
Appendix

A. Structured Exploration Algorithm 3 Exploration Node
Require: Datasets Dtask, Dneg

Require: Problem distribution P
Require: Shared queue Qtask

Require: Motion policy ⇡lo; Task policy ⇡hi

Require: Temperature �; coefficient ⌘
Require: Environment dynamics f : X ⇥ U ! X

1: while not terminated do
2: x,�, goal ⇠ P
3: a ⇡hi(x,�)
4: xprev x
5: ⌧ ;
6: ~a ;
7: while not goal(x) and not timeout do
8: â ⇡hi(x,�)
9: if â 6= a and a.post(x) then

10: ## The previous action successfully completed
11: xprev x
12: if not â.pre(x) then
13: ## Get TAMP supervision from this state
14: push(Qtask, (x,�, ⌧, goal))
15: while not â.pre(x) and not max iter do
16: ## Penalize ⇡hi for invalid actions
17: append(Dneg, ({x}, {â}, goal))
18: � ⌘ · �
19: â ⇡hi(x,�)
20: if not â.pre(x) then
21: ## No valid action found, reset
22: break
23: a â
24: else if â 6= a and not a.post(x) then
25: ## Get TAMP supervision in case a was a bad,

but valid, selection
26: push(Qtask, (xprev,�, ⌧, goal))
27: ## Penalize ⇡hi for a premature transition
28: append(Dneg, ({x}, {â}, goal))
29: else if â = a and a.post(x) then
30: ## Penalize ⇡hi for a delayed transition
31: append(Dneg, ({x}, {a}, goal))
32: ## Get TAMP supervision
33: push(Qtask, (x,�, ⌧, goal))
34: u ⇡lo(x|a)
35: x f(x, u)
36: � update(x,�)
37: ~a.append(a); ⌧.append(x)

The final component of our system, the ex-
ploration node, identifies states where the
task policy generates invalid actions. We
adopt a procedure that enforces the struc-
ture of the action schemas A onto the pol-
icy rollouts. Note this structure is enforced
only in training and not during evaluation
of the policies.

At each timestep t, the task policy ⇡hi pro-
poses a parameterized action ât. We then
check the post-conditions of the last ac-
tion at�1 and the pre-conditions of ât. If
both are satisfied, this is a valid high-level
action sequence and we set at = ât. If
the post-conditions of at�1 are not met
(and ât 6= at�1), we reject ât and leave
at�1 unchanged. In this case, we gener-
ate a negative training example for the task
policy: we populate a dataset Dneg and
train the network to minimize the likeli-
hood of those (invalid) high-level actions.
We also generate negative examples when
at�1’s post-conditions are satisfied and
ât = at�1. This discourages actions that
do not change the high-level state.

If the pre-conditions of ât are not met, we
need to select an alternative action for at.
We do this by sampling from a softmax
distribution over the raw logits of the net-
work with temperature parameter �. We
continue sampling until 1) either a valid
action is found or 2) we hit a termination
condition. For each rejected candidate ât,
we generate a negative training example.

If we rejected any candidate ât at timestep
t or terminate without having reached the
goal, a new problem instance is added to
the shared queue Qtask. The problem in-
stance contains four values: a state vector
x, a symbolic description � of the world in
state x, the trajectory ⌧ up to the timestep
of x, and the current goal goal. If ât was
rejected due to pre-condition violations,
we set x to the current state. If the rollout failed to reach the goal or ât was rejected due to post-
condition violations, we set x to the state of the most recent action transition. The assumption in this
case is that ⇡lo has failed to execute properly, and the system should query from the last timestep
when both ⇡hi and ⇡lo were trusted. Our full approach is outlined in algorithm 3.

The benefit of these structured rollouts is two-fold. First, at each timestep t we can guarantee the
sequence of abstract actions up to t forms a valid plan. This enables the system to isolate specific
points of failure: either the high-level has provided a bad transition or the low-level has failed to
properly execute. Second, we isolate configurations where the task policy must disagree with the
task planner, without the cost of invoking the task planner. This enables efficient feedback from the
task policy into the training.

12

B. Hyperparameters and Policy Training Details

In this section we provide specifics relating to policy training and the underlying neural networks.

Where appropriate, each network used the ReLU function between layers. All layer weights were
initialized with Xavier initialization. Continuous network outputs (e.g. motion controls) were
trained with the standard mean-squared error loss. Discrete network outputs (e.g. action parameter-
izations) were passed through a softmax activation function (modelling the outputs as a probability
distribution over a discrete option set) and trained with the standard cross-entropy loss.

2D Pick-Place Experiments

For these experiments, a single control network was trained which took the one-hot encoding of the
action schema as input. The control network consisted of two fully-connected hidden layers with 64
units each. The task network always contained 2 fully connected layers with 96 units each. Where
applicable, training data was split evenly between trajectories generated from the base problem dis-
tribution and trajectories generated from problems sampled via exploration. Optimized trajectories
were re-timed to a maximum velocity of 0.3 and two no-op (zero velocity) actions appended to
task transitions. For variants with flat policies, the hyperparameters and network architecture of the
control network were used.

Ground State Observations. The task policy was trained with a learning rate of 10�3 and l2
regularization with coefficient 4 ⇥ 10�4. The motion policy was trained with a learning rate of
2⇥ 10�4 and l2 regularization with coefficient 10�4.

The attention component was a hard-coded conversion that computed the displacement from the
robot to the target object (for grasping actions) or from the grasped object to the target location (for
transfer/place actions).

Camera Observations. The task policy was trained with a learning rate of 4⇥ 10�4 and l2 regular-
ization with coefficient 10�5. The motion policy was trained with a learning rate of 2 ⇥ 10�4 and
l2 regularization with coefficient 10�5.

For the task network, 80-by-80 RGB images fed through to a network containing two convolutional
layers with 32 5-by-5 filters each. This then concatenated with the velocity information and passed
to the fully connected layers. Between the convolutional and fully connected layers we applied a
spatial softmax with feature point expectation as outlined by Levine et al. [1].

For the attention stage, the outputs were unchanged but a separately trained network replaced the
hard-coded conversion. All inputs contained 80-by-80 RGB images. The network contained two
convolutional layers with 32 5-by-5 filters each. This then concatenated with the LIDAR observa-
tions and one-hot task encoding and passed to the fully connected layers. Between the convolutional
and fully connected layers we applied a spatial softmax with feature point expectation.

PPO Baseline. The primary hyperparameter we tuned was the environment update batch size
(n steps). We varied this value to use batch sizes from 32 to 4096. For our reported results, we
settled on the default value of 128 provided by Hill et al. [32]. We also evaluated gamma values of
0.9, 0.95, and the default 0.99.

HIRO Baseline. We ran with the default TD3 hyperparameters. We varied the meta-period from
5 to 25. We tried both scaled and unscaled version of the negative distance exponential negative
distance intrinsic rewards. Our reported results are with the default settings.

RoboSuite Pick-Place Experiments

For these experiments, four separate control networks were trained for each action schema. All net-
works in the task and motion policies consisted of two fully-connected hidden layers with 64 units
each. Where applicable, training data was divided 48% into trajectories generated from the base
problem distribution, 48% into trajectories generated from problems sampled via exploration, and
4% negative samples encountered via exploration. For variants with flat policies, the hyperparame-
ters and network architecture of the control network were used.

13

Figure 5: For the 1 object RoboSuite pick-place problem, we compare different feedback types in our system
for training both flat policies (left) and our hierarchical policies (right). In both cases, motion-feedback provided
the most significant performance gains, bringing flat policy performance from 52% to 88% and hierarchical
policy performance from 58% to 97%. Because the task-feedback condition requires the separately trained task
policy, for comparison we use an alternative (random-feedback) where randomly sampled states from failed
policy rollouts are fed back to the problem distribution. This noticeably hurt performance for both types of
policy, indicating how the choice of problem selection impacts overall performance.

The task policy was trained with a learning rate of 10�4 and l2 regularization with coefficient 10�4.
The motion policy was trained with a learning rate of 2⇥10�4 and l2 regularization with coefficient
10�5.

The attention component was a hard-coded conversion that computed the displacement from the
robot end-effector to a grasp point on the target object (for grasping related actions) or from the
grasped object to the target location (for put-down related actions).

RoboDesk Experiments

For these experiments, seven separate control networks were trained for each action schema. Ob-
servations contained 64-by-64 RGB images. All control networks contained three convolutional
layers: 32 7x7 filters, followed by 32 5x5 filters, followed by 16 5x5 filters. The primitive network
contained two layers each with 32 5x5 filters. In each network, the final convolutional layer was
followed by two fully connected layers with 64 units each. Between the convolution and fully con-
nected layers was a spatial softmax with feature point expectation. The output of the convolutional
layers was concatenated with the current joint angles and end-effector position before passing to the
fully connected layers. For the control networks, the one-hot encoding of the action schemas and
parameters were included in the concatenation. No separate attention module was used for these
experiments.

Where applicable, training data was divided 48% into trajectories generated from the base prob-
lem distribution, 48% into trajectories generated from problems sampled via exploration, and 4%
negative samples encountered via exploration.

The task policy was trained with a learning rate of 10�4 and l2 regularization with coefficient 10�5.
The motion policy was trained with a learning rate of 10�4 and l2 regularization with coefficient
10�6.

C. Additional Results

7.1 RoboSuite Experiments

We provide additional results from our RoboSuite experiments. The first set, shown in Figure 5,
provide a complete ablation for the 1 object problems. In this setting, the feedback from the motion
policy to trajectory optimization (motion-feedback) provided the greatest benefit to both flat and
hierarchical policy structures, bringing flat policy performance from 52% to 88% and hierarchical
policy performance from 58% to 97%. Additionally, we add a random-feedback condition where

14

randomly sampled states from failed policy rollouts are fed back to the problem distribution. This
is combined with motion-feedback to construct the tamp-feedback condition for flat policies, since
task-feedback requires the separately trained task policy.

Figure 6: Comparison for the teleporting RoboSuite
problems. With tamp-feedback, the policies learn to
solve the problems 75% of the time. With just task-
feedback, success plateaued at 54%. With just motion-
feedback, success plateaued at 38%. This is an example
where task-feedback provides noticeable benefit, as the
policies frequently encounter states not captured in su-
pervision from the base problem distribution.

The use of random-feedback actually reduced
performance for both the flat and hierarchical
policies. This is likely due to increased time
being spent attempting to solve problems the
trajectory optimizer cannot refine (e.g. an ob-
ject has been knocked into an unreachable po-
sition). These results support our claim that
problem selection impacts overall performance
of the system and highlights the benefit of the
use of our structured problem sampling via the
exploration node.

We also show the training on the teleportation
problems with 4 objects, for both the motion-
feedback variant and the tamp-feedback vari-
ant. These results are in Figure 6. This is an
example of a problem where supervision from
the underlying problem distribution P is insuf-
ficient for generalization to the evaluation set-
ting. Because teleportation was set not to occur
during plan refinement, certain conditions (e.g.
the can and cereal having been placed but the
milk having reverted to the left) could be en-
countered by the learned policies that never ap-
peared in supervision from P . These conditions however were sampled during exploration and fed
back to the problem distribution, allowing for supervision in the new scenarios. This highlights that
the primary benefit of task-feedback is to provide supervision in symbolic configuration that the
policies may encounter but the planners, in isolation, would not.

7.2 RoboDesk Experiments
Goal Base W/Grip Cam.

Open Slide 100% 100%
Lift Bock 46% 65%

Push Button 93% 94%
Block off Table 59% 79%
Block in Shelf 52% 81%
Open Drawer 76% 76%
Block in Bin 84% 92%
Stack Blocks 68% 79%

Lift Ball 41% 48%

Table 2: Per-task policy performance
for RoboDesk, as measured by average
success rate for each task in the bench-
mark. Base refers to training from
the default camera in the benchmark,
while W/Grip cam/ adds a second cam-
era to the gripper as an additional ob-
servation.

We have provided a breakdown of the learned policies’ per-
formance on the RoboDesk benchmark across the 9 different
goals, which are shown in Table 2. These results are all from
the same learned policies, each of which were trained on all 9
goals. Some tasks the policies learned easily, such as the open
slide task (where the slide door is moved all the way to the
right) or the press button task. Others, particularly the lift ball
task, were quite difficult.

Lifting the ball provides an effective case study of where our
method breaks down. There are two challenges here. The first
is that the diameter of the ball equals the width of the fully
opened gripper, making it easy to knock out of alignment. This
reflects one major shortcoming of learning from TAMP: it is
hard to model the world dynamics in the underlying optimiza-
tion. This makes it difficult to generate supervision that explic-
itly takes advantage of those dynamics to solve the task. The second challenge is that the object is
easily occluded by the arm, making it difficult to precisely place the gripper from the current im-
age alone. This reflects a shortcoming of feed-forward policies in dealing with object permanence,
In our system, we attempted to overcome this limitation by providing joint velocity information
(roughly informing the policy of ”where it was heading” prior to occlusion) and images from earlier
timesteps. This highlights a scenario where sequence modelling would likely provide significant
benefit.

15

	Introduction
	Background
	Method
	Distributed Planning and Training Architecture
	Hierarchical Task and Motion Policies
	Policy-Aware Supervision

	Experimental Results
	Learning 2D Pick-Place
	Learning Pick-Place for 7-DoF Robotic Arm Control
	Multitask Learning for 7-DoF Robotic Arm Control from RGB Images

	Related Work
	Future Work
	Acknowledgements
	RoboSuite Experiments
	RoboDesk Experiments

