
Contents

A VCD Implementation 1
A.1 GNN Architecture . 1
A.2 VCD Training Details . 3
A.3 Graph-imitation Training Details . 4

A.3.1 Privileged Graph-imitation Learning . 4
A.3.2 Auxiliary Reward Prediction . 5

A.4 VCD Planning Details . 5

B Baselines Implementation 6
B.1 VisuoSpatial Forsight (VSF) . 7
B.2 Contrastive Forward Model (CFM) . 7
B.3 Maximal Value under Placing (MVP) . 8

C Experimental Setup 8
C.1 Simulation Setup . 8
C.2 Real-world Setup . 9

D Additional Experimental Results 9
D.1 Simulation Experiments . 9

D.1.1 Normalized Improvement and Normalized Coverage in Simulation 9
D.1.2 Visualization of Edge GNN . 9
D.1.3 Visualizations of Planned Actions in Simulation . 10
D.1.4 Visualizations of Open-loop Predictions in Simulation 10

D.2 Robot Experiments . 10
D.2.1 Running Time . 10
D.2.2 Normalized Coverage (NC) of Robot Experiments . 11
D.2.3 Visualization of Sampled Actions in The Real World 11

E Planning with VCD for Cloth Folding 14

F Robustness to Depth Sensor Noise 18

G Comparison to Oracle using the FleX Cloth Model 18

H Ablations on architectural choices 19

A VCD Implementation

A.1 GNN Architecture

As mentioned in the main paper, we take the network architecture in previous work [1] (referred to as
GNS) for our dynamics GNN Gdyn and the edge GNN Gedge. Both GNN consists of three parts: encoder,
processor and decoder. Since the dynamics and edge GNNs have very similar architectures, we first describe
the architecture of the dynamics GNN, and then describe how the edge GNN architecture differs from that.

Input: The input to the dynamics GNN is a graph, where the nodes are the points in the voxelized
point cloud of the cloth, and the edges consist of the collision edges (built using Eq. (1)) and mesh edges
(inferred by a trained edge GNN). The node feature for a point vi consists of the concatenation of its past m
velocities, a one-hot encoding of the point type (picked or unpicked - see details about picking in Section 3.4
in the main paper and Section A.4 in the appendix), and the distance to the table plane. For edge ejk that
connects nodes vj and vk, its edge feature consists of the distance vector (xj − xk), its norm ||xj − xk||, a
one-hot encoding of the edge type (mesh edge or collision edge), and the current displacement from the rest
position ||xj−xk||−rjk, where rjk is the distance between xj and xk at the rest positions. The displacement
from the rest positions are set to zero for collision edges which do not have rest positions.

1

We now describe how the robot action is incorporated into the input graph of the dynamics GNN as
follows. As mentioned in Section 3.4 of the main paper, when we want to use the dynamics GNN to predict
the effect of a pick-and-place robot action a = {apick, aplace} on the current cloth, we first decompose the
high-level action into a sequence of low-level movements, where each low-level movement is a small delta
movement of the gripper and can be achieved in a short time. Specifically, we generate a sequence of small
delta movements ∆x1, ...,∆xH from the high-level action, where xpick +

∑H
i=1 ∆xi = xplace. Each delta

movement ∆xi moves the gripper a small distance along the pick-and-place direction and the motion can be
predicted by the dynamics GNN in a single step. We then incorporate the small delta movement into the
input graph as follows. When the gripper is grasping the cloth, we denote the picked point as u. We assume
that the picked point is rigidly attached to the gripper; thus, when considering the effect of the tth low-level
movement of the robot gripper, we modify the input graph by directly setting the picked point u’s position
xu,t = xpick +

∑t
i=1 ∆xi and velocity ẋu,t = ∆xi/∆t, where ∆t is the time for one low-level movement step.

The dynamics GNN will then propagate the effect of the robot action along the graph when predicting future
states.

Encoder: The encoder consists of two separate multi-layer perceptrons (MLP), denoted as φp, φe, that
map the node and edge feature, respectively, into latent embedding. Specifically, the node encoder φp maps
the node feature for node vi into the node embedding hi, and the edge encoder φe maps the edge feature for
edge ejk into the edge embedding gjk.

Processor: The processor consists of L stacked Graph Network (GN) blocks [2] that update the node
and edge embedding, with residual connections between blocks. We use L = 10 in both edge GNN Gedge and
dynamics GNN Gdyn. The lth GN block contains an edge update MLP f le and a node update MLP f lp that

take as input the edge and node embedding gl and hl respectively and outputs updated embedding gl+1 and
hl+1 (we denote g0 and h0 as the edge and node embedding output by the encoder). It also contains a global
update MLP f lc that takes as input a global vector embedding cl, and outputs the updated global embedding
cl+1. The initial global embedding c0 is set to be 0. For each GN block, first the edge update MLP updates
the edge embedding; it takes as input the current edge embedding gljk, the node embedding hlj , h

l
k for the

nodes that it connects, as well as the global embedding cl: gl+1
jk = f le(h

l
j , h

l
k, g

l
jk, c

l) + gljk, ∀ejk ∈ E. The

node update MLP then updates the node embedding; its input consists of the current node embedding hli,
the sum of the updated edge embedding for the edges that connect to the node, and the global embedding
cl: hl+1

i = f lp(hli,
∑

j g
l+1
ji , cl) + hli, ∀i = 1, ..., Np. Note the edge and node updates both have residual

connections between consecutive blocks. Finally, the global update MLP takes as input the current global
embedding cl, the mean of the updated node and edge embedding, and updates the global embedding as:

cl+1 = f lc(c
l, 1
|V |

∑|V |
i=1 h

l+1
i , 1

|E|
∑

ejk
gl+1
jk).

Decoder: The decoder is an MLP ψ that takes as input the final node embedding hLi output by the
processor for each point vi; the decoder outputs the acceleration for each point: ẍi = ψ(hLi). The acceleration
can then be integrated using the Euler method to update the node position xi. We train the graph GNN Gdyn

using the L2 loss between the predicted point acceleration ẍi and the ground-truth acceleration obtained by
the simulator; see Sec. A.2 for details.

Edge GNN: The edge GNN Gedge has nearly the same architecture as the dynamics GNN, with the
following differences: first, the input graph to the edge GNN encoder consists of only the voxelized point
cloud and the collision edges 〈P,EC〉; the edge GNN aims to infer which collision edges are also mesh edges.
The node feature is 0 for all nodes. The edge feature for edge ejk consists of the distance vector (xj − xk)
and its norm ||xj−xk|| (without the edge type, since this must be inferred by the edge GNN). The processor
is exactly the same as that in the dynamics GNN. The decoder is an MLP that takes as input the final edge
embedding output by the processor and outputs the probability of the collision edge being a mesh edge. We
use a binary classification loss on the prediction of the mesh edge for training.

Hyperparameters In simulator, we set the radius of particles to be 0.00625, an All MLPs that we
use has three hidden layers with 128 neurons each and use ReLU as the activation function. The detailed
parameters of the GNN architecture, as well as the simulator parameters, can be found in Supplementary
Table 1.

2

A.2 VCD Training Details

Details about training in simulation: We trian the dynamics GNN with one-step prediction loss:
suppose that we sample a transition (Vt, at, Vt+1), where at is a low-level action. Then we assign the velocity
at timestep t that is input to the network to be the ground-truth velocity obtained from the simulator (after
matching the points to their corresponding simulator particles). This strategy enables us to sample arbitrary
timesteps for training rather than needing to always simulate the dynamics from the first timestep.

For training the edge GNN, we need to obtain the ground-truth of which collision edges are also mesh
edges. During simulation training, a collision edge is assumed to be a mesh edge if the mapped simulation
particles of the edge’s both end points are connected by a spring in the simulator.

We train our dynamics GNN with the ground-truth mesh edges, and directly use it with the mesh edges
predicted by the edge GNN at test time. We find this to work well without fine-tuning the dynamics GNN
on mesh edges predicted by the edge GNN, due to the high prediction accuracy(91%) of the edge GNN.

Details about bipartite graph matching: As mentioned in the main paper, we need bi-partite graph
matching to find a mapping from the voxelized point cloud to the simulation particles, in order to obtain
the state and connectivity of the voxelized point cloud for training the dynamics and edge GNN. Given
N points in the voxelized point cloud pi, i = 1 . . . N and M simulated particles of the cloth in simulation
xj , j = 1 . . .M , the goal of the bipartite graph matching here is to match each point in the point cloud to
a simulated particles. The simulated cloth mesh is downsampled by three times to improve computation
efficiency, e.g., a cloth composed of 40 × 40 particles is downsampled to be of size 13 × 13. The bi-partite
matching is only performed on the downsampled particles. We build the bipartite graph by connecting
an edge from each pi to xj , with the cost of the edge being the distance between the two points. In our
experiments, we always have M > N since we use a large grid size for the voxelization.

Training data: We collect 2000 trajectories, each consisting of 1 pick-and-place action. The pick point
is randomly chosen among the locally highest points on the cloth; this is only done to generate the training
data for the dynamics model, not for planning (we do this for training the VSF and CFM baselines as well;
the MVP baseline uses the behavioral policy to generate its training data). The unnormalized direction
vector p = (∆x,∆y,∆z) for the pick-and-place action is uniformly sampled as follows: ∆x,∆z ∈ [−0.5, 0.5],
∆y ∈ [0, 0.5]. The direction vector is then normalized and the move distance is sampled uniformly from
[0.15, 0.4]. The high-level pick-and-place action is decomposed into 100 low-level steps: the pick-and-place
is executed in the 60 low-level actions, and then we wait 40 steps for the cloth to stablize. We train our
dynamics model in terms of low-level actions.

We choose the voxel size (0.0216) to be three times of the particle radius (0.00625) to keep it consistent
with the downsampled mesh. The neighbor radius, which determines the construction of collision edges, is
set to be roughly two times of the voxel size, so as to ensure that particles in adjacent voxels are connected.

Training parameters: We use Adam [3] with an initial learning rate of 0.0001 and reduce it by a
factor of 0.8 if the training plateaus. We train with a batch size of 16. The training of the dynamics GNN
takes roughly 4 days to converge on a RTX 2080 Ti. The training of the edge GNN usually converges in 1
or 2 days. Detailed training parameters can be found in Supplementary Table 1.

3

Model parameter Value

Encoder(same for both node encoder and edge encoder)
number of hidden layers 3
size of hidden layers 128

Processor
number of message passing steps 10
number of hidden layers in each edge/node update MLP 3
size of hidden layers 128

Decoder
number of hidden layers 3
size of hidden layers 128

Training parameters Value

learning rate 0.0001
batch size 16
training epoch 120
optimizer Adam
beta1 0.9
beta2 0.999
weight decay 0

Others Value

dt 0.05 second
particle radius 0.00625 m
downsample scale 3
voxel size 0.0216 m
neighbor radius R 0.045 m

Supplementary Table 1: Summary of all hyper-parameters.

A.3 Graph-imitation Training Details

Although VCD performs decently under partial observability, we found dynamics model trained on full mesh
model usually converges faster and obtains better asymptotic performance. This is well expected since
incomplete information caused by self-occlusion results in ambiguity of state estimation.

Therefore, we introduce graph-imitation learning to inject prior knowledge of the full cloth into the
dynamics model. The prior encodes structure of the full cloth and incentivizes the model to reason about
occlusion implicitly.

A.3.1 Privileged Graph-imitation Learning

The main spirit of privileged graph-imitation learning is to train a student model which takes partial point
cloud as input, to imitate a privileged agent which has access to privileged information. We hope the student
to learn a recover function that recovers true states from partial information. A visual illustration is shown
in Supplementary Figure 1.

To do so, we first train a privileged agent with all simulated particles(including the occluded ones) and
ground-truth mesh edges. The privileged teacher model shares identical architecture as the student model,
but with complete information. We train the teacher model with acceleration loss and the auxiliary reward
prediction loss.

Graph-based imitation learning is not straightforward because the graphs of two models have very differ-
ent structures. Typically, the graph of teacher model will have more vertices since it can observe occluded
particles while the student only observes the voxelized partial point cloud. To tackle with this challenge, we
conduct bipartite matching to match student nodes with teacher nodes as described in A.2.

Once we have the node correspondence, we retrieve the intermediate node features of both teacher and

4

Supplementary Figure 1: A graphical illustration of privileged graph imitation learning. The privileged
teacher has the same model architecture as student, but takes full cloth as input. Following [4], we initialize
the encoder and decoder of student model by weights of pretrained teacher. Then we freeze the teacher and
transfer the privileged information by matching the node embedding and global embedding of two models.
The target nodes to imitate are obtained by bi-partite matching as described in A.2.

student model, hLT and hLS , and force the node feature of student hLS to be similar to hLT . The final output is
still supervised by groundtruth acceleration. We copy the weights of encoder and decoder from teacher model
to initialize student since we find it accelerate training. The teacher is frozen during imitation learning. By
imitating the intermediate node features, we provide high capacity training signal to the student to recover
groundtruth acceleration by proper message passing. To successfully imitate the teacher, the student have
to conduct occlusion reasoning to some extent, and take the effects of occluded particles and erroneous mesh
edges into account. In addition to node features, the student model also mimic the global embedding of
teacher model to make more accurate reward prediction. We use mean square error for imitation learning.

A.3.2 Auxiliary Reward Prediction

Following [5], we additionally train our dynamics model to predict reward in order to regularize the model.
The groundtruth reward, which is the coverage of cloth after one time step, is calculated by approximation
as described in A.4. The coverage is calculated over all particles, thus it provides information from a global
view to the model. The reward model is a three-layer MLP which takes global embedding cL as input. We
use mean square error to train the model.

It should be noted that at test time, we still use the heuristic reward function, which models particles
as spheres and calculate an approximate coverage on the partial point cloud. Although the learned reward
model predicts a global reward, which theoretically will take into the newly revealed occluded regions into
account, we found it perform slightly worse than the heuristic reward function.

A.4 VCD Planning Details

We summarize the planning procedure of VCD in Algorithm 1. We sample K high-level pick-and-place
actions. For each sampled high-level action, we roll out our dynamics model using that action for H low-
level steps and obtain the sequence of predicted point positions.

Action sampling during planning in simulation As described in the main text, we sample 500
pick-and-place actions, where the pick point is first uniformly sampled from a bounding box of the cloth
and then projected to be on the cloth mask. For generating the bounding box, we first obtain the cloth
mask from the simulator. We then obtain the minimal and maximal pixel coordinates u, v value of the
cloth mask. The bounding box is the rectangle with corners (min(u) − padding,min(v) − padding) and
(max(u) + padding,max(v) + padding), where padding is set to be 30 pixels for the 360× 360 image size we
use. We use rejection sampling to make sure the place point is within the image to keep the action within

5

Algorithm 1: Planning with pick-and-place actions

input : Voxelized partial point cloud P , Edge GNN Gedge, Dynamics GNN Gdyn, number of
sampled actions K

output: pick-and-place action a = {xpick, xplace}
1 Build collision edges EC

0 with P ; Infer mesh edges EM ← Gedge(P,E
C
0)

2 for i← 1 to K do
3 Sample a pick-and-place action xpick, xplace
4 Compute low-level actions ∆x1, ...,∆xH
5 Get picked point vu from xpick
6 Pad historic velocities with 0: x0 ← P, ẋ−m...0 ← 0
7 for t← 0 to H do
8 Build collision edges EC

t with xt

9 Move picked point according to gripper movement by :
10 xu,t ← xu,t + ∆xt, ẋu,t ← ∆xt/∆t

11 Predict accelerations using Gdyn: ẍt ← Gdyn(xt, ẋt−m...t, u, E
M , EC

t)
12 Update point cloud predicted positions & velocities:
13 ẋt+1 = ẋt + ẍt∆t, xt+1 = xt + ẋt+1∆t
14 Readjust picked point according to gripper movement by
15 xu,t ← xu,t + ∆xt, ẋu,t ← ∆xt/∆t

16 end
17 Compute reward r based on final point cloud predicted position xH

18 end
19 return pick and place action with maximal reward

the depth camera view. The unnormalized direction vector p = (∆x,∆y,∆z) (y is the up axis) of the pick-
and-place is uniformly sampled as follows: ∆x,∆z ∈ [−0.5, 0.5], and ∆y ∈ [0, 0.5]. The vector is normalized
and then the distance is separately sampled from [0.05, 0.2] meters. We decompose the pick-and-place action
into 10 low-level actions and wait for another 6 steps for the cloth to stabilize.

Action sampling during planning in the real world The robot action space is pick-and-place with
a top down pinch grasp. For each action, we sample 100 pick-and-place actions to be evaluated by our
model. Each action sample is generated as follows: We first sample a pick-point location corresponding to
the segmented cloth, denoted as (px, py). We then generate a random direction θ ∈ [0, 2π] and distance
l ∈ [0.02, 0.1] meters. Then the place point will be (px + l cos θ), py + l sin θ. We only accept an action if
both the pick and the place points are within the work space of the robot. We additionally filter out actions
whose place points are overlapping with the cloth. This heuristic saves computation time without sacrificing
performance.

Reward computation in planning: As described in the main text, to compute the reward function
r for planning, we treat each node in the graph as a sphere with radius R and compute the covered area
of these spheres when projected onto the ground plane. To prevent the planner from exploiting the model
inaccuracies, we do the following: if the model predicts that there are still points above a certain height
threshold after executing the pick-and-place action and waiting the cloth to stabilize, then the model must
be predicting inaccurately and we set the reward of such actions to 0. The threshold we use is computed as
15× 0.00625 meters, where 0.00625 is the radius of the cloth particle used in the simulation.

B Baselines Implementation

For all the baselines, we try our best to adjust the SoftGym cloth environment to match the cloth environment
used in the original papers. For VSF, we place the camera to be top-down and zoomed in so that the cloth
covers the entire image when fully flattened. We also changed the color of the cloth to be bluish as in the
original paper. We collect 7115 trajectories, each consisting of 15 pick-and-place actions for training the
VSF model (same as in the VSF paper). For CFM, we also use a top-down camera and change the color of

6

(a) VSF goal image. (b) VSF observation. (c) CFM goal image. (d) CFM observation.

Supplementary Figure 2: Images of cloth configurations used by the baseline methods.

the cloth to be the same on both sides, following the suggestion of the authors (personal communication).
We collect 8000 trajectories each consisting of 50 pick-and-place actions for training the contrastive forward
model (same as in the CFM paper). For MVP, we collect 5000 trajectories each with 50 pick-and-place
actions and report the performance of the best performing model during training. We trained each of the
baselines for at least as many pick-and-place actions as they were trained in their original papers. For training
our method, VCD, we collect 2000 trajectories, each consisting of 1 pick-and-place action decomposed into
20 low-level actions for training. Note that this is fewer pick-and-place actions than any of the baselines
used for training. We now describe each compared baseline in more details below:

B.1 VisuoSpatial Forsight (VSF)

We use the official code of VSF provided by the authors1.
Image: Following the original paper, we use images of size 56×56. we place the camera to be top-down

and zoomed in so that the cloth covers the entire image when fully flattened. An example goal image of the
smoothed cloth for VSF is shown in Supplementary Figure 2.

Training data & Procedure: For training the VSF model, we collect 7115 trajectories for training
(same as in the VSF paper), each consisting of 15 pick-and-place actions. Following the VSF paper, the
pick-and-place action first moves the cloth up to a fixed height, which is set to be 0.02 m in our case, and then
moves horizontally. The horizontal movement vector is sampled from [−0.07, 0.07] × [−0.07, 0.07] m. This
range is smaller than what is used for VCD, as we follow the original paper to set the maximal move distance
roughly half of the cloth/workspace size. We use rejection sampling to ensure the after the movement, the
place point is within the camera view. Similar to VCD, the pick point is uniformly sampled among the
locally highest points on cloth (only during training). It takes 2 weeks for VSF to converge on this dataset.

Action sampling during planning: Similarly to VCD, the pick point is sampled uniformly from a
bounding box around the cloth and then projected to the cloth mask. The padding for the bounding box
here we use is 6. Other than the pick point, other elements of the pick-and-place action is sampled following
the exact same distribution as in the training data collection.

B.2 Contrastive Forward Model (CFM)

We use the official code of CFM provided by the authors2.
Image: Following the original paper, we use images of size 64 × 64. We also place the camera to be

top-down and adjust the camera height so the cloth contains a similar portion of the image as in the original
paper. Following the suggestions from the authors (personal communication), we also set the color of the
cloth to be the same on both sides. See Supplementary Figure 2 for an example of the images we use.

Training data: For training, we collect 8000 trajectories each consisting of 50 pick-and-place ac-
tions, which is the same as in the original paper. Similar to VCD and VSF, the pick point is sampled
among the locally highest points on the cloth (only during training). The movement vector is sampled from

1https://github.com/ryanhoque/fabric-vsf
2https://github.com/wilson1yan/contrastive-forward-model

7

Supplementary Figure 3: Images of the square cloth, rectangular cloth, and t-shirt used in simulation.

[−0.04, 0.04] × [0, 0.04] × [−0.04, 0.04] m, where the y-axis is the negative gravity direction. We use pick-
and-place actions with such small distances following the original paper. We also use rejection sampling to
ensure the place point is within the camera view.

Action sampling during planning: Similar to VCD, the pick point is sampled uniformly from a
bounding box around the cloth and then projected to the cloth mask. The padding size here we use for
the bounding box is 5. Other than the pick point, other elements of the pick-and-place action are sampled
following the exact same distribution as in training data collection.

B.3 Maximal Value under Placing (MVP)

We use the official code of MVP provided by the authors3.
Image: Following the original paper, we use images of size 64 × 64. We also place the camera to be

top-down.
Training data: For training, we collect 8000 trajectories each consisting of 50 pick-and-place actions,

which is the same as the original paper. However, the Q function starts to diverge after 5000 trajectories
and the performance starts to drop. Thus we report the best policy performance when it has been trained
for 5000 trajectories. This corresponds to around 15000 training iterations.

Action space: The action space for the MVP policy is in 5 dimension: (u, v,∆x,∆y,∆z), where
u, v is the image coordinate of the pick point and is sampled for the segmented cloth pixel. We use the
depth information to back project the pick point to 3d space. (∆x,∆y,∆z) is the displacement of the place
location relative to the pick point and is clipped to be within 0.5. Additionally, the height ∆y is clipped to
be non-negative.

C Experimental Setup

C.1 Simulation Setup

We use the Nvidia Flex simulator, wrapped in SoftGym [6], for training. In SoftGym, the robot gripper
is modeled using a spherical picker that can move freely in 3D space and can be activated so the nearest
particle will be attached to it. For the simulation experiments, we use a nearly square cloth, composed of a
variable number of particles sampled from [40, 45]× [40, 45]; this corresponds to a cloth of size in the range of
[25, 28]× [25, 28] cm. Detailed cloth parameters such as stiffness are listed in the appendix. For all methods,
we randomly generate 20 initial cloth configurations for training. The initial configurations are generated
by picking the cloth up and then dropping it on the table in simulation. For evaluation, we consider three
different geometries: 1) the same type of square cloth as used in training; 2) Rectangular cloth. The length
and width of the rectangular cloth is sampled from [19, 21] × [31, 34] cm. 3) T-shirt. Images of these three
shapes of cloth in simulation are shown in Supplementary Figure 3.

3https://github.com/wilson1yan/rlpyt

8

We set the stiffness of the stretch, bend, and shear spring connections to 0.8, 1, 0.9, respectively.

C.2 Real-world Setup

Real World Setup Our real robot experiments use a Franka Emika Panda robot arm with a standard
panda gripper. We obtain RGBD from a side view Azure Kinect camera and crop the RGBD image into the
size of [345, 425], which corresponds to a workspace of 0.4 x 0.5 meters. To obtain the cloth point cloud,
we first use color thresholding to remove the table background and obtain the cloth segmentation mask and
then back project each cloth pixel to 3d space using the depth information. We evaluate on three pieces of
cloth: Two squared towels made of silk and cotton respectively and one shirt made of cotton. We use the
covered area as described in Sec. A.4 as our reward function.

For each cloth, we evaluate 12 trajectories each with a maximum of 20 pick-and-place actions. For each
trajectory, the robot stops if the normalized performance is higher than 0.95 or if the predicted rewards of all
the sampled actions are smaller than the current reward. For each trajectory, we reset the cloth configuration
using the following protocol: Each time, the arm picks a random point on the cloth, lifts it up to 0.4 meters
above the table and drop it at a fixed point on the table. This procedure is done three times in the beginning
of each trajectory.

D Additional Experimental Results

D.1 Simulation Experiments

D.1.1 Normalized Improvement and Normalized Coverage in Simulation

NI and NC of our simulation experiments are reported in Supplementary Table 2 and Supplementary Table 3.
With different metrics, our method consistently outperforms all baselines.

Method

of pick-and-
place actions 5 10 20 50

Square

VCD (Ours) 0.624± 0.217 0.778± 0.222 0.968± 0.307 1.000± 0.043
VCD-graph-imitation (Ours) 0.692± 0.258 0.919± 0.377 0.990± 0.122 1.000± 0.039

VSF [7] 0.321± 0.112 0.561± 0.127 0.767± 0.134 0.968± 0.021
CFM [8] 0.053± 0.051 0.077± 0.053 0.109± 0.066 0.105± 0.106
MVP [9] 0.399± 0.210 0.435± 0.137 0.421± 0.361 0.307± 0.310

Rectangular
VCD (Ours) 0.585± 0.359 0.918± 0.413 0.973± 0.341 0.979± 0.399

VCD-graph-imitation (Ours) 0.556± 0.372 0.912± 0.393 0.985± 0.164 1.000± 0.028
VSF [7] 0.268± 0.090 0.356± 0.163 0.542± 0.177 0.715± 0.162

T-shirt
VCD (Ours) 0.595± 0.279 0.533± 0.285 0.738± 0.465 0.979± 0.399

VCD-graph-imitation (Ours) 0.595± 0.385 0.633± 0.357 0.838± 0.450 0.969± 0.8860
VSF [7] −0.009± 0.125 0.004± 0.188 0.176± 0.237 0.219± 0.218

Supplementary Table 2: Normalized Improvement (NI) of all methods in simulation, for varying numbers of
allowed pick and place actions.

D.1.2 Visualization of Edge GNN

We compare predictions of our edge prediction model with the ground-truth edges used for training the edge
model in Supplementary Figure 4. As shown, the edge GNN prediction reasonably matches the ground-truth,
and thus well captures the cloth structure; it can also correctly disconnect the top layer from the bottom
layer when the cloth is folded, e.g., the top left part of the first example and the bottom right part of the
second example. Note our method uses only the point cloud as input and the color in this figure is only
used for visualization. The edge GNN is trained on the same dataset as the dynamics GNN (described in
Sec. A.2), and on the validation set, it achieves a prediction accuracy of 0.91.

9

Method

of pick-and-
place actions 5 10 20 50

Square

VCD (Ours) 0.776± 0.132 0.872± 0.128 0.985± 0.1873 1.000± 0.023
VCD-graph-imitation (Ours) 0.837± 0.150 0.966± 0.236 0.994± 0.076 1.000± 0.021

VSF [7] 0.629± 0.053 0.762± 0.093 0.878± 0.090 0.984± 0.010
CFM [8] 0.445± 0.052 0.466± 0.044 0.494± 0.031 0.538± 0.044
MVP [9] 0.667± 0.121 0.667± 0.124 0.661± 0.194 0.609± 0.179

Rectangular
VCD (Ours) 0.785± 0.182 0.957± 0.233 0.985± 0.183 0.998± 0.017

VCD-graph-imitation (Ours) 0.768± 0.191 0.949± 0.215 0.992± 0.080 1.000± 0.015
VSF [7] 0.622± 0.078 0.664± 0.078 0.765± 0.119 0.860± 0.072

T-shirt
VCD (Ours) 0.837± 0.107 0.828± 0.096 0.897± 0.150 0.991± 0.189

VCD-graph-imitation (Ours) 0.867± 0.143 0.901± 0.179 0.960± 0.218 0.991± 0.331
VSF [7] 0.636± 0.086 0.653± 0.090 0.676± 0.079 0.698± 0.075

Supplementary Table 3: Normalized coverage (NC) of all methods in simulation on the regular cloth, for
varying numbers of allowed pick and place actions.

Ground-truth mesh edges Estimated mesh edges

Supplementary Figure 4: The edge prediction result of our edge GNN. Red lines visualize the ground-truth
(left) or inferred (right) mesh connections.

D.1.3 Visualizations of Planned Actions in Simulation

Supplementary Figure 5 shows three planned pick-and-place action sequences of VCD in simulation. As
shown, VCD successfully plans actions that gradually smooths the cloth. We observe note that VCD favours
picking edge / corner points and pulling outwards, which is an effective smoothing strategy, demonstrating
the effectiveness of VCD for planning.

D.1.4 Visualizations of Open-loop Predictions in Simulation

In order to understand better what our model is learning, we visualize the prediction of our model compared
to the simulator output in Supplementary Figure 6, 7, 8. Given a pick-and-place action decomposed into 75
low-level actions, the model is given the 5th point cloud in the trajectory with the past 4 historical velocities,
and the dynamics model is used to generate the future predictions. As shown, even if the prediction horizon
is as long as 70 steps, VCD is able to give relatively accurate predictions on all cloth shapes, indicating the
effectiveness of incorporating the inductive bias of the cloth structure into the dynamics model.

D.2 Robot Experiments

D.2.1 Running Time

In average, it takes 12.7 seconds for VCD to plan each pick-and-place action (100 samples) on 4 RTX 2080Ti
and 10.2 seconds for Franka to execute the action. With additional communication overhead, our current
system takes around 40 seconds for computing and executing each pick-and-place action.

10

Sq
u

ar
e

cl
o

th
R

ec
ta

n
gu

la
r

cl
o

th
T-

sh
ir

t

Supplementary Figure 5: Three example planned pick-and-place action sequences for square cloth, rectan-
gular cloth, and t-shirt. All trajectories shown achieve a normalized improvement above 0.98.

D.2.2 Normalized Coverage (NC) of Robot Experiments

For the robot experiments, the main text reports the normalized improvement (NI). NC are reported here
in Supplementary Table 4.

Material

of pick-and-place
actions 5 10 20 Best

Cotton Square Cloth 0.690± 0.166 0.884± 0.293 0.959± 0.193 0.959± 0.080
Silk Square Cloth 0.744± 0.180 0.876± 0.314 0.964± 0.075 0.964± 0.054
Cotton T-Shirt 0.548± 0.114 0.601± 0.093 0.688± 0.068 0.773± 0.141

Supplementary Table 4: Normalized coverage (NC) of VCD in the real world.

D.2.3 Visualization of Sampled Actions in The Real World

We show in Supplementary Figure 9 VCD’s predicted score for each of the sampled action during smoothing
of the cloth. Interestingly, though there is no explicit optimization for this, VCD favours picking corner
or edge points and pulling outwards, which is a very natural and effective strategy for smoothing. This
demonstrates the effectiveness of VCD for planning.

11

t=5 t=15 t=30 t=40 t=50 t=60 t=75

V
C
D

Si
m
u
la
to
r

V
C
D

Si
m
u
la
to
r

Supplementary Figure 6: Two open-loop predictions of VCD on square cloth. Blue points are observable
particles/point cloud points and red lines are mesh edges. For each prediction, the top row is the ground-
truth observable particles connected by the ground-truth mesh edges in simulator. The bottom row is the
predicted point clouds by VCD, in which the mesh edges are inferred by the edge prediction GNN.

t=5 t=15 t=30 t=40 t=50 t=60 t=75

V
C
D

Si
m
u
la
to
r

V
C
D

Si
m
u
la
to
r

Supplementary Figure 7: Two open-loop predictions of VCD on rectangular cloth. Note VCD is only
trained on square cloth. Blue points are particles/point cloud points and red lines are mesh edges. For each
prediction, the top row is the ground-truth observable particles connected by the ground-truth mesh edges
in simulator. The bottom row is the predicted point clouds by VCD, in which the mesh edges are inferred
by the edge prediction GNN.

12

t=5 t=15 t=30 t=40 t=50 t=60 t=75
V
C
D

Si
m
u
la
to
r

V
C
D

Si
m
u
la
to
r

Supplementary Figure 8: Two open-loop predictions of VCD on t-shirt. Blue points are particles/point
cloud points and red lines are mesh edges. Note VCD is only trained on square cloth. For each prediction,
the top row is the ground-truth observable particles connected by the ground-truth mesh edges in simulator.
The bottom row is the predicted point clouds by VCD, in which the mesh edges are inferred by the edge
prediction GNN.

Supplementary Figure 9: Examples of 50 sampled actions used for planning. Each arrow goes from the 2D
projection of the pick location to that of the place location. The actions with the higher predicted reward
are shown in greener color and the actions with the lower predicted reward are shown in redder colors.

13

E Planning with VCD for Cloth Folding

We show that VCD can also be used for cloth folding. We assume an initially flattened cloth is given, which
can be obtained via planning with VCD for smoothing. Given a goal configuration of a target folded cloth
(e.g., a diagonal fold for square cloth), we use VCD with CEM to plan actions that fold the cloth into the
target configuration. We explore the following three different goal specifications and cost functions for the
CEM planning:

• A ground-truth cost function and goal specification that assumes access to the simulator cloth particles.
The goal configuration of the cloth is specified as the goal locations of all particles. Given the voxelized
point cloud of the initially flattened cloth, we first find a nearest neighbor mapping from each point
in the point cloud to the simulator particles. The cost is then computed as the distance between
the points in the achieved point cloud and their corresponding nearest-neighbor particles in the goal
configuration.

• We use the point cloud of the cloth for goal specification and Chamfer distance as the cost. Specifically,
the cost is the Chamfer distance between the achieved point cloud and the goal point cloud.

• We use the depth image of the cloth for goal specification and 2D IOU as the cost. Specifically, we
compute the intersection over union between the segmented achieved depth map and the segmented
goal depth map as the cost.

We evaluate VCD on three goals as shown in Supplementary Figure 10, 11, 12: (1) one-corner-in, which folds
one corner of the square cloth towards the center; (2) diagonal, which folds one corner of the square cloth
towards the diagonal corner; (3) arbitrary, which folds one corner of the square cloth towards the middle
point of the opposite edge. For evaluation, we report the average particle distance between the achieved
cloth state and the goal cloth state. The numerical results are shown in Supplementary Table 5 and the
qualitative results are shown in Supplementary Figure 10, 11, 12.

As the result shows, VCD can be applied for folding with the above three ways for goal specification. For
the ground-truth goal specification and cost computation using simulator particles, VCD performs fairly well
for folding (average particle error within 0.3 - 1.3 cm, also see Supplementary Figure 10, 11, 12 for qualitative
results). With goal specification via point cloud and Chamfer distance as the cost, the performance of VCD
is also reasonable (average particle error 0.3 - 2 cm, also see below for qualitative results), making it a
practical choice to apply VCD for folding in the real world.

We also note that this VCD model is trained with random pick-and-place actions; the folding performance
could be further improved if we add bias (such as corner grasping) during data collection to train VCD with
more folding motions.

One-corner-in Diagonal Arbitrary
Ground-truth mapping 3.480 13.466 4.136

Chamfer distance 3.311 19.398 18.132
IOU 36.897 15.744 19.871

Supplementary Table 5: Average particle distance (mm) between final achieved cloth state and goal cloth
state.

14

(a) Cost: groundtruth mapping

(b) Cost: Chamfer distance

(c) Cost: IOU

Supplementary Figure 10: VCD for folding, one-corner-in goal. The left column is the planned action, the
middle column is the final achieved cloth state, and the right column is the goal.

15

(a) Cost: groundtruth mapping

(b) Cost: Chamfer distance

(c) Cost: IOU

Supplementary Figure 11: VCD for folding, diagonal goal. The left column is the planned action, the middle
column is the final achieved cloth state, and the right column is the goal.

16

(a) Cost: groundtruth mapping

(b) Cost: Chamfer distance

(c) Cost: IOU

Supplementary Figure 12: VCD for folding, arbitrary goal. The left column is the planned action, the middle
column is the final achieved cloth state, and the right column is the goal.

17

F Robustness to Depth Sensor Noise

When deployed in the real world, VCD might suffer from the depth camera noise. To investigate this, we
manually add different levels of noise (Gaussian noise with different levels of variance) to the depth map in
the simulation and test VCD’s planning performance (with a maximal number of 10 pick-and-place actions).
The result is shown in Supplementary Figure 13. The dashed vertical line is the noise level of Azure Kinect
depth camera that we use in the real world, as measured by Michal et al. [10]. As shown, VCD is quite
robust within the noise range of the Azure Kinect depth sensor.

Supplementary Figure 13: Normalized Improvement of VCD under different levels of depth sensor noise,
with a maximal number of 10 pick-and-place actions for smoothing. The vertical dashed line represents the
typical level of Azure Kinect noise, which is the depth sensor that we use for the real-world experiment. The
error bars show the 25% and 75% percentile.

G Comparison to Oracle using the FleX Cloth Model

How good can the system be if we know the full cloth dynamics? To answer this question, for our simulation
experiments (shown in Supplementary Figure 14), we additionally show the performance of an oracle that
uses the FleX cloth model for planning in Supplementary Figure 14. Here, oracle uses the same planning
method as VCD and achieves perfect results in different clothes. This shows that better performance can be
achieved if the full cloth model and dynamics can be better estimated, which we leave for future work.

Supplementary Figure 14: Normalized improvement on square cloth (left), rectangular cloth (middle), and
t-shirt (right) for varying number of pick-and-place actions. The height of the bars show the median while
the error bars show the 25 and 75 percentile.

18

H Ablations on architectural choices

For our edge and dynamics GNNs, we adopt the model architecture from GNS [1], as described in Ap-
pendix A.1. In Sanchez-Gonzalez, et al [1], a comprehensive analysis on architectural design decisions for
the GNS model was investigated. We modify the GNS architecture by adding a global model in each GN
block of the processor, which has the potential to speed up the propagation of information across the graph.
The global model has been widely used in previous works in graph neural networks [2, 11, 12]. Supplementary
Figure 15 (left) shows that using a global model in the dynamics model yield better planning performance
than without it.

We also evaluate the sensitivity of our dynamics model to the number of message passing steps (L). As
shown in the right figure of Supplementary Figure 15, our dynamics model is robust to a broad range of
values for the number of message passing steps. We speculate that, when the number of message passing is
too small, the effect of action cannot propagate to the particles that are distant from the picked point. With
too many message passing steps, the model is prone to overfitting. Nonetheless, Supplementary Figure 15
(right) shows that there is a broad of values for the number of message passing steps that lead to similar
performance; thus, our model is fairly robust to this parameter.

Supplementary Figure 15: We evaluate the effects of a global model and the number of message passing steps
in the dynamics GNN on the square cloth. The left figure shows that the usage of a global model is helpful
to the planning performance. The right figure shows that our model is generally robust to the number of
message passing steps as long as the number lies within the range of [3, 10].

References

[1] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia. Learn-
ing to simulate complex physics with graph networks. In International Conference on Machine Learning, pages
8459–8468. PMLR, 2020.

[2] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive biases,
deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[4] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning quadrupedal
locomotion over challenging terrain. Sci Robot, 5(47), October 2020.

19

[5] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David Silver, and
Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397,
2016.

[6] Xingyu Lin, Yufei Wang, Jake Olkin, and David Held. SoftGym: Benchmarking deep reinforcement learning for
deformable object manipulation. In Conference on Robot Learning, 2020.

[7] Ryan Hoque, Daniel Seita, Ashwin Balakrishna, Aditya Ganapathi, Ajay Tanwani, Nawid Jamali, Katsu Yamane,
Soshi Iba, and Ken Goldberg. VisuoSpatial Foresight for Multi-Step, Multi-Task Fabric Manipulation. In
Robotics: Science and Systems (RSS), 2020.

[8] Wilson Yan, Ashwin Vangipuram, Pieter Abbeel, and Lerrel Pinto. Learning predictive representations for
deformable objects using contrastive estimation. In Conference on Robot Learning (CoRL), 2020.

[9] Wilson Wu, Yilin adn Yan, Thanard Kurutach, Lerrel Pinto, and Pieter Abbeel. Learning to manipulate
deformable objects without demonstrations. Robotics Science and Systems (RSS), 2020.

[10] Michal Tölgyessy, Martin Dekan, L’uboš Chovanec, and Peter Hubinskỳ. Evaluation of the azure kinect and its
comparison to kinect v1 and kinect v2. Sensors, 21(2):413, 2021.

[11] Ziyang Wang, Wei Wei, Gao Cong, Xiao-Li Li, Xian-Ling Mao, and Minghui Qiu. Global context enhanced
graph neural networks for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 169–178, 2020.

[12] Jessica B Hamrick, Kelsey R Allen, Victor Bapst, Tina Zhu, Kevin R McKee, Joshua B Tenenbaum, and
Peter W Battaglia. Relational inductive bias for physical construction in humans and machines. arXiv preprint
arXiv:1806.01203, 2018.

20

	VCD Implementation
	GNN Architecture
	VCD Training Details
	Graph-imitation Training Details
	Privileged Graph-imitation Learning
	Auxiliary Reward Prediction

	VCD Planning Details

	Baselines Implementation
	VisuoSpatial Forsight (VSF)
	Contrastive Forward Model (CFM)
	Maximal Value under Placing (MVP)

	Experimental Setup
	Simulation Setup
	Real-world Setup

	Additional Experimental Results
	Simulation Experiments
	Normalized Improvement and Normalized Coverage in Simulation
	Visualization of Edge GNN
	Visualizations of Planned Actions in Simulation
	Visualizations of Open-loop Predictions in Simulation

	Robot Experiments
	Running Time
	Normalized Coverage (NC) of Robot Experiments
	Visualization of Sampled Actions in The Real World

	Planning with VCD for Cloth Folding
	Robustness to Depth Sensor Noise
	Comparison to Oracle using the FleX Cloth Model
	Ablations on architectural choices

