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A Noisy sensing and actuation

We are so far unable to deploy our system on a real robot, since we lack access to a dexterous hand
robot. Instead, we provide experiments with a popular realistic simulator and further stress-test our
approach with noisy sensing and actuation. Those results appear in the main paper; here we elaborate
on the noise models.

Robots can encounter a number of non-ideal scenarios when executing policies in the real world. The
ever changing nature of the real world coupled with faults in hardware systems can pose a daunting
challenge to real world deployment. These discrepancies often occur in the form of sensing and
actuation failures. Sources for noise include variations in sensory systems such as perception modules
as well as fluctuations in actuation control. Before robots can successfully be deployed into the real
world, they must be capable of handling such variations.
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In Section 4 of the main paper, we describe the setup for inducing noise into our agent’s sensory
and actuation modules during training and testing following prior work [1, 2, 3, 4]. Here, we further
describe each of the noise sources in detail.

1. Proprioceptive noise: We apply additive Gaussian noise of mean 0 and standard deviation
0.01 on the robot’s joint angles and angular velocities. This simulates the sensing and
signal failures that can arise in the system. Thus training with such an induced noise source
improves the likelihood of the robot being more robust to hardware failures during actuation.

2. Actuation noise: Similar to the proprioceptive noise, we apply additive Gaussian noise on
the robot actuation values. Such a noise model accounts for fluctuations in actuation control
experienced in real-world deployment.

3. Perception noise: For each RGB image I] that is processed by the vision module fy-, we
apply pixel perturbations in the range [—5, 5] and clip all pixel values between [0, 255]. This
more closely resembles noise arising during camera sensing [1].

4. Tracking noise: The object tracking points are operated on by a Gaussian noise model of
mean 0 and standard deviation 1 cm. Additionally, we also freeze these tracking points for
20 frames at random intervals to further challenge our system. This simulates the effect of
tracking failures arising from momentary occlusions of the object during interaction.

As can be seen in Fig. 5 (left) of the main paper, even under substantial noise, our proposed method
DEXVIP still yields a high grasp success rate comparable to its performance under noise-free
conditions, and even outperforms noise-free models of the other methods. This demonstrates the
robustness of the trained policy to non-ideal realistic conditions. Since our lab does not have access
to a real robot, we perform all our experiments in simulation. However, using the noise-induction
techniques described above, we are able to test our method for real-world compliance under realistic
conditions.

Some areas that could still vary between simulation and the real world can include friction coeffi-
cients, damping factors, and so forth, which could further be accounted for using automatic domain
randomization techniques as in [3]. Despite the lack of access to a real robot, the encouraging
performance of DEXVIP in a noise-induced simulation environment lends support for potentially
transferring the learned policies to the real world [3, 2, 5] were we to gain access to a robot.

B Reward function details

We describe the various components of the reward function in Eq.1 of the main paper in more detail.

1. Rgyce: This is a positive reward determining if the object has been grasped by the agent. At
a particular time step ¢, if there is contact established between the hand and the object and
no contact between the object and the table, the agent gets a +1 reward for that time step.
This ensures that scenarios where the object is resting on the table as well those in which
the object is in the air but out of the agent’s reach do not get counted as grasp successes.

2. Rguyy: This is a negative reward denoting the hand-affordance contact distance between
points on the hand and object affordance regions. Following [4], we compute R, as the
negative of the Chamfer distance between M points on the hand and N points on the object.
It is defined as follows:

Rags = —dcnamper(M,N) = = > min ||m — nll;— > min [[m — nll3 ()
nenN

meM

We set M = 10 and N = 20 in our experiments, following [4]. In essence, the agent
experiences a higher penalty if it is away from the object affordance region, which drops
to 0 as it gets closer. This encourages the agent to explore useful object regions during
exploration.

3. Rpose: As discussed in the main paper, J2,,s. 1S @ mean per-joint angle error applied on the
robot joint angles p; upon making contact with the object, so that it matches the human
expert pose p. We ignore the azimuth and elevation values of the arm in the pose error since
they are specific to the object orientation in 1", which may be different from the robot’s
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Figure A: TSNE over hand poses. A good distribution of human and robot poses across morpholo-
gies is observed (e.g. clenched fist - mug, pan, teapot vs. loose fist - apple, mouse).

viewpoint I”. This joint error is also hierarchically weighted over the joint angles such that
errors on the parent joints are more heavily penalized compared to those on the child joints.
This encourages the agent to align parent joints first before aligning their children and thus
adopts a global to local approach for pose matching. R,,s. is therefore defined as follows:
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Rpose = ’71ZWTiSt + Z (’72linuckle + /yglzlniddle + 74l$istal) : (2)
j=1

Here, j spans all five fingers of the hand and [/is the error between joint i of the j** finger
of the robot pose p; and target robot pose p’.. In our experiments, we set y; = 1.0, 72 =
0.75,v3 = 0.5,7v4 = 0.25. In this way, we can have the poses align faster starting from
the root joint. 2, is a negative reward that penalizes the agent for having poses that
are distant from the human pose p. Furthermore, R, is applied only when 30% of the
robot’s touch sensors 1" are activated. This encourages the robot to assume the target hand
pose once it is close to the object and in contact with it.

4. Rentropy: This reward is used while training the PPO agent so as to encourage exploration
of the action space. This is implemented by maximizing the entropy over the target action
distribution.

C TSNE on hand poses

We perform a TSNE analysis on all the human hand poses p* € P” in our curated YouTube dataset
and the hand poses of our trained grasping agent in Fig. A. We observe a meaningful distribution
across object morphologies (e.g. clenched fist — mug, pan, teapot, vs. loose fist — apple, mouse). This
behavior is also reflected in the trained DEXVIP agent for which we analyze the robot’s pose at the
last time step, p7. of all successful grasps. The distribution for DEXVIP is also more clustered since
it uses the cluster center per object category p;: as the target pose during training. This shows that the
proposed approach of injecting human hand pose priors derived from in-the-wild object interaction
videos can successfully guide dexterous robotic agents.



D Hand pose retargeting from FrankMocap to Adroit

To use the human pose inferred from FrankMocap in our simulator, we need to re-target the pose
from FrankMocap to Adroit. Although both the human hand and the robot hand share a common
five-finger morphology, their joint hierarchy trees are different. Fig. B.i shows the two kinematic
chains. We briefly describe each morphology below:

* FrankMocap: It uses the hand model from SMPL-X [4] to represent the human hand pose
inferred from video frames. It consists of three ball joints in each of the five fingers, each
having 3 DoF. This yields 15 ball joints in total with 45 DoF. Additionally, the root joint
at the base of the hand j{ has 6 DoF. The joint space of the human hand in 3D is thus
represented as J" € R21*3 — a wrist, 15 finger joints, and 5 finger tips. Note that the finger
tips are not joint locations, but are used for computing joint angles for their parent joints

* Adroit: The Adroit hand in the simulator is actuated by 24 revolute joints having 1 DoF
each, resulting in 24 DoF in total. The hand is attached to a 6 DoF robotic arm, yielding 30
DoF in total. The joint space of the robot hand is thus represented by J" € R3°,

As we can see, the FrankMocap model has many more degrees of freedom compared to the Adroit
hand. Keeping these differences in mind, we design a joint retargeting mechanism to bridge the gap
between the FrankMocap and Adroit models and effectively use the human pose to train the robot.

The hand pose retargeting mechanism is depicted in Fig. B.ii. The different stages of this retargeting
pipeline are as follows:

a) Hand pose in world coordinates: We infer the FrankMocap pose from the input video

frame 1" and obtain the human hand pose p"* € J Zj as a set of 3D joint key-points in world
coordinates.

b) World to root relative: We convert raw X, Y, Z positions of the joints in world coordinates
to root-relative coordinates by shifting the origin to the wrist joint j? to obtain p”. in root
relative pose J ffr € R21%3_ To determine the orientation of the Adroit arm, we first construct
a plane through the wrist 57, fore finger knuckle j? and ring finger knuckle 57,). The palm is
taken to lie in this plane. The palmar plane along with its normal defines the orientation of
the arm. The axis angles obtained during this transformation are used to set the rotational
joints of the Adroit arm in J" € R3°,

¢) Root relative to parent relative: A sequential rotational transform is applied about X, Y
and Z axes, with the angular changes «, 3 and +y respectively, on the joint positions in
the Root Relative Coordinate System to get the corresponding skeleton in Parent Relative
Coordinate System. These angular changes are computed such that the Z-axis lies along
the child joint and the Y-axis points outward at every finger joint. At every level of the
joint hierarchy, coordinate transformations of the parent are applied to the child joints so
that after successively parsing through the entire tree, the root relative coordinates p”,. are
transformed into a parent-relative coordinate frame pZT inJ Zr € R21X3, Here every joint j;
is expressed relative to a coordinate frame defined at its parent joint P(j;).

d) Joint angle transfer: The polar coordinates (azimuth and elevations) computed in the
parent relative system yield local joint angles that are mapped onto the revolute joints in
the Adroit space J" € R3". Most revolute joints in Adroit can be mapped from the azimuth
or elevation values of different joints in PZT' As an example, consider the middle joint on
the fore finger in Adroit i.e. jg in Fig. B.i. This joint angle can be obtained by computing
the elevation of j2 with respect to the coordinate frame defined at its parent joint j2 in
FrankMocap, while ignoring the azimuth and tilt angles. Other joints can similarly be
obtained from the joint definitions in pgr. For the little finger metacarpel 574 which is not

modelled in FrankMocap, we set it to be 0.25 of the elevation at jf3.

Using the above re-targeting scheme, we are able to successfully transfer the FrankMocap pose from
the human pose space to the Adroit pose space. Samples can be seen in Fig. 3, main paper. While the
mapping is approximate—due to the inherent differences in kinematic chains as discussed above—we
find that this re-targeting mechanism generates Adroit poses that closely match the human pose and
works well for our purpose.



Frankmocap hand \

51 DoF

Adroit hand \

30 DoF

24 Joints + Arm

TH - 5xRevolute - 5 DoF
FF - 4xRevolute - 4 DoF
MF - 4xRevolute - 4 DoF
RF - 4xRevolute - 4 DoF
LF - 5xRevolute - 5 DoF

Wrist - 2xRevolute - 2 DoF
Arm - 1xFree -6 DOFJ

TH - 3xBall - 9 DoF
FF -3xBall - 9 DoF
MF - 3xBall - 9 DoF
RF - 3xBall - 9 DoF
LF -3xBall - 9 DoF
Root - 1xFree - 6 DoF

TH=Thumb, FF = Fore finger, MF = Middle finger, RF = Ring finger, LF = Little finger
i) Kinematic chain for FrankMocap (left) and Adroit (right)

a) 3D Joints in b) Root Relative c) Parent Relative d) Joint Angles
World Frame Frame A Frame in Adroit

ii) Hand pose retargeting mechanism between FrankMocap and Adroit

Figure B: Pose retargeting from FrankMocap to Adroit. i) Joint hierarchies for Frankmocap (left)
ad Adroit (right). Frankmocap has 15 ball joints with 3 DoF, root with 6 DoF and 5 finger tips.
Adroit has 24 revolute joints with 1 DoF and an arm (not shown) with 6 DoF. ii) Pose retargeting
mechanism for transforming Frankmocap joints to the Adroit joint space. a) We first obtain the
Frankmocap pose i.e. 3D joint locations in the world coordinate frame b) This is converted to a root
relative coordinate frame through a simple coordinate translation. c¢) We then compute the palmar
plane in Frankmocap to obtain the arm orientation for Adroit. Subsequently, the structure of the
kinematic tree is used to successively transform the root relative coordinate frame to a parent relative
frame centered at each joint. d) The polar coordinates (azimuth and elevations) computed in the
parent relative system yield local joint angles that are mapped onto the revolute joints in Adroit.

E Physical parameters in the simulator

E.1 Parameter settings

We report the physical parameters setting for the simulated environment in Table A. All environment
physical parameters are taken from [6]. The sliding friction acts along both axes of the tangent plane.
The torsional friction acts around the contact normal. The rolling friction acts around both axes of
the tangent plane. Regular friction is present between the hand, object and table. The joints within
the hand are assumed to be friction-less with respect to each other.

E.2 Robustness to parameters

To further demonstrate the robustness of the trained policy to different masses and scales of the
objects, we evaluate the trained policy on objects with varying masses and scales. Specifically, we
vary the mass between 0.5kg and 1.5kg and the scale between 0.8x and 1.2z of the training size.
Results can be seen in Figure C. We observe that Dex VIP remains fairly robust to large variations in
these physical properties. It is easier to grasp lighter object than heavier ones as expected.



Parameter Value

Sliding friction 1N
Tortional friction 0.5N
Rolling friction 0.01N
Hand wrist damping 0.5N
Hand fingers damping 0.0bN
Object rotational damping 0.1N
Object mass lkg

Table A: Physical parameter settings used in the simulator
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Figure C: Robustness to changes in physical parameters. We evaluate DexVIP on a range of object
mass and scale values. DEXVIP remains fairly robust to large variations in such physical object
properties.

F Hand-Affordance distance

The distance input d is the pairwise distance between the agent’s hand and the object affordance
region as defined in GRAFF [4]. Here the object affordance region is a 2D binary affordance map that
is inferred from a model from [4] that is trained for affordance anticipation on ContactDB objects.
Like in [4], we find that this model works reasonably well for objects outside ContactDB as well. We
obtain affordance points by back-projecting the affordance map to 3D points in the camera coordinate
system using the depth map at ¢5. We sample M = 20 points from these back-projected points. We
then track these points throughout the rest of the episode. In the noise experiments, in addition to the
stated noise models, we also induce tracking failure on the affordance points to relax the tracking
assumption as in [4]. For points on the hand, we sample N = 10 regular points on the surface of the
palm and fingers. The number of points at every time step remains the same across all objects.

G Additional results

G.1 Effect of pose prediction on performance

DEXVIP uses hand poses inferred from video frames for obtaining target pose priors. Since these
poses are inferred, there can be errors in these predictions. To examine the effects of those errors
on our policies, we train a model on ground truth (GT) hand poses from ContactPose [7] captured
using mocap for all ContactDB objects. Using these GT poses to train the DEXVIP policy provides
an upper bound for grasp performance with perfect pose. Results are reported in Table B. We find
that the policy trained using inferred poses performs comparably to the one trained on GT poses,
showing that DEXVIP is fairly robust to errors in pose predictions. We further note that the hand
pose clustering process that we perform is able to effectively filter out bad/outlier poses so that we
obtain a representative hand pose for each object (Fig. D).



Pose Supervision Success Stability Functionality = Posture

Inferred pose 68 51 64 62
GT pose 70 53 65 65

Table B: Effect of hand pose supervision on grasping performance. DEXVIP uses hand poses
inferred from video frames for supervision. Using ground truth poses captured using mocap to train
the DEXVIP policy provides an upper bound for grasp performance. The policy trained using inferred
poses performs comparably to the one trained on GT poses indicating robustness to pose errors.

Cluster center Outliers

Figure D: Outlier poses. The clustering mechanism effectively filters out outlier poses which are
produced due to errors in pose prediction.

G.2 Effect of object shape variation on performance

We use keywords containing the object class label for obtaining grasp images for each object. We
use the same object category in simulation as well. Note that we do not require an exact matching
object instance for the one in the video. A generic object mesh from the same category works quite
well. To illustrate this, we show samples of a few objects in the video frame and within the simulator
along with their grasp success rate in Fig. E. We find that DEXVIP remains fairly robust to variations
in the object shape between the video and simulator. For instance, even though objects like teapot,
flashlight and saucepan do not have an exact match in the simulator, the grasp policy works quite
well on these objects.

Teapot: 59% Mug: 51% Flashlight: 81% Saucepan: 86% Bottle: 61%

Figure E: Effect of object shape variation on performance. DEXVIP remains fairly robust to
variations in the object shape between the video and simulator. For instance, even though objects like
teapot, flashlight and saucepan don’t have an exact match in the simulator, the grasp policy works
quite well on these objects.



Model Success Stability Functionality = Posture

Affordance only 60 41 63 48
Affordance + Touch 63 45 64 49
Affordance + Touch + Pose prior

(full DEXVIP model) 68 51 64 62

Table C: Metrics for DEXVIP ablations. The full DEXVIP policy is able to leverage the touch-
informed pose prior to perform well across all metrics.
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Figure F: Grasping results on additional non-ContactDB objects. Compared to the performance
on ContactDB, DEXVIP is able to maintain its performance and experiences only a marginal drop
whereas the other methods take substantial hits to performance. While the success rate of DAPG and
GRAFF drop by 15% and 12% respectively, the drop for DexVIP is only 4%. These results indicate
that DEXVIP can effectively leverage hand poses for a variety of different objects.

G.3 Ablation evaluation

We report all metrics for the ablations of the main paper in Table C. We observe that the full DEXVIP
model gains substantially in success, stability and posture metrics, while maintaining the functionality
score of the policy that is trained using only affordance.

G.4 Performance on additional objects

In addition to comparing performance on non-ContactDB objects with DAPG, we provide a compar-
ison against all methods in Figure F. Note that all 11 non-ContactDB objects belong to object classes
not found in ContactDB. When compared to performance on ContactDB, we observe that DEXVIP
is able to maintain its performance and experiences only a marginal drop whereas the other methods
undergo substantial drops in performance. As reported in L318-320, DAPG’s success rate drops
from 59%-50%, a 15% drop in performance, while DEXVIP sees a marginal 4% drop from 68% to
65%. Furthermore GRAFF also sees a large 12% drop from 60% to 53%. The results indicate that
DEXVIP can effectively leverage hand poses for a variety of objects.
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