
A Additional Ablation Study

We discuss further ablation results regarding: (1) The effect of the entropy coefficient α on the
performance as well as convergence speed for learning our visual policy. (2) The effect of using
our proposed weight initialization strategy for the asymmetric actor-critic framework. (3) The effect
of behavioral cloning for trajectory smoothing over the motion planner augmented RL trajectories.
(4) The dependency of our method on the success of MoPA-RL.

A.1 Effect of varying the entropy coefficient α

In Section Section 3.2, we discuss the role of tuning the entropy coefficient α for maintaining the
trade-off between entropy maximization as well as reward maximization for the SAC objective.
For our visual policy learning using asymmetric actor-critic framework, we mainly focus on the
exploration achieved by our state-based agent using MoPA-RL [1]. This helps us leverage our state
agent’s experience for providing guided exploration rather than exploring the entire state space again
for visual policy learning. Therefore, we focus on the reward maximization objective by choosing a
very small value of α.

Table 3 reports the log(α) values for our learned state-agent using MoPA-RL. For accelerating our
visual policy learning, we use smaller α values to further emphasize on reward maximization. In
Figure 5, we show that using smaller values of α assists in faster convergence and improving sample
efficiency as compared to using higher α values. Moreover, smaller α values consistently converge
for all the environments whereas for larger α values, we can see unstable performance varying across
different tasks. We also observe that large values of α undergo large perturbations during training
making learning unstable whereas smaller values of α remain stable throughout training, as shown in
Figure 6.

Sawyer Push Sawyer Lift Sawyer Assembly

log(α) -0.63 -2.7 -0.29

Table 3: Values of the final log(α) after MoPA-RL training for all three environments.

0.0 0.3 0.6 0.9 1.2
Environment steps (1.2M)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Su
cc

es
s R

at
e

log(α): 0.5
log(α): 0
log(α): -3
log(α): -10
log(α): -20
log(α): -40

(a) Sawyer Push

0.00 0.35 0.70 1.05 1.40
Environment steps (1.4M)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Su
cc

es
s R

at
e

(b) Sawyer Lift

0.00 0.35 0.70 1.05 1.40
Environment steps (1.4M)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Su
cc

es
s R

at
e

(c) Sawyer Assembly

Figure 5: Ablation curves for showing the effect of the entropy coefficient α for visual policy learning
via asymmetric actor-critic framework. As the trends show, smaller α values lead to a stable and
faster training for all three environments.

A.2 Effect of weight initialization

As discussed in Section Section 4.3, we note that our weight initialization technique for the actor-critic
networks before visual policy learning significantly aids in achieving optimal performance and also
facilitates improving learning speed. In Figure 7, we see that without appropriate initialization for
the asymmetric critic using our state agent and the visual actor using behavioral cloning, the agent
achieves minimal or no success rate across all environments up till 1.2M environment steps. On the
other hand, our method with initialization converges to a success rate of ≈ 1.0 much earlier than
1.0M environment steps for all three tasks.

11

0.0 0.3 0.6 0.9 1.2
Environment steps (1.2M)

0.00

0.48

0.96

1.44

1.92

2.40

α

log(α): 0.5
log(α): 0
log(α): -3
log(α): -10
log(α): -20
log(α): -40

(a) Sawyer Push

0.00 0.35 0.70 1.05 1.40
Environment steps (1.4M)

0.0

4.4

8.8

13.2

17.6

22.0

α

(b) Sawyer Lift

0.00 0.35 0.70 1.05 1.40
Environment steps (1.4M)

0.0

12.6

25.2

37.8

50.4

63.0

α

(c) Sawyer Assembly

Figure 6: Ablation curves for showing the change in the entropy coefficient α during training for
visual policy learning via asymmetric actor-critic framework. As the trends show, larger α values
fluctuate during training leading to unstable learning, whereas smaller values of α do not show large
variations throughout training for all three environments.

0.0 0.3 0.6 0.9 1.2
Environment steps (1.2M)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Su
cc

es
s R

at
e

Ours
Ours (w/o initalization)

(a) Sawyer Push

0.00 0.35 0.70 1.05 1.40
Environment steps (1.4M)

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
Su

cc
es

s R
at

e

(b) Sawyer Lift

0.00 0.32 0.65 0.98 1.30
Environment steps (1.3M)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Su
cc

es
s R

at
e

(c) Sawyer Assembly

Figure 7: Learning curves comparing our method with and without actor-critic initialization for all
three environments. Without initialization, the agent achieves minimal or no success rate, whereas it
quickly learns to achieve optimal performance with weight initialization across all the tasks.

A.3 Behavioral cloning for trajectory smoothing

As mentioned in Section 3.2.1, we use BC to smooth out jittery motion planner augmented trajectories
and store them in an augmented expert replay bufferRe. In Figure 8, we qualitatively compare BC
and MoPA-RL’s random rollouts with the same start and goal positions. As we can visualize, the
BC trajectory path is smoother compared to the trajectory obtained via the MoPA-RL policy. This
is indeed significant for a refined transition from a state-based policy to a visual policy in terms of
performance as well as convergence speed and sample efficiency (see Figure 3).

(a) Sawyer Push (b) Sawyer Lift (c) Sawyer Assembly

Figure 8: Visualization of end-effector position for a randomly chosen rollout comparing the smooth-
ness of behavioral cloning trajectories with respect to MoPA-RL trajectories with the same start state
(marked in green) and final end-effector position (marked in red) for all three tasks.

12

Environment Steps
0.2M 1.0M

ASR ↑ AEL ↓ ADR ↑ ASR ↑ AEL ↓ ADR ↑
MoPA-RL [1] 69.2 102.7 41.0 98.0 105.4 54.5
BC-Visual 93.2 137.4 37.1 98.8 57.4 97.2
Ours 100.0 34.4 108.2 100 32.0 110.8

(a) Sawyer Push

Environment Steps
0.5M 0.52M 1.0M

ASR ↑ AEL ↓ ADR ↑ ASR ↑ AEL ↓ ADR ↑ ASR ↑ AEL ↓ ADR ↑
MoPA-RL [1] 41.4 153.8 21.0 60.6 138.3 29.2 95 109.2 52.7
BC-Visual 48 189.4 14.1 55.2 146.6 24.2 63 109.4 34.8
Ours 99.0 42.0 101.6 99.4 42.9 101.0 99.0 42.0 101.7

(b) Sawyer Lift

Table 4: Average success rate (ASR), episode length (AEL), and discounted return (ADR) of our
method compared with MoPA-RL and BC using sub-optimal and optimal MoPA-RL models. Even
with sub-optimal training, when our state-based agent does not learn to completely solve the task, our
method for distillation into a visual policy achieves high performance and successfully solves the
task in lesser steps (smaller AEL).

A.4 Sub-optimal training for MoPA-RL

To analyze the dependence of our approach on the success of the MoPA-RL training in stage one, we
experiment with sub-optimal models of MoPA-RL. We train on lesser environment interactions and
then use the critic for weight initialization, followed by our asymmetric visual agent training. We
train for the same number of environment steps as Table 1 results, i.e., 2M environment steps. We
report the results in Table 4a and Table 4b for Sawyer Push and Sawyer Lift tasks, respectively.

As reported in Table 4a and Table 4b, we observe that although our method benefits from initialization
using the state-based agent compared to random initialization, it does not heavily depend on the
state-based agent’s success. This shows that even when MoPA-RL cannot completely solve the
task, our framework for distilling the state-based policy into the visual policy achieves optimal
performance.

B Implementation Details

B.1 Network architecture and hyperparameter selection

For training our state-based agent in step one using MoPA-RL [1], we use three layered fully
connected neural networks with 256 hidden units and ReLU activation for actor πφ and critic
Qψ networks and MP implementation similar to [1] using the RRT-Connect algorithm. For our
asymmetric agent’s critic, we retain the critic network same as Qψ and the visual actor πθ is a
3-layered convolution neural network followed by three fully connected layers with 256 hidden
units and Leaky ReLU activation and another set of fully connected layers outputting the mean and
the standard deviation of the Gaussian distribution over an action space. The behavioral cloning
agent shares the network architecture with the asymmetric visual actor πθ. We specify other
hyperparameter details for SAC and behavioral cloning training in Table 5, Table 6 and Table 7.

13

Parameter Value

Optimizer Adam
Learning rate 1e-5

Discount factor (γ) 0.99
Replay buffer size 106

Image size 32x32
Minibatch size 256
Nonlinearity ReLU

No. of expert trajectories 100
Network update per env. step 1

Table 5: SAC hyperparameters shared
across all environments

Parameter Value

Optimizer Adam
Learning rate 5e-4

observation-action pairs ≈ 1M
Train-test split 9:1

Image size 32x32
Minibatch size 512
Nonlinearity LeakyReLU

Scheduler step size 5
Scheduler decay rate 0.99

Table 6: Behavioral cloning hyperparam-
eters shared across all environments

Sawyer Push Sawyer Lift Sawyer Assembly

Action dimension 7 8 7
Reward Scale 0.8 0.5 1.0

Table 7: Environment-specific parameters for SAC training

B.2 Choosing the optimal model for behavioral cloning

For behavioral cloning training, we use validation success rate for choosing the optimal model
weights rather than using loss on the test dataset. As seen in the Figure 9, we see that a lower error on
the test set does not necessarily provide the best validation accuracy. Therefore, we pick the model on
the first such epoch which receives 100% validation accuracy. For measuring the validation accuracy
after each training epoch, we use 5 episodes each on 6 randomly chosen seeds. We train our BC
agent for a total of 140 epochs and select the earliest model with the best validation accuracy for BC
trajectory smoothing as well as asymmetric visual actor’s weight initialization. We also report the
training time and number of epochs (for optimal convergence) required to account for the additional
steps required in learning the BC agent in Table 8.

0 10 20 30 40
Epoch

1.3

1.4

1.6

2.0

M
ea

n
Sq

ua
re

 E
rro

r (
x

1e
-6

) Train
Test

(a) Loss curves for behavioral cloning

0 10 20 30 40
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Su

cc
es

s R
at

e

(b) Validation Accuracy for behavioral cloning

Figure 9: Learning curves for behavioral cloning showing loss on the train set, loss on the test set as
well as the validation accuracy per epoch for Sawyer Assembly environment.

C Domain Randomization

For domain randomization, we randomly sample a variation for the texture, color and lighting
conditions for each episode during training. An illustration of the domain randomization samples for

14

Sawyer Push Sawyer Lift Sawyer Assembly

Number of epochs 12 13 24
Wall-clock time 30 39 120

Table 8: Number of epochs and wall-clock time (in minutes) for training a BC agent used for weight
initialization and BC Smoothing.

(a) Sawyer Push (b) Sawyer Lift (c) Sawyer Assembly

Figure 10: Illustration for random samples of domain randomization for each environment,

each environment is shown in Figure 10. Training our method with domain randomized environments
helps in learning robust policies that are capable of transfer to unseen domains and distractor objects
as shown in Section Figure 4.5.

D Environment Details

We simulate all of our 3D environments using MuJoCo physics engine [31]. Subsequently, we
describe the observation details for all three environments. We maintain all other specifics regarding
the reward functions, success criteria as well as environment intial states same as explained in Yamada
et al. [1].

D.1 Sawyer Push

The task is to reach an object placed inside a box and push it towards the goal region using a Sawyer
Arm. We define the positions of the goal, object and the end-effector as pgoal, pobj and peef respectively.

Observations. Each state observation st comprises of the joint state (sin θ, cos θ), angular joint
velocity, quaternion end-effector coordinates, peef the position of the object, the position of the goal
pgoal, distance between the end-effector and the object, and the distance between the object and goal
position. This acts as an input to the critic in the asymmetric framework.

The visual observation ot comprises of the simulated image corresponding to st and the robot joint
space information. This is used as an input to the actor in the asymmetric framework for learning the
visual policy.

D.2 Sawyer Lift

For Sawyer Lift, the task is to reach an object placed inside a box, grasp it using the gripper hand and
then lift it up above the box height.

Observations. The state observation st comprises of the joint state (sin θ, cos θ), angular joint
velocity, the position of the object position and quaternion, end-effector coordinates, peef , the position
of the goal pgoal, and distance between the end-effector and the object. This acts as an input to the
critic in the asymmetric framework.

15

For an input to the asymmetric actor for visual policy learning, the visual observation ot comprises of
the simulated image corresponding to st and the robot joint space information.

D.3 Sawyer Assembly

In Sawyer Assembly, the task is to assemble the fourth leg of a tabletop in its gripper to its corre-
sponding hole where the other three legs are already in place. This needs to be done while avoiding
collisions with the obstructions posed by the other three table legs that are already assembled since
the table is free to move under collisions.

Observations. The state observation st comprises of the joint state (sin θ, cos θ), angular velocity,
the position of the hole, the head and tail positions of the leg in the gripper hand and its quaternion.

The input to the asymmetric actor for visual policy learning comprises of the simulated image ot and
the robot joint state information.

16

