
O2O-Afford: Annotation-Free Large-Scale
Object-Object Affordance Learning

(Supplementary Material)

Kaichun Mo1, Yuzhe Qin2, Fanbo Xiang2, Hao Su2, Leonidas Guibas1

1Stanford University 2UCSD

https://cs.stanford.edu/~kaichun/o2oafford

COVID-19 Impact: Our paper proposes a perception framework on learning object-object interaction
affordance. While the acting object is usually held by human or robot hands, the problem of object-
object affordance by itself is agent-free. In addition, literature work demonstrated that visual
affordable can be used for several robotics tasks. Thus, we conducted large-scale learning and
evaluation on PartNet data, as well as tested our learned model directly on some real-world scans.
We think that these evaluations can sufficiently prove the effectiveness of the proposed perception
learning framework.

A Overview

This document provides more details, results and visualizations accompanying the main paper. In
summary, we include

• more data details and visualization;

• more details about the environment settings;

• more details about the network architecture;

• more details about the training;

• more results of point-wise affordance predictions;

• more results tested on real-world data;

• failure cases and discussions.

We also submit a video presentation that provides quick overview and summary of our paper.

We further release our code with a small amount of data for our data generation, network training,
and network evaluation. Please refer to the ReadMe file in the code submission for more details.

B More Data Details and Visualization

In Table B.1, we summarize our data statistics. In Fig. B.1, we visualize our simulation assets from
ShapeNet [1] and PartNet [2] that we use in this work.

There are two kinds of object categories: big heavy objects Cheavy and small item objects Citem.
In our experiments, Cheavy include cabinets, microwaves, tables, refrigerators, safes, and washing
machines, while Citem contains baskets, bottles, bowls, boxes, cans, pots, mugs, trash cans, buckets,
dispensers, jars, and kettles. For the placement and fitting tasks, we use the object categories in Cheavy
to serve as the main scene object. And, we use the Citem categories as the scene objects for the other
two task environments, as well as employ them as the acting objects for all the four tasks. Some
objects may contain articulated parts. For the objects in Cheavy, we sample a random starting part
pose that is either fully closed or randomly opened to random degree with equal probabilities. For the
acting objects, we fix the part articulation at the rest state during the entire simulated interaction.

5th Conference on Robot Learning (CoRL 2021), London, UK.

https://cs.stanford.edu/~kaichun/o2oafford

Train-Cats All Basket Bottle Bowl Box Can Pot
Train-Data 867 77 16 128 17 65 16
Test-Data 281 43 44 5 18 5

Mug Fridge Cabinet Table Trash Wash
134 34 272 70 25 13
46 9 73 25 10 3

Test-Cats All Bucket Disp Jar Kettle Micro Safe
Test-Data 637 33 9 528 26 12 29

Table B.1: Dataset Statistics. Our experiments use 1,785 ShapeNet [1] models in total, covering
18 commonly seen indoor object categories. We use 12 training categories, which are split into 867
training shapes and 281 test shapes, and 6 test categories with 637 shapes that networks have never
seen during training. In the table, Disp, micro, wash, and trash are respectively short for dispenser,
microwave, washing machine, and trash can.

Basket Bottle Bowl Box Can Kitchen Pot

Mug Refrigerator Cabinet Table Trash Can Washing Machine

Bucket Dispenser Jar Kettle Microwave Safe

Te
st

 C
at

eg
or

ie
s

Tr
ai

ni
ng

 C
at

eg
or

ie
s

Figure B.1: Data Visualization. We visualize one example shape in our simulation assets for each
of the 18 object categories we use in this paper. Twelve of them are training object categories while
the other six are test categories. We mark with underscore the object categories in Cheavy that are
assumed to be static (heavy).

C More Details on Settings

For the physical simulation in SAPIEN [3], we use the default setting of frame rate 500 frame-per-
second, solver iterations 20, standard gravity 9.81, static friction coefficient 4.0, dynamic friction
coefficient 4.0, and restitution coefficient 0.01. The perspective camera is located at a random position
determined by a random azimuth [0◦,360◦) and a random altitude [30◦,60◦], facing towards the center
of the scene point cloud with 5 unit length distanced away. It has field-of-view 35◦, near plane 0.1,
far plane 100, and resolution 448×448. We use the Three-point lighting with additional ambient
lighting. The scene point cloud S samples n = 10,000 points using Furthest Point Sampling (FPS)
from the back-projected depth scan of the camera.

D More Details on Networks

For the feature extraction backbones Encscene and Encobject, we use the segmentation-version Point-
Net++ [4] with a hierarchical encoding stage, which gradually decreases point cloud resolution by
several set abstraction layers, and a hierarchical decoding stage, which gradually expands back the

2

resolution until reaching the original point cloud with feature propagation layers. There are skip links
between the encoder and decoder. We use the single-scale grouping version of PointNet++. The two
PointNet++ networks do not share weights.

More specifically, for Encscene, we use four set abstraction layers with resolution 1024, 256, 64 and
16, with learnable Multilayer Perceptrons (MLPs) of sizes [3, 32, 32, 64], [64, 64, 64, 128], [128, 128,
128, 256], and [256, 256, 256, 512] respectively. There are four corresponding feature propagation
layers with MLP sizes [131, 128, 128, 128], [320, 256, 128], [384, 256, 256], and [768, 256, 256].
Finally, we use a linear layer that produces a point-wise 128-dim feature map for all scene points. We
use ReLU activation functions and Batch-Norm layers.

For Encobject, we use three set abstraction layers with resolution 512, 128, and 1 (which means
that we extract the global feature of the acting object O), with learnable MLPs of sizes [3, 64, 64,
128], [128, 128, 128, 256], and [256, 256, 256, 256] respectively. There are three corresponding
feature propagation layers with MLP sizes [131, 128, 128, 128], [384, 256, 256], and [512, 256, 256].
Finally, we use a linear layer that produces a 128-dim feature for every point of the acting object, and
use another linear layer to obtain a 128-dim global acting object feature. We use ReLU activation
functions and Batch-Norm layers.

We use a PointNet [5] to implement the proposed object-kernel point convolution module Convobject.
The network has three linear layers [256, 128, 128, 128] that transforms each point feature. We
use ReLU activation functions and Batch-Norm layers. Finally, we apply a point-wise max-pooling
operation to pool over the m acting object points to obtain the aggregated 128-dim feature for every
sampled scene seed point pi.

The final affordance prediction module Deccritic is implemented with a simple MLP with two layers
[384, 128, 1], with the hidden layer activated by Leaky ReLU and final layer without any activation
function. We do not use Batch-Norm for either of the two layers.

E More Details on Training

We collect hundreds of thousands of interaction trials in the simulated task environments for each
task. The scene and acting objects are selected randomly from the training data of the training
object categories. We equally sample data from different object categories, to address the data
imbalance issue. For a generated pair of scene S and acting object O, we then randomly pick an
interacting position pi from the task-specific possible region to perform a simulated interaction. The
task environment provides us the final interaction outcome, either successful or failed, using the
task-specific metrics described in Sec. 4.2.

Using random data sampling gives us different positive data rate for different tasks, ranging from the
lowest one 7.4% for pushing and the highest 41.2% for placement. We empirically find that having
enough positive data samples are essential for a successful training. Thus, for each task, we make
sure to sample at least 20,000 successful interaction trials. It is also important to equally sample
positive and negative data points in every batch of training.

We use batch size 32 and learning rate 0.001 (decayed by 0.9 every 5000 steps). Each training takes
roughly 1-2 days until convergence on a single NVIDIA Titan-XP GPU. The GPU memory cost is
about 11 GB. At the test time, the speed is fast (on average 62.5 milliseconds per data) since it only
requires a single feed-forwarding inference throughout the network. Testing over a batch of 64 needs
6 GB GPU memory.

F More Results

Fig. F.2 presents more results of our affordance heatmap predictions, to augment Fig. 4 in the main
paper.

3

pl
ac

em
en

t
fit

tin
g

Test Shapes from Training Categories Shapes from Test Categories

pu
sh
in
g

st
ac
ki
ng

Figure F.2: More Results. We present more results of point-wise affordance heatmap predictions, to
augment Fig. 4 in the main paper. For each of the tasks, we show examples of our network predictions.
Left two examples show test shapes from the training categories, while two right ones are shapes
from the test categories. In each pair of result figures, we draw the scene geometry together with
the acting object (marked with red dashed boundary) on the left, and show our predicted per-point
affordance heatmaps on the right.

G More Results on Real-world Data

Fig. G.3 presents more results testing if our learned model can generalize to real-world data, to
augment Fig. 5 in the main paper. We use the Replica dataset [6], the RBO dataset [7], and Google
Scanned Objects [8, 9, 10, 11] as the input 3D scans.

For qualitative results over the real-world scans shown in Fig. 5 in the main paper, we use an iPad Pro
to collect the real-world scans by ourselves. We first mount the camera on a fixed plane and rotate the
iPad to make the camera view 20◦ top down to the ground. We use the front structured light camera
on iPad to capture a cluttered table top and a microwave oven.

Our method is designed to learn visual priors for object-object interaction affordance. Future works
may further finetune our priors predictions by training on some real-world tasks to obtain more
accurate posterior results.

H Failure Cases: Discussion and Visualization

Fig. H.4 summarizes common failure cases of our method. See the caption for detailed explanations
and discussions.

4

pl
ac
em

en
t

fit
tin
g

pu
sh
in
g

st
ac
ki
ng

pl
ac
em

en
t

fit
tin
g

Figure G.3: More Results on Real-world Data. From left to right: we respectively show the scene
geometry (a partial 3D scan from the camera viewpoint), the acting object (a complete 3D point cloud),
the interaction snapshot (to illustrate the poses and sizes of the objects), and our point-wise affordance
predictions. For the input 3D scene geometry scans, we use the Replica dataset [6] (the placement
examples), the RBO dataset [7] (the fitting examples), and Google Scanned Objects [9, 11] (the scene
geometry for the other two tasks). We use shapes from Google Scanned Objects [8, 9, 10, 11] for the
acting objects in the four tasks.

We hope that future works may study improving the performance regarding these matters.

References
[1] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,

S. Song, H. Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[2] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su. Partnet: A large-scale
benchmark for fine-grained and hierarchical part-level 3d object understanding. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 909–918, 2019.

[3] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y. Yuan, H. Wang, et al.
Sapien: A simulated part-based interactive environment. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11097–11107, 2020.

[4] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. In Advances in neural information processing systems, pages 5099–5108,
2017.

[5] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 652–660, 2017.

[6] J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green, J. J. Engel, R. Mur-Artal, C. Ren,
S. Verma, et al. The replica dataset: A digital replica of indoor spaces. arXiv preprint
arXiv:1906.05797, 2019.

[7] R. Martı́n-Martı́n, C. Eppner, and O. Brock. The rbo dataset of articulated objects and interac-
tions, 2018.

[8] G. Research. Threshold ramekin white porcelain. https://fuel.ignitionrobotics.org/
1.0/GoogleResearch/models/Threshold_Ramekin_White_Porcelain, 2020.

[9] G. Research. Room essentials salad plate turquoise. https://fuel.ignitionrobotics.
org/1.0/GoogleResearch/models/Room_Essentials_Salad_Plate_Turquoise,
2020.

[10] G. Research. Us army stash lunch bag. https://fuel.ignitionrobotics.org/1.0/
GoogleResearch/models/US_Army_Stash_Lunch_Bag, 2020.

5

https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/Threshold_Ramekin_White_Porcelain
https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/Threshold_Ramekin_White_Porcelain
https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/Room_Essentials_Salad_Plate_Turquoise
https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/Room_Essentials_Salad_Plate_Turquoise
https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/US_Army_Stash_Lunch_Bag
https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/US_Army_Stash_Lunch_Bag

fitting placement

(a
) P

re
di

ct
in

g
U

ns
ta

bl
e

Eq
ui

lib
riu

m
(c

)
In

ac
cu

ra
te

 P
re

di
ct

io
n

 d
ue

 to
 O

th
er

 R
ea

so
ns

stacking

fitting

(b
)

In
ac

cu
ra

te
 P

re
di

ct
io

n
 d

ue
 to

 P
ar

tia
l S

ce
ne

 In
pu

ts

pushing

placement

Figure H.4: Failure Cases. We visualize common failure cases of our method, by presenting
two examples for each of the following categories: predicting unstable equilibrium (a), inaccurate
prediction due to partial scene inputs (b), and inaccurate prediction due to other reasons (c). For each
pair of results, we show the acting and scene objects on the left, with the acting object marked with red
dashed boundary, and our network prediction on the right. On the right image, we explicitly mark out
the areas for problematic predictions using red circles. In many real-world scenarios, especially for
the placement and fitting tasks, one might want to find positions for object to be put stably. However,
for the examples as shown in (a), we observe some failure cases that unstable equilibrium positions
are also predicted, though usually with smaller likelihood scores. For (b), since our network takes
as input partial 3D scanned point clouds for the scene geometry, we observe some artifacts in the
predictions due to the incompleteness of the input scene point clouds. For instances, one may also
put the object in the second drawer, besides the first drawer, in the placement example; and in the
stacking example, one cannot support the jar from the right side. Finally, there are other inaccurate
predictions in the examples as shown in (c) due to various reasons: in the fitting case, there is an
erroneous prediction that the middle of the drawer can fit the basket; and for the pushing case, the two
side areas should not be pushable. We hope future works can improve upon addressing these issues.

[11] G. Research. Threshold porcelain teapot whit. https://fuel.ignitionrobotics.org/1.
0/GoogleResearch/models/Threshold_Porcelain_Teapot_White, 2020.

6

https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/Threshold_Porcelain_Teapot_White
https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/Threshold_Porcelain_Teapot_White

	Overview
	More Data Details and Visualization
	More Details on Settings
	More Details on Networks
	More Details on Training
	More Results
	More Results on Real-world Data
	Failure Cases: Discussion and Visualization

