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Abstract: Reinforcement learning is finding its way to real-world problem appli-
cation, transferring from simulated environments to physical setups. In this work,
we implement vision-based alignment of an optical Mach-Zehnder interferometer
with a confocal telescope in one arm, which controls the diameter and divergence
of the corresponding beam. We use a continuous action space; exponential scaling
enables us to handle actions within a range of over two orders of magnitude. Our
agent trains only in a simulated environment with domain randomizations. In an
experimental evaluation, the agent significantly outperforms an existing solution
and a human expert.
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1 Introduction

Reinforcement learning (RL) demonstrates incredible success in simulated environments, surpassing
a human expert in Atari [1], chess, shogi and Go [2], as well as in more complicated games such as
Dota2 [3] and StarCraft [4]. In robotics, reinforcement learning shows remarkable results in pushing
[5], grasping [6] and stacking objects [7]. RL enables robots to walk, overcoming different obstacles
[8] and learn agile animal skills [9]. However, RL agents are not yet widely used in real robotics
and can hardly be compared to humans in a physical environment.

The principal problems of real-world applications of RL are nonstationarity and stochasticity of the
physical environment, complexity and time intensiveness of data acquisition as well as unsafety of
training and evaluation of policies on real robots [10]. A common method to handle these challenges
is to train an agent in a high-fidelity simulation (source domain) of the real environment (target
domain). An agent can then be transferred to a physical robot. The main limitation of this approach
is inevitable discrepancy between the source and target domains that lead to performance loss after
transfer. This limitation can be mitigated with the randomization of simulator parameters [5, 9, 11].

A promising application domain for smart robotics is experimental optics. Optical physicists work
with installations consisting of hundreds or thousands of elements. These setups need to be thor-
oughly aligned before measurements can be conducted. Dependent on the setup size, such a setup
can require several hours of work by a group of experts on a daily basis. The automation of this
procedure could drastically enhance the productivity of research groups. Since the alignment is an
iterative decision-making process with a well-defined reward function, it is natural to formulate and
solve it in terms of reinforcement learning.

The alignment of a large optical setup can typically be separated into modular tasks which can be
completed in sequence. A common modular task is the alignment of a Mach-Zehnder interferometer
(MZI), which consists in matching the optical modes of the electromagnetic waves in two paths so
that they exhibit a visibility of unity when interfering with each other. The robotization of MZI align-
ment was studied by Sorokin et al. [12], where this problem was treated as a partially observable
Markov decision process, with the observation being a sequence of interference patterns observed
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on a camera as the relative phase of the two arms is being varied. They trained a discrete-action
(VD D3QN [13]) agent, dubbed Interferobot, in a simulated environment with domain random-
izations and successfully transferred the trained agent to a real setup. The trained agent achieved
superhuman-level performance in terms of speed and quality of alignment.

However, the task of Ref. [12] was limited to matching the spatial positions and directions of the
two otherwise identical beams. It is much simpler than those alignment tasks that occur in practice,
which additionally require matching the geometric sizes of the beams, their divergence, and, in
the case of pulsed lasers, arrival time. These additional features of the experiment result in more
complex interference patterns (a richer observation space in RL parlance), hence requiring a more
sophisticated agent for their interpretation.

The main contribution of our work is to develop a new agent for interferometer alignment, which
addresses this challenge. Our solution is based on a different RL algorithm and features a number of
important innovations. First, the action space was changed from discrete to continuous, which also
changed the policy task from classification to regression. This enabled us to solve the issue arising
in the discrete action space, consisting in the number of actions growing exponentially with the
number of degrees of freedom [14]. However, it raises a new concern: the agent’s actions towards
the end of the alignment process need to be much finer than in the beginning; the action space spans
over two orders of magnitude. We address this with our second innovation — exponential action
rescaling, which allows the agent to effectively explore actions of different magnitudes. Third, by
granting the agent a continuous action space, we run a risk to leave the safe space of experimental
parameters, which may even result in damaging the equipment. We solve this issue by introducing
penalties that discourage the policy from approaching boundaries. Fourth, we enhance the set of
domain randomizations that help our agent perform better in the sim-to-real transfer. Our resulting
agent1 significantly outperforms the original Interferobot and a human expert in terms of both time
and quality of the alignment.

2 Related works

RL agents for robotics can be trained either on real-world data or in simulation. The advantage of the
former is that the agent receives hands-on experience of the environment in which it will be tested.
The shortcoming is that the acquisition of a large dataset required for training is a complicated and
time-consuming process. This is especially the case when the observations are vision-based. For
example, the training of a grasping agent in Kalashnikov et al. [6] required several weeks, in spite
of parallelization across 7 identical robots. This complication can be addressed with the help of
behavior cloning: Vecerik et al. [15] trained an agent solving the insertion task using raw visual
images using dozens of expert successful and failed trajectories. Hands-on training is simplified for
agents without visual observations. For example, Haarnoja et al. [8] developed a quadruped walking
robot that can generalize to unseen terrains with the training requiring as little as two hours. Another
approach for training robot locomotion was presented by Yang et al. [16], who collected 4.5 minutes
worth of data from a simple quadrupedal robot to model the robot’s dynamics and used this model
to real-time action planning.

An alternative approach is to train the agent in simulation and transfer it to a real-world system after-
wards. To eliminate the discrepancy between the real and simulated environments, Tobin et al. [11]
proposed a simple technique called domain randomization: they trained an object detection model on
simulated images with different textures, lights, object and camera positions, and demonstrated that
such a model achieves high accuracy in the real world. Peng et al. [5] trained a robotic hand to push
an object using randomization of physical parameters such as friction, mass, damping, etc. Another
example is the vision-based task of dexterous in-hand manipulation [17], which demonstrated the
effectiveness of applying randomizations to both the physical parameters and image observations.

The automation of optical system alignment is constantly evolving. In 1987 Gabler et al. [18]
demonstrated automated alignment of an optical fibre used an iterative algorithm that consequently
finds the maximum of a photo-detector signal with respect to each of the three fibre movement axis.
Fang and Savransky [19] considered automated alignment of a system of two lenses with 8 degrees
of freedom. Acquiring a focal plane image, their algorithm performs principal component analysis
and Kalman filtering to calculate proper control inputs.

1https://github.com/Stepan-Makarenko/RL_interferometer_alignment
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Deep machine learning, particularly RL, has become increasingly popular in experimental optics.
For example, Sun et al. [20] used an RL agent to stabilize a mode-locked laser by controlling wave-
plates and polarizers. RL algorithms are also routinely used to optimize optical communications
[21], e.g. to route traffic in optical transport networks [22, 23].

3 Mach-Zehnder interferometer

Laser

camera
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BS 2

mirror 2
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Figure 1: Conceptual scheme of the Mach-Zehnder interferometer. Lens 2, mirror 2 and BS 2 are
motorized optical elements controlled by an RL agent.

Interference is a physical phenomenon that results from coherent addition of amplitudes of two or
more overlapping waves; the resulting amplitude depends on the relative phase of the component
waves. Interferometers, which are among the main instruments of experimental optics, use interfer-
ence to precisely measure this phase difference.

In this paper we consider an MZI displayed in Fig. 1. A collimated (parallel) laser beam is divided
by a beam splitter (BS 1). The two resulting beams propagate through different paths before being
recombined, with the help of steering mirrors, by another beam splitter (BS 2) and viewed by a cam-
era. One of the mirrors is mounted on a piezoelectric transducer to vary the relative phase ϕ of the
beams. One of the beam paths (the lower one in Fig. 1) contains a system of two lenses (telescope),
which control the beam divergence and size. We use motorized mounts for mirror 2 and BS 2; lens 2
is mounted on a motorized translation stage. Aligning the interferometer requires precise matching
of the two beams in terms of their transverse positions, directions, radii and divergences.

The images from the camera serve as observations for our RL agent. Examples of acquired images
are shown in Fig. 2. The curved shape of the interference fringes is a consequence of different
divergences of the two beams. We apply an asymmetric sawtooth voltage pattern to the piezo,
akin to Ref. [12], to view the temporal dynamics of fringes. The amplitude of the piezo motion
corresponds to a phase difference of about 2π. For a misaligned interferometer, the piezo motion
causes transverse displacement of the fringes visible in Fig. 2 (b-d), which permit the agent to
extract the information about the sign of the difference of the beams’ angles. When fully aligned,
the interference will appear as a single blinking spot [Fig. 2 (a)].

The complexity of alignment arises because changing the angular orientations of the mirrors simul-
taneously affects the position and angle of the lower beam, while the lens movement changes the
lower beam radius and divergence. Moreover, images received from the camera can be corrupted by
noise, aberrations, ambient light and dust. The problem is additionally complicated by the inaccu-
racy of mounts and positioners whose relative action noise is about 4%.

The position-dependent intensity of the interference pattern can be written as I(x, y, ϕ) =
1
2 |Eupper(x, y)e

iϕ + Elower(x, y)|2, where Eupper/lower(x, y) is the amplitude of each beam. The
quality metric of alignment, visibility, is defined as

V =
maxϕ(Itot(ϕ))−minϕ(Itot(ϕ))

maxϕ(Itot(ϕ)) + minϕ(Itot(ϕ))
(1)

where Itot(ϕ) =
∫∫

I(x, y, ϕ)dxdy is a total light intensity in the image plane with the phase
difference ϕ between the arms. The intensity depends on time because of periodic piezo movement
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Figure 2: Camera images from the Mach-Zehnder interferometer. (b-d) Example images acquired
with a misaligned interferometer. The images in each row correspond to varying path length differ-
ences of the interferometer arms.

that varies the phase difference between the two interferometer arms. The visibility lies in [0, 1]
range, where V = 1 corresponds to a perfectly aligned interferometer.

4 Background

We consider a standard partially observable Markov decision process (POMDP) setting where the
purpose of an agent is to maximize its cumulative reward during the policy execution. The obser-
vation of the environment at timestep t is defined as ot ∈ O and is sampled from the distribution
ot ∼ U(ot|st), where st ∈ S is the state. The policy of our agent is a deterministic function
at = π(ot) yielding an action, which is an element of the action space A. Following the action, the
agent receives a reward rt : S × A → R and the next observation ot+1 ∼ U(ot+1|st+1), where
st+1 is produced according to a latent transition distribution st+1 ∼ F (st+1|st, at). The discounted
reward sum (return) from timestep t in each episode is Rt =

∑T
i=t γ

i−tri, where γ ∈ [0, 1] is the
discount factor and T is the horizon of the episode.

The agent’s objective is to learn the policy π∗ that maximizes the expected return J(π) =
Eτ∼p(τ |π)[R0] where p(τ |π) is the distribution of trajectories τ = (o0, a0, o1, a1, ..., aT−1, oT )
produced by policy π:

π∗ = argmax
π

J(π). (2)

Policy gradient. The policy π is defined by parameters θ (i.e. π = πθ), so the optimization (2)
is performed with respect to the parameters: θ∗ = argmaxθ J(πθ). A common approach to such
a problem is policy gradient [24], which iteratively improves the policy in terms of expected return
via gradient ascent:

θt+1 = θt + α
∂J(πθ)

∂θ
, (3)

where α is the learning rate. The algorithms of this family vary by the method of approximating the
unknown J(πθ).
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A common approach to continuous-action Markov decision processes is TD3 [25] which is an ex-
tension of another popular algorithm DDPG [26]. This algorithm uses three neural networks: one
(actor) for a deterministic policy and two (critics) for evaluating the action-state values Q(st, at).
Using two critics allows the algorithm to suffer less from overestimating the Q-values; in addition,
the algorithm smoothens the Q-functions by adding Gaussian noise to the target actions when up-
dating the parameters of the critics. Gaussian noise is also added to each policy action during the
training to encourage exploration.

Domain randomization. To lower the performance losses associated with the transferring of the
agent from a simulated to real-world environment, domain randomization is used. The agent is
trained for a set of tasks with different dynamics F̂ (st|st−1, at−1, µsim) ≈ F (st|st−1, at−1, µreal)

and sensor noise models Û(ot|st, µsim) ≈ U(ot|st, µreal) where µsim/real are sets of environment
parameters. Whereas we do not know the actual µreal of the real environment, varying µsim in a
range containing µreal helps to improve generalization and transfer quality.

5 Our method

In this work, we apply continuous control reinforcement learning methods to align the MZI. As
mentioned above, the alignment is performed step by step and the actions depend on the interference
patterns observed by the agent, so it can be naturally viewed as a POMDP.

The agent is trained in simulation and evaluated on a real interferometer. The training algorithm is
listed in Appendix A and the MZI simulator is described in Appendix B.

State, observation and action. The state of the environment is a vector consisting of the transverse
position (x, y), direction angle (αx, αy), radius rlower and divergence curvature ρ of the lower beam
in the plane of the camera. The position and transverse direction of the upper beam are assumed
to be zero. This state is fully determined by the angles of the mirror and the beam splitter and the
position of the lens. The range of allowed states, listed in Table 1, is restricted by the requirement
that the beam remains visible on the camera and the position of the lens stays within the travel range
of the translation stage.

The observation is a set of 16 consecutive 64 × 64 images acquired by the camera during one
period of the piezo mirror. The actions are five-dimensional vectors specifying the relative angular
deflections of both mirrors along the x and y axes and the linear displacement of the lens with respect
to their current positions. Each action vector component lies in the [−1, 1] range, where the values
of ±1 correspond to the maximum and minimum values as listed in Table 1. The absolute values
of each action are restricted to the interval [2.5 · 10−3, 1], because smaller actions do not produce
observable changes in the interference pattern and fall within the uncertainty range of motorized
mounts.

Episode and reset.

To compare the performance of our agent with that of Sorokin et al. [12], we keep the episode length
equal to 100 actions. At the beginning of each episode, the beam in the lower path is misaligned by
setting the mirror angles and lens position to random values within the allowed range.

Reward. Under the normal alignment procedure, the reward at each step is positive and consists of
two terms:

R = V − log(1− V ). (4)

The first term is the visibility, which, as discussed above, is the primary metric for the interferometer
alignment quality. The second term rewards high quality of the final alignment, which is critical for
optical experiments; it tends to infinity for V → 1 [12].

Element angle / position mirror 2, x mirror 2, y BS 2, x BS 2, y lens 2
Amplitude of max deflection 2.6 · 10−3 1.8 · 10−3 1.3 · 10−3 0.9 · 10−3 7.5

Table 1: Maximum deflection of each optical element. Mirrors angles are given in radians, lens
positions in millimeters.
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Figure 3: Effect of phase noise. The plots display the integrated intensity of the interference pattern
as the path length difference is varied. The behavior becomes closer to real after applying phase
noise.

However, if the agent proposes an action that takes one of the controls out of the boundaries defined
in Table 1, the episode is terminated to avoid damage to the equipment. Additionally, the agent
is penalized with the reward of P = −0.04. This penalty is important during early stages of the
training, when the reward (4) is normally close to zero. A small negative reward for unsafe actions
will train the agent to be aware of the bounds, but will not discourage exploration. The specific
value of P was handpicked via experimentation. On the other hand, when the agent is well-trained,
it normally receives a significant positive reward for each step. At this stage, terminating an episode
has a major negative effect on the return, thereby strongly discouraging unsafe actions.

Domain randomization. To learn a more generalized policy and facilitate sim-to-real transfer, we
introduce several domain randomizations, which are used during the training. The only randomiza-
tion that changes the dynamic of the environment F (st+1|st, at) is the beam radius randomization
within ±20% of the measured radius r = 0.71 mm. The randomization is applied at the beginning
of each episode.

Additionally, we introduce the following randomizations of the observation U(ot|st). First, to ad-
dress the noise of the camera detector, scattering, air fluctuations and dust effects, we add Gaussian
noise to each pixel acquired by the camera. The standard deviation of the noise is 20% with re-
spect to the simulated intensity value. Second, we rearrange cyclically the images within the video
sequence to account for the randomness of the camera trigger. In addition, we randomize the duty
cycle (fraction of time spent on the forward and backward passes) of the piezo. Third, we vary the
beams’ brightness by±30% to model the variance of the camera exposure. All these randomizations
are applied to each time step (i.e. they are constant for the 16 frames acquired in each step).

The randomizations described above have been used in Sorokin et al. [12] and have proven their
effectiveness. An additional randomization we introduce in this work addresses irregularities in the
motion of the piezo mirror and the frame rate, as well as fluctuations in the air density in different
arms of the interferometer, all of which lead to random variation of the optical path length difference
between the two MZI arms. To simulate these effects, we add Gaussian noise with the standard
deviation of 0.5 rad to this phase difference.

Action rescaling. As the alignment progresses, the agent’s actions become smaller and more
precise. The typical action magnitude decreases during an episode by about two orders (as illustrated
in the experimental Section 6 below). It is therefore desirable that the exploration noise also decrease
with the action magnitude. We satisfy this by setting the agent’s neural network to output a “raw
action” value a0 ∈ [−1, 1], from which the actual action is calculated according to

a =

{
sign(a0) · 1000|a0|−1 if |a0| > 0.17

0 if |a0| ≤ 0.17
(5)

This transformation produces rescaled actions with absolute values |a| ∈ {0} ∪ [2.5 · 10−3, 1].
Algorithm and network architecture. We use the standard TD3 algorithm with handpicked
hyperparameters to produce a deterministic policy, which yields the raw action a0 as described
above. For both critics and the actor, we use the VGG-16 [27] architecture, modified as follows.
The number of convolutional layers in the encoder is set to 8, followed by three MLP layers, with
no dropout. We have chosen this architecture because max pooling operations help reducing the

6



V ≥ 0.92 V ≥ 0.95 V ≥ 0.98

Human 93.9 (0%) 103.6 (0%) 129.6 (10%)
TD3 (our agent) 56.16 (0%) 75.06 (0%) 120.1 (4%)
Interferobot 98.7 (7.6%) 116.1 (7.6%) 156.4 (10.6%)

Table 2: Comparison with a human expert and the original Interferobot. The time required to reach
the visibility thresholds of 0.92, 0.95 and 0.98 are shown, together with the percentage of episodes
the threshold has not been reached (in parentheses).

overfitting and sensitivity to individual pixel noise. We use orthogonal initialization in all models as
we found it to ensure faster convergence.

We train the agent with a discount factor γ = 0.8; this relatively short reward sight inspires our
agent to reach high visibility faster. A Gaussian exploration noise is added to the raw action a0
with the standard deviation decreasing exponentially from 0.5 to 0.02 during the training. Although
the variance of this noise is independent of the magnitude of a0, its effect on the actual action a is
proportional to its magnitude due to the exponential dependence (5). The total number of steps is
106 and the replay buffer size is 105. Updates are performed every ten steps. The whole training on
an NVidia RTX 2080 GPU takes about 26 hours.

6 Experimental evaluation
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Figure 4: Comparison of Interferobot and our agent, demonstrating the advantage of the latter in
convergence speed and the final alignment quality. As evident from the box plot (b), the 25-75
interquartile range for our agent is significantly narrower than that of Interferobot, indicating higher
stability of the former. All results are averaged over 50 episodes.

For our experiments, we build an MZI according to the scheme shown in Fig. 1. We use a continuous
HeNe laser with wavelength λ = 632 nm, Newport Picomotor mirror mounts, a Standa 8MT167-
25LS linear translation stage, a CMOS camera with 16 fps acquisition rate, and a high-bandwidth
photodetector to precisely measure the visibility. In addition to our agent, we also train and evalu-
ate the original Interferobot [12] with the action space extended to include the lens movement. For
each agent, we run 50 episodes of evaluation with 100 timesteps. Figure 4 shows the evaluation re-
sults. Our agent significantly outperforms Interferobot in terms of the alignment time, final visibility
(averaged over the last 40 steps of each episode) and its variance.

Additionally, our agent has been compared with a human expert, who aligned the interferometer 10
times by manually turning the controls on the physical setup. As evidenced by Table 2, our agent
surpasses the human both in the speed and quality of the alignment.

A common trick used by human experts in aligning optics is to turn two mirrors steering the same
beam by equal and opposite angles. This action moves the position of the beam without changing
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Figure 5: Interpreting the agent’s policy. a) Percentage of actions that change the distance between
beams while conserving the directions increases with the step number. b) Mean norm of actions
decreases with the step number.

its direction. Fig. 5a shows that our agent learns this method and uses it extensively: by the end
of the procedure, about 70% of the actions contain such parallel movements. Fig. 5b shows the
action norm as a function of the step number. The descending trend means that at the beginning
our agent uses large actions to obtain rough alignment and decreases the action size to fine-tune the
interferometer.

Table 3 presents the results of an ablation study. A standard TD3 agent does not outperform the
original Interferobot and achieves a mean visibility of V = 0.83. Action rescaling and phase noise
randomizations significantly boost the performance of our agent, leading to a visibility of V =
0.98. It is notable that the phase noise randomization slightly decreases the mean visibility of the
Interferobot but improves the standard deviation. This bias-variance trade-off can be due to the
relative simplicity of the Interferobot model which cannot capture richer observations produced by
this randomization.

Model mean visibility for last 40 step standard deviation
TD3 + AR + PN 0.98 0.03
TD3 + AR 0.95 0.06
Interferobot 0.92 0.12
Interferobot + PN 0.90 0.08
TD3 0.83 0.18

Table 3: Comparative evaluation with ablated agents and the original Interferobot [12]. PN: phase
noise; AR: action rescaling.

7 Conclusion

We demonstrated a novel RL algorithm for the automatic alignment of an optical interferometer,
which contains a system of lenses in one of its optical paths. Such a setup results in richer obser-
vation and action spaces and constiututes a better approximation of a general problem of achieving
mode matching between two arbitrary Gaussian beams. Our reinforcement learning agent with a
continuous action space solves the alignment problem successfully, surpassing both a previous so-
lution and a human expert. Important innovations include exponential scaling of the action space,
an additional domain randomization that helps the agent generalize to a real setup after training in
simulation as well as a discrete reward structure that trains the agent to avoid unsafe actions. Our
solution will work for any Mach-Zehnder interferometer with 2 × 2 degrees of freedom (mirror
angles) controlling the position and direction, and one additional degree of freedom (lens position)
controlling the width and divergence of one of the beams.

8



8 Acknowledgments

We acknowledge support from Russian Science Foundation (19-71-10092).

References
[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.

Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[2] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[3] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019.

[4] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

[5] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic
control with dynamics randomization. In 2018 IEEE international conference on robotics and
automation (ICRA), pages 3803–3810. IEEE, 2018.

[6] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, et al. Scalable deep reinforcement learning for vision-based
robotic manipulation. In Conference on Robot Learning, pages 651–673. PMLR, 2018.

[7] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine. Composable deep re-
inforcement learning for robotic manipulation. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 6244–6251. IEEE, 2018.

[8] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine. Learning to walk via deep
reinforcement learning. arXiv preprint arXiv:1812.11103, 2018.

[9] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine. Learning agile robotic
locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784, 2020.

[10] G. Dulac-Arnold, D. Mankowitz, and T. Hester. Challenges of real-world reinforcement learn-
ing. arXiv preprint arXiv:1904.12901, 2019.

[11] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ
international conference on intelligent robots and systems (IROS), pages 23–30. IEEE, 2017.

[12] D. Sorokin, A. Ulanov, E. Sazhina, and A. Lvovsky. Interferobot: aligning an optical inter-
ferometer by a reinforcement learning agent. In Advances in Neural Information Processing
Systems, volume 33, pages 13238–13248. Curran Associates, Inc., 2020.

[13] Y. Huang, G. Wei, and Y. Wang. Vd d3qn: the variant of double deep q-learning network with
dueling architecture. In 2018 37th Chinese Control Conference (CCC), pages 9130–9135.
IEEE, 2018.

[14] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap, J. Hunt, T. Mann, T. We-
ber, T. Degris, and B. Coppin. Deep reinforcement learning in large discrete action spaces.
arXiv preprint arXiv:1512.07679, 2015.

[15] M. Vecerik, O. Sushkov, D. Barker, T. Rothörl, T. Hester, and J. Scholz. A practical approach
to insertion with variable socket position using deep reinforcement learning. In 2019 Interna-
tional Conference on Robotics and Automation (ICRA), pages 754–760. IEEE, 2019.

9



[16] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani. Data efficient rein-
forcement learning for legged robots. In Conference on Robot Learning, pages 1–10. PMLR,
2020.

[17] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1):3–20, 2020.

[18] C. Gabler, K. Li, S. Hackwood, and G. Beni. An optical alignment robot system. In Integration
and Packaging of Optoelectronic Devices, volume 703, pages 8–28. International Society for
Optics and Photonics, 1987.

[19] J. Fang and D. Savransky. Automated alignment of a reconfigurable optical system using
focal-plane sensing and kalman filtering. Applied optics, 55(22):5967–5976, 2016.

[20] C. Sun, E. Kaiser, S. L. Brunton, and J. N. Kutz. Deep reinforcement learning for optical
systems: A case study of mode-locked lasers. Machine Learning: Science and Technology, 1
(4):045013, 2020.

[21] D. Wang and M. Zhang. Artificial intelligence in optical communications: from machine
learning to deep learning. Frontiers in Communications and Networks, 2:9, 2021.
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Appendix

A. The pseudo code and hyperparameters

Algorithm 1: TD3 with action rescaling
1: Input: initial policy parameters θ, Q-function parameters φ1, φ2, empty replay buffer D
2: Set target parameters equal to main parameters θtarg ← θ, φtarg,1 ← φ1, φtarg,2 ← φ2
3: for i in range(number of steps) do
4: Get observation o and select action a0 = clip(πθ(o) + ε,−1, 1), where ε ∼ N (0, σexplore)
5: Compute rescaled action a(a0) according to Eq. (5)
6: Execute a in the environment
7: Get next observation o′, reward r, and done signal d to indicate whether o′ is terminal
8: Store (o, a0, r, o

′, d) in replay buffer D
9: If o′ is terminal, reset environment state.

10: if i > start train step then
11: for j in range(num epochs) do
12: Randomly sample a batch of transitions, B = {(o, a0, r, o′, d)} from D
13: Compute target actions

a′(o′) = clip
(
πθtarg(o

′) + clip(ε,−c, c),−1, 1
)
, ε ∼ N (0, σtarg)

14: Compute targets

y(r, o′, d) = r + γ(1− d) min
i=1,2

Qφtarg,i(o
′, a′(o′))

15: Update Q-functions by one step of gradient descent using

∇φi

1

|B|
∑

(o,a0,r,o′,d)∈B

(Qφi(o, a0)− y(r, o′, d))
2 for i = 1, 2

16: if j mod policy delay = 0 then
17: Update policy by one step of gradient ascent using

∇θ
1

|B|
∑
o∈B

Qφ1
(o, πθ(o))

18: Update target networks with

φtarg,i ← ρpolyakφtarg,i + (1− ρpolyak)φi for i = 1, 2

θtarg ← ρpolyakθtarg + (1− ρpolyak)θ

19: end if
20: end for
21: end if
22: end for

batch size 32 π lr 10−5

num epochs 10 Q lr 10−4

policy delay 1 σtarg 0.2
max grad norm 10 c 0.5
start train step 104 steps optimizer Adam

ρpolyak 0.995
Table 4: Training hyperparameters

Distance, mm
BS 1→Mirror 2 300
Mirror 2→ BS 2 200
BS 2→ Camera 100
BS 1→ Lens 1 50
flens1 = flens2 50

Table 5: Setup parameters

In this section we show a full listing of our algorithm as well as the hyperparameters (aside from
those mentioned in the main text) and the parameters of the physical setup.
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The exponential action scaling described in the article is performed in step 5 of Algorithm 1. Im-
portantly, while the action a is executed in the environment, the raw action a0 is stored in the replay
buffer D (step 8).

B. The simulator

The laser beams in the upper and lower arms of the interferometer are modelled with a Gaussian
transverse profile. Their electric field amplitudes at a point in space with the coordinates (x, y, z)
are given by

Eu = Re

[
exp

(
−x

2 + y2

r2u(z)

)
exp

(
−i
(
kzz + k

x2 + y2

2ρ2u(z)
+ φpiezo(t)

))]
(6a)

El = Re

[
exp

(
− (x− x0)2 + (y − y0)2

r2l (z)

)
exp

(
−i
(
kxx+ kyy + kzz + k

x2 + y2

2ρ2l (z)
z

))]
(6b)

where the subscripts u and l respectively refer to the upper and lower beam, (x0, y0) is the position
of the centre of the lower beam [the upper beam is assumed centered at (x, y) = (0, 0)], z is
the direction of beams propagation, r(z) the beam radius, ρ(z) the wavefront curvature radius,

(kx, ky, kz) the wave vector with k =
√
k2x + k2y + k2z = 2π/λ, and φpiezo(t) the phase shift that

produced by the piezo mirror periodic movement. We work in the paraxial approximation, such that
kz � kx, ky .

Prior to the first beam splitter, the two beams have identical parameters. The propagation of the
Gaussian beams is analyzed in the framework of the ABCD formalism, where the beam is charac-

terized by a complex parameter
1

q
=

1

ρ
− iλ

πr2
and the transformations of the beam as it propagates

through the setup are given by q′ =
Aq +B

Cq +D
, where, e.g.,

[
A B
C D

]
=

[
1 d
0 1

]
for free propagation

over a distance d and
[
A B
C D

]
=

[
1 0
−1/f 1

]
for a thin lens of focal length f .

The transverse field profiles (6) are calculated for both beams, after which the interference pattern
and the visibility are evaluated according to

I(x, y, z, t) = |Eu(x, y, z) + El(x, y, z)|2

and

V =
maxt(Itot)−mint(Itot)

maxt(Itot) + mint(Itot)
,

where Itot(t) =
∫∫ +∞
−∞ I(x, y, t)dxdy is the intensity integrated over the beam area; the maximum

and minimum are taken over the period of piezo movement.
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