefined classes, the score is incrementally accumulated by the weighted value of the confidence
provided by the detector and the size of the acquired point cloud.

G Frame Local Scane Graph
E i — z - Node Operations Edge Operations
g | N : ® ®) S
g Dept Fame ——— o\ S e O \
e — &f @S (a.
g ‘ \ ® “~o0 =0
| \

upoATE . ao0 \ &

L e \ / oA / / oA /
° E—— ’ /
: @ 8 ¥—9 ,~ % Yo
g N\ Lm mmmm v 0\ /)
a - /) G
e . e \/ NG / nce v / Repuace /
3 de L Al £ - &

; 0O- ntpining - @)) -

Figure 2: The illustration of updating nodes and edges in the global scene graph. Left: the align-
ments between objects of local scene graph and global scene graph. Right: the representative
operations on nodes and edges. The change of color indicates the corresponding operation.

Then, we align the object point cloud with the nodes in global scene graph by computing the fraction
of point cloud in the object point cloud that is inside the node’s 3D bounding box. We calculate this
fraction between each object point cloud and the node in the global scene graph. If the highest
fraction of object point cloud and the corresponding node is higher than the preset threshold and
this fraction is higher than those with other objects, the object and the node is considered aligned.
This bidirectional alignment procedure could ensure that each aligned object and the corresponding
node are in one-to-one correspondence. Fig.2 demonstrates the alignment process. Based on the
aligning result for each object and the weighted voting mechanism, we could align the nodes and
edges in the obtained Local Semantic Scene Graph(LSSG) with those in the Global Semantic Scene
Graph(GSSG). Based on the aligning result for each object and the weighted voting mechanism, we
take a two-step method to merge the obtained Local Semantic Scene Graph(LSSG) into the Global
Semantic Scene Graph(GSSG).

Firstly, we update the nodes using the following three operations, as shown in the left panel in right
half of Fig.2.

1. ADD If the detected object in LSSG has not aligned with any existing node in GSSG, we
consider it as a newly appeared object and add it to the GSSG. The attribution of this node
is initialized with the detected object.

2. UPDATE If the detected object in the LSSG aligns with an existing node in the GSSG, and
the predicted category of this object is the same with the node, we update the attribution of
this node and merge the object point cloud with the point cloud of the node.

3. REPLACE If the detected object in the LSSG aligns with an existing node in the GSSG,
but the predicted category of the object is different with this node, we update the category
of the node, delete its relation edges with other nodes and merge the point cloud at the
viewpoints with the same detected class.

Based on the node updating result, we could perform the following three operations for the corre-
sponding edges, as shown in the right panel in right half of Fig.2.

1. ADD If there is no edge between both nodes in the GSSG, we add the corresponding edge
to it with the predicted relation type and the corresponding confidence.

2. UPDATE If the edge in the LSSG has the same relation type with the aligned edge in the
GSSG, we update the confidence value of the edge with the one obtained in the LSSG.

3. REPLACE If the edge in the LSSG has different relation type with the aligned edge in the
GSSG, we replace the edge in GSSG with one in the LSSG.

The above procedure coarsely describes the updating for the global semantic scene graph.

3 Scene Graph Encoder Implementation Details

We implement an attention-based encoder to encode a local semantic scene graph into a vector.
Specifically, denote the embedding vectors of node and edge output from the last graph convolutional
layer of LSGPN as X, = {Zo,, %0y, "+ s Toy, } and X, = {&y,, &y, , Tpy }, where M and N
represents the number of object nodes and relation edges respectively. The attention module for
node vectors in local semantic scene graph is defined as:

M exp(wlx,,)
P T e

where w, the learnable weight vector for the node vectors. Similarly, the attention module for edge
vectors is:
exp(wlz,,)

N
fr=) apxrion, =5 @)
; > on exp(wi Tr,)

The final representation of the local semantic scene graph is the concatenation of the weighted sum
vector of nodes and edges: f; = [fo, f+]-

For the global semantic scene graph, we calculate the average vectors of the nodes and edges in
global semantic scene graph respectively and combine them as the embedding of then global se-
mantic scene graph. Specifically, since the point cloud for each node is becoming more complete
with the agent exploring the scene, the vectors of each node and edge in local semantic scene graph
generated at the later steps are more accurate, for the aligned node and edges, we maintain its mov-
ing average of embedding vector: gssg_vec = a - gssg_vec+ (1 — a) - lssg_vec, where « is set to
0.1 in practice.

4 Navigation Model Implementation Details

4.1 Imitation Learning

The goal of imitation learning for sequential prediction problem is to train the agent to mimic the
expert’s behaviors. In our case, to develop the imitation learning algorithm, the essential problem
is to generate some demonstration paths for the agent to imitate. In this work, we adopt a two-
stage method to deal with this problem. In the first stage, we try to obtain the waypoint set and in
the second stage, we perform the interpotation between way-points to get the whole demonstration
path. To evaluate the way-points, we first count the visible object at each viewpoint, and select the
closest next way-point that has the most number of unseen new objects, which can be expressed as:

v* = argmax new_object_num(v)

vEO(ve,k*)

where O(v,, k) represents the feasible viewpoints that are k steps away from current viewpoint v,
k* is the minimal value for k£ which guarantees

Z new_object_num(v) > 0,
vEO (ve,k)
and the way-point set can be updated as YW = W U {v*}. The above procedure is repeated until

a maximum distance is achieved. In the second step, we implement a beam search over the key
point sequence for interpolation aiming at observing the detected objects from as many viewpoints

as possible. With the obtained demonstration paths, we use the negative log likelihood loss to train
our agent.

The loss function is defined as follows
K Ty
Egz——ZZInge Q| Sk,0, k,05 Sk,1, G157 Bkt) (®)
k=1t=1
where K is the number of demonstration paths used for training in one batch, 7}, is the length of the
k-th path, 35, ; and ay, ; are the annotated input visual state and action, and 6 denotes the parameter
of the exploration policy 7. The process of minimizing £y equals to maximize the probability of the
demonstration paths’ action sequence based on the annotated inputs.

Initial

Viewpoint Step 8 ﬁ [Step 13
N0 1 N mo 7
Max Num 0 Step += K
> Connnue Enumerahng
K=3:
Nowabiocts [—
N m2

Way Point List

Fulfilled Track

m
Enumerate Distance K

Obsenvaton

b E

Figure 3: An illustration of the demonstration path generation.

4.2 Reinforcement Learning

After pre-training the exploration model with imitation learning, we then try to further improve its
performance using the REINFORCE algorithm. The key to the reinforcement learning is the design
of the reward function.

Since our task aims at formulating a scene graph for the entire scene, we directly measure the
similarity between the generated scene graph and ground truth one, which can be obtained from the
ground truth information about the object and the relationships. Given a global scene graph GSSG
which is constructed from one path, the similarity score can then be calculated as a weighted sum of
the precision and recall rate of the nodes and edges:

Szm(gSSg) = /\node(Rnode +)\anode) + Redge + /\pPedge (9)

where P,,4. and P44 are the precision of the nodes and edges, respectively, while o4, and
Reqge are the recall rate of the nodes and edges, respectively.

On the other hand, we hope to encourage the observation diversity when constructing the scene
graph. The diversity can be characterized as the number of observation viewpoints of the detected
objects. Concretely speaking, given a global scene graph GSSG which is constructed from one path,
we use O to denote the set of the detected objects and calculate the diversity as

Div(GSSG) = Z num_viewpoints(o) (10)
0€0
where num_viewpoints(o) is the number of the viewpoints about the detected object instance o.
Therefore we may formulate the score at time instant ¢ as
pr = Sim(GSSG) + A\gDiv(GSSG) — pt. (11)

where the third term is used to penally the length of the path, and)y, p are the corresponding
weighting parameters. In practice, we set Ay,oqe = 0.1, A, = 0.5, and Ay = p = 0.001.

According to the above definition, the immediate reward is designed to be the increment of the score
r(s¢, ar) = pr — pr—1 and the cumulative reward can be computed as

R(s¢,ar) =7(se,ar) Z 7 (s, ap), (12)
t'=t+1

where R(s;, a;) represents the expected accumulated reward when agent takes action a; at state sy,
the discount parameter vy is set to 0.99, and T is the length of the action and state sequence with
upper bound of 40 steps, and we use SGD optimizer with a learning rate of 10~%.

5 Dataset Generation Details

To validate the performance of the Embodied Semantic Scene Graph Generation framework, we gen-
erate a new dataset with the AI2THOR, which contains 120 scenes (including 30 kitchens, 30 living
rooms, 30 bedrooms and 30 bathrooms). Utilizing the object attribute information of AI2THOR, we
divide the objects into two groups: Group A corresponds to larger objects which are always sitting
on the floor or hanging on the wall. Group B corresponds to smaller objects which have to be placed
on the object in Group A. We extract 16 semantic relationships (support, support by, standing on,
sitting on, lying on, has on top, above, below, close by, embedded on, hanging on, pasting on, part
of, fixed on, connect with, attach on), which can be clustered into the following seven categories.

1. Support Relationship: For the support relationship, we consider Group A, where one
object is placed on the other one. For example, we have floor supports desk denoted as
(floor; support, desk) or {desk, supported by, floor) in the scene graph. Since the point
cloud of the object is noisy and incomplete, it is very challenging to extract the support
relationship automatically. To this end, we calculate the 3D bounding boxes for each in-
stance in the scene and project them into the XY plain. And then we look for situation
where the projection of one object is completely inside the projection of another object
staying below it. Also, the distance between the 3D bounding box of the two objects is less
than Smm. We additionally take a manual verification to eliminate wrong prediction and
add missing support relationships. It is noted that we consider floor, ceiling and walls as
inherent objects of each scene and they do not need any supporter.

2. Placement Relationship: Placement relationship is similar to support relationship. The
main difference is that placement relationship defines the relationship between one object in
Group A and one in Group B. We use the same rule to find the two objects. When a place re-
lationship is found, we add two-way edges between the two objects (e.g. (book, on, desk,)
and (desk, has on top, book,)). To enrich the semantic diversity of the relations, we subdi-
vide this on relation into three subclass: standing on, sitting on and lying on. We utilize the
material of the Group B object and the category of Group A object to determine the subclass
of relation on. For example, the metal statues and ceramic vases are standing on desks and
shelves, the sponge pillows and teddy bears are always lying on sofas and beds. We design
a table to determine the subclass of the placement relationships with prior knowledge.

3. Hanging Relationship: Hanging relationship is another kind of support relationship that
does not accord with the support relation rule. For example, a mirror hanging on the wall.
For hanging relationship, we collect the set of hangable objects and make a priority table
to find their supporter. We subdivided hanging relation into four subclasses: hanging on,
pasting on, fixed on and embed on. Based on prior knowledge and object category, we
design a mapping table to determine the subclass of the hanging relationships.

4. Position Relationship: Since the agent moves and rotates during the exploration, the rela-
tive 2D relations like left, right, in front and behind may change over the time. Therefore,
we preserve the above, below relations, which are relatively fixed. Meanwhile, we calcu-
late the distances between the 3D bounding boxes of objects with the same supporter and
add two-way close by edges for the two objects if their distance is short enough.

5. Connecting Relationship: Connecting relationship describes the interconnections be-
tween the same objects. This relation focuses on illustrating the relation between the adja-
cent cabinet units or shelf units.

6. Attachment Relationship: Attachment relationship refers to the relation between the at-
tachment and the main part. For example, faucet is an attachment of sink, stove burner knob
is an attachment of stove burner. We use the (attachment, attach on, main part) triples to
illustrate this relationship.

7. Component Relationship: Component relationship aims at describing the relation be-
tween component parts and their corresponding main parts. For example, drawer could be

a component of counter top or desk. We use a the (drawer, part of, counter top) triple to
depict this relationship.

To generate the ground-truth, we divide each scene into rectangle grids with a length of 0.25m and
visit 8 angles with 45° interval at each grid vertex to collect the point cloud for each instance to
generate the ground truth scene graph. For each scene category, we use 26 scenes for training, 2 for
evaluation and 2 for test, which is 104 training scenes, 8 evaluation scenes and 8 testing scenes in
total. Specifically, we select about 25 starting viewpoints (one-sixteenth of the total viewpoints) in
each scene for evaluation and testing.

Frame 1 LSSG, Frame 2 LSSG, Frame 5 LSSG; Frame 7 LSSG;, Frame 15 LSSG,5
I, — o e 2e el — :g _.e'=e
s “ s oo e. oo o° I . @
3 bt ° ° e ©
N o
5 - @ ° o, ° °,
S = = s E - - r e
)] [)
® 0 20 o, 0" ol g Veta oA
0% co 8 o559 o o Setes s
— / \6‘ e 9;5. Py o [ole . o %o g %vee
o o - \ < ° /
i“: e © (-} eg-©0 g - © & PRSI) L o —°
s =
£ ® © Q@ o :
S /| X [(] © o
oL O/ I 2 e ®
i 00 i g% ®
[/ e e 3 S\ |
= - ® °
e —© ° S
& e °
e e

Video Caption

This is a kitchen with a counter
top with three cabinet units. There
is a dish sponge lying on top of
the counter top. A microwave is
sitting on the counter top. The
counter top has a stove burner
and a pan on top. There is a sink
supported by the counter top.

Next
Action

Figure 4: A representative result for our embodied semantic scene graph generation framework.

6 Qualitative Analysis on Streaming Video Captioning

We adopt a Scene Graph based Captioning method to generate caption from streaming video. Con-
cretely speaking, this method generates an image caption for each key frame using a seg2seq model
which is widely used in image captioning tasks. Then it utilizes yolo to detect the appeared objects
at the frame and aligns them with the object phrases extracted from the image captions. If all the
object phrases could be aligned with the detected objects, we consider the caption could depict the
semantic relations of the appeared objects well and add it as a subsentence of the video caption and
the corresponding nodes are marked as visited.

Since the adopted captions at different key frames are isolated with each other, we resort to the
current global semantic scene graph to integrated all the previous frame captions. To this end, we
conduct a BFS from the visited object nodes to find the shortest paths to the unvisited nodes. With
the found subgraph of the global semantic scene graph, a template is designed to describe the triples
of the subgraph and further generate captions that could describe the unvisited nodes. In this way,
the captions between each frames are connected. For the last step, the method traverses the global
scene graph and generates template-based sentences for all the unvisited nodes which are missed by
the image captioning model. And the final video caption is generated.

Fig.4 shows the representative trajectory generated by the final navigation model trained with
LSSG 4+ GSSG method. The agent takes 14 steps to explore the scene. From the vertical di-
rection of the figure we can clearly see the updating process of nodes and edges of GSSG. We
can see that categories of the nodes in the generated global scene graph are rather accurate, which
demonstrates that the proposed weighted voting mechanism can effectively solves the imperfection
of Mask RCNN. However, there is one error in this example where the Mask RCNN mistakenly
detects an L-shaped counter top as two counter tops. However, this is not a common situation and
it is hard to be fixed. The horizontal direction of Fig.4 exhibits the dynamic updating process of
the global scene graph, which includes ADD, UPDATE and REPLACE operations over nodes and

Random

Frame 2 GSSG, Frame 3 GSSG; Frame 8 GSSGg
\F - \
° oo ©
° o, °e org-®
| o -2 e -9 e
. NS P c i ~e
- & °

This is a room with a desk. There is
a laptop and a book sitting on top
of the desk. Below the desk there
are two shelves. A window is
embedded on the wall. In the room
there is also a blinds and a baseball.

This is a room with a desk. There is a
laptop and a book sitting on top of
the desk. Below the desk there are
two shelves. A window is embedded
on the wall. In the room there is also
a blinds and a baseball.

This is a room with two windows. A
light switch is embedded on the wall.
Below the two windows there is a desk.
There is a laptop and a book sitting on
top of the desk. Below the desk there
are two shelves. In the room there is
also a blinds, a shelf and a baseball.

F 1 Ours
Frame 2 GSSG, Frame 3 GSSG. Frame 8 GSSGg
3
=
= ° [oe-o i ! ° o,
® °® - -9 © LIC I
T E °® = ° e
= | i] § o 2 ° e e
- °-¢ o-eo [o /% o
This is a bedroom with a bed. Besides the This is a bedroom with two side tables. Each side This s a bedroom with two side tables. Each side
i table has a drawer unit. There is an alarm clock table has a drawer unit. There is an alarm clock and a

bed there is a side table with a drawer
unit. An alarm clock i

standing on top of the first side table. A desk
lamp is standing on top of the second side table.

cell phone standing on top of the first side table. A
desk lamp is standing on top of the second side table.

the side table. There is a painting hanging Next o the two side tables there is a bed with a N (0 (o sl abes there e with a pilon.
on the wall. A window is embedded on pillow on top. There is a painting hanging on the v tow windows enbecded on the mall. Below the
the wall, close by the painting. In the wall. There is a window embedded on the wall. In second window there is a desk with a laptop on top.
room there is also a blinds. the room there is also a blind. In the room there are also two blinds and two shelves.

From the above comparison between Random and our proposed method with the same starting viewpoint, we can
intuitively find the performance gap. Since Random method chooses to stop at frame 8, we demonstrate the generated
captions at frame 2, 3, and 8 of both methods for fairness purpose. Random method detects few objects from the
scene and generates a semantically poor caption while our proposed framework extracts comprehensive objects and
diverse semantic information from the scene, which reveals a more informative and accurate caption.

Figure 5: A qualitative comparison between Random and our LS SG+GS SG mehtod. We can see
from the constructed global semantic scene graph and generated video caption that our methed cap-
tures much informative information from the scene and thus obtain a more comprehensive caption.

edges. With the local scene graphs generated at each step, the global scene graph is incrementally
constructed and contains more and more semantic information.

We also find the steps where an node is added and its corresponding relationship is added are dif-
ferent (e.g the lettuce in Fig.4). This phenomenon well illustrates the gap between detecting the
object and extracting the semantic relations of the object in the scene. With the learned navigation
policy, the agent first explores area where the objects are placed on the counter top and the lettuce
is detected at frame 2, while no relationship is detected at this time. And then the navigation policy
guides the agent to explore nearby areas, and other small objects placed on the counter top can be
detected. For further exploration, the policy guides the agent to move away from current viewpoint
and an overall view of the counter top is captured, which corresponds to frame 7. At the same time,
the relation between lettuce and counter top is finally extracted from the visual input and added to
the global scene graph. In this example, we can see that the white dining table is also detected in
the first several steps. With the learned policy, the agent is able to explore the nearby areas around
the counter top first and then move to the dining table for further exploration. It can be seen that in
frame 15, the bread, side table and shelf which are invisible from previous viewpoints are detected.
After adding these newly detected objects, the agent considers that it has fully explored the scene
and the stop action is triggered.

From the above examples we can find that the navigation policy would guide the agent to detect
more objects and extract more semantic relationships at the same time with a relatively short path.
Furthermore, the agent leverages its embodiment ability to trigger stop action when it thinks that the
scene is fully explored.

Viewpoints 3D Semantic Scene Graph Derivable Scene Representations

D R ° 2D Semantic Map 2D Feasible Region Map 3D Point Cloud Representation
! (-] i > i T ®
F BN Iﬂ ‘e o e 4 =0
C-o - &g 2 p= e
y | o, — vl o
™ - e T e -0 B l =
a i I @ (] ; i

Video Caption 1QUAD-V1 ALFRED Tasi: Bring a ell phons to the
" be:t bt and o il A sl o side table on the et of the bed Path Planing

is i bedroom vith a bed and two blinds. A pilow isling on R) §
10p of the bed. Close by the bed there is a desk and two side Inital Viewpoint =
tables. The st side table has tow crawer units. A desk lamp s) there any cel phoneinthe room?) Yes. : Cr A
standing ontop ofthe first sde table. There s & book siting on \ 7
fop of the st side table, next to the desk lamp. The second sice Gountiy s s .
table has a drawer unit. An alarm clock is standing on top of it 3 r B — o i
There i a cel phone siing on top ofthe second sde table : 7
besides the alarm clock. Ashel s below the bed and the frst sde Donpanyda 2k e R = (——
table. There are two windows and a iht switch embecded on the Soatal Folationship:]
wall. A painting is hanging on the wall above the bed and the side patial Relatonship: f
{ables. Thers s a mirtf hanging on the wal. Below the mirror an o
e) Isthere a pilow on top of the bed? A Yes. [

the light switch there s a garbage can.

Figure 6: An illustration for more downstream applications with the generated semantic scene graph.

7 Application to Downstream Tasks

As shown in Fig.6, utilizing the point cloud for each node, we can obtain many common spatial
representation of the scene, including 2D semantic map, 2D feasible region map and 3D semantic
point cloud. Further, the rich semantic information of the global semantic scene graph can help
the agent complete task including video captioning, interactive question answering and complicated
manipulation commands in ALFRED. Specifically, for the common questions in QA dataset like
IQUAD-v1, the agent could traverse the nodes in GSSG and try to align the phrase to answer the
existence and counting type questions. For the spatial relationship question, the agent would ground
the subject and objects phrases with the node and compare the edge between the nodes with the
queried relation phrase. To solve the more complicated tasks in ALFRED, the agent could first
ground the source and target object in the command with the graph nodes, and then utilizing common
navigation methods like path planning with the 2D feasible region map of scene to finish the task.

	Local Scene Graph Prediction Network
	Global Scene Graph Generation
	Scene Graph Encoder Implementation Details
	Navigation Model Implementation Details
	Imitation Learning
	Reinforcement Learning

	Dataset Generation Details
	Qualitative Analysis on Streaming Video Captioning
	Application to Downstream Tasks

