
Neural Posterior Domain Randomization

Fabio Muratore1,2, Theo Gruner1, Florian Wiese1,
Boris Belousov1, Michael Gienger2, Jan Peters1

1 Intelligent Autonomous Systems Group, Technical University Darmstadt, Germany
2 Honda Research Institute Europe, Offenbach am Main, Germany

Correspondence to fabio@robot-learning.de

Abstract: Combining domain randomization and reinforcement learning is a
widely used approach to obtain control policies that can bridge the gap between
simulation and reality. However, existing methods make limiting assumptions on
the form of the domain parameter distribution which prevents them from utilizing
the full power of domain randomization. Typically, a restricted family of probabil-
ity distributions (e.g., normal or uniform) is chosen a priori for every parameter.
Furthermore, straightforward approaches based on deep learning require differ-
entiable simulators, which are either not available or can only simulate a limited
class of systems. Such rigid assumptions diminish the applicability of domain ran-
domization in robotics. Building upon recently proposed neural likelihood-free in-
ference methods, we introduce Neural Posterior Domain Randomization (NPDR),
an algorithm that alternates between learning a policy from a randomized simu-
lator and adapting the posterior distribution over the simulator’s parameters in a
Bayesian fashion. Our approach only requires a parameterized simulator, coarse
prior ranges, a policy (optionally with optimization routine), and a small set of
real-world observations. Most importantly, the domain parameter distribution is
not restricted to a specific family, parameters can be correlated, and the simulator
does not have to be differentiable. We show that the presented method is able
to efficiently adapt the posterior over the domain parameters to closer match the
observed dynamics. Moreover, we demonstrate that NPDR can learn transferable
policies using fewer real-world rollouts than comparable algorithms.

Keywords: sim-to-real, domain randomization, likelihood-free inference

1 Introduction

Learning control policies on a physical robot is time- and resource-intensive. Crucially, Reinforce-
ment Learning (RL) relies on random exploration, which in most cases can not be executed di-
rectly on the device. Training in simulation promises to alleviate these problems by generating vast
amounts of diverse data faster and cheaper. However, all simulators are only models of reality and
therefore guaranteed to be flawed. Thus, using data from a single simulation instance is often not
sufficient to learn a control policy which transfers to the real-world counterpart, and might even lead
to dangerous overfitting since the optimization process is optimistically biased [1].

The sim-to-real robot learning community suggested numerous approaches to bridge the ‘reality
gap’ within the last few years. Motivated by superior results and flexibility, there is a clear trend
towards methods that automatically tune a randomized physics simulator’s parameter distribution to
closer match the reality [2, 3, 4, 5, 6, 7], also called guided domain randomization. Such approaches
generally involve a metric to quantify how well the simulated data is matching the observed data,
combined with a mechanism to update the domain parameters or their distribution. Likelihood-
Free Inference (LFI) methods measure the closeness between two observations by comparing their
(logarithmic) probabilities, and provide various ways to update the density estimator which is either
connected to the posterior [8, 9, 10] or the likelihood [11, 12, 13].

5th Conference on Robot Learning (CoRL 2021), London, UK.

mailto:fabio@robot-learning.de

Figure 1: Evaluation tasks: robot mini
golf and underactuated swing-up

Contributions We contribute to the state-of-the-art
in robot learning by proposing Neural Posterior Do-
main Randomization (NPDR), an algorithm which in-
tertwines LFI, domain randomization, and RL to in-
fer a distribution over simulators which is subsequently
used to train transferable policies. Most notably, NPDR
does not make any assumptions on the simulator apart
from requiring the ability to sample from it, works with
coarse priors, and can be configured to strictly yield
physically plausible domain parameters. Our approach
allows to seamlessly integrate any (parameterizable)
physics engine, hence benefits from the rapid progress
in the simulation community. Moreover, we synchronize the simulator segmentwise with the tra-
jectories recorded in the target domain. This technique facilitates domain parameter inference for
highly dynamical systems. We evaluate NPDR in one sim-to-sim and two sim-to-real experiments,
and compare it with (online) BayesSim [14, 15] as well as Bayesian linear regression [16]. Our ex-
periments demonstrate the generality of the proposed approach and show the advantages of flexible
posterior inference in challenging continuous control problems. Additionally, we release the source
code of our implementations in a open-source library [17].

2 Background and Notation
Inferring the dynamics of an environment while solving a task is at the core of model-based RL [18].
We describe this problem using the framework of Markov Decision Processes (MDPs) in which the
domain parameters are modeled as random variables with an unknown distribution. This framework
is described in Section 2.1. To infer the distribution over the domain parameters without making
any additional assumptions on the structure of the model of the MDP, we rely on the LFI methods
described in Section 2.2, which only require the ability to sample trajectories from the model.

2.1 Markov Decision Processes with Randomized Dynamics

Consider a discrete-time dynamical system

st+1 ∼ Pξ(st+1|st,at) , s0 ∼ µξ(s0) , at ∼ πθ (at|st) , ξ ∼ p(ξ) ,

with the continuous state st ∈ Sξ ⊆ Rns and continuous action at ∈ Aξ ⊆ Rna at time step t. The
environment, also called domain, is characterized by its parameters ξ ∈ Rnξ (e.g., masses, friction
coefficients, or time delays) which are assumed to be random variables distributed according to
an unknown probability distribution p : Rnξ → R+. The domain parameters determine the transi-
tion probability density function Pξ : Sξ ×Aξ × Sξ → R+ that describes the system’s stochastic
dynamics. The initial state s0 is drawn from the start state distribution µξ : Sξ → R+. Together
with the reward function rξ : Sξ ×Aξ → R, and the temporal discount factor γ ∈ [0, 1], the system
forms an MDP described by the tupleMξ = {Sξ,Aξ,Pξ, µξ, rξ, γ}.

The goal of an RL agent is to maximize the expected (discounted) return, a numeric scoring function
which measures the policy’s performance. The expected discounted return of a policy πθ (at|st)

with the parameters θ ∈ Θ ⊆ Rnθ is defined as J (θ, ξ) = Eτ∼p(τ)

[∑T−1
t=0 γtrξ(st,at) |θ, ξ

]
.

While learning from experience, the agent adapts its policy parameters. The resulting state-action-
reward tuples are collected in trajectories, a.k.a. rollouts, τ = {st,at, rt}T−1

t=0 ∈ T with rt =
rξ(st,at). When augmenting the RL setting with domain randomization, the goal becomes to
maximize the expected (discounted) return for a distribution of domain parameters

J (θ) = Eξ∼p(ξ)[J (θ, ξ)] = Eξ∼p(ξ)

[
Eτ∼p(τ)

[∑T−1

t=0
γtrξ(st,at)

∣∣∣θ, ξ]] .
The outer expectation with respect to the domain parameter distribution p(ξ) is the key difference
compared to the standard MDP formulation. It enables the learning of robust policies that work for
a whole set of environments instead of overfitting to a particular problem instance.

2

2.2 Sequential Neural Posterior Estimation (SNPE)

A simulator is a generative model g : Ξ → X mapping a set of domain parameters ξ ∈ Ξ to
observations x ∈ X . Generating data from the simulator can be interpreted as sampling from an
intractable likelihood x ∼ p(x|ξ). Given a prior belief p(ξ) over the domain parameters and an
observation xobs, LFI provides a way to learn an approximation p̂φ(ξ|x) of the underlying true
domain parameter distribution p

(
ξ|x = xobs

)
, where φ ∈ Φ are the parameters of the density esti-

mator, e.g., a neural network or a mixture model. When operating on time series data, LFI requires
an embedding to construct features of constant size. This function f : T → X computes features,
also called observations, from the rollouts τ ∈ T . It may depend on parameters ψ ∈ Ψ which
state-of-the-art implementations optimize jointly with the parameters φ of the density estimator.

Neural Posterior Domain Randomization (NPDR), as introduced in Section 3, is agnostic to the
inference subroutine. In this paper, a neural LFI algorithm SNPE-C [10] is used for its superior per-
formance compared to the alternative approaches described in Section 5.3. SNPE-C approximates
the true posterior using normalizing flows, a generative model which produces tractable distribu-
tions where both sampling and density evaluation can be efficient and exact [19]. To overcome the
intractability of the likelihood, the posterior is trained to minimize the following objective function

L(φ) =

R∑
r=1

N∑
n=1

−log

(
1

Z(x,φ)

p̃(ξr,n)

p(ξr,n)
qφ(ξr,n|xr,n)

)
, xr,n ∼ p(x|ξr,n) , ξr,n ∼ p̃(ξ)

where R is the number of inference rounds N is the number of samples per round, and Z is the
normalization constant. Note that the domain parameters are sampled from a proposal prior dis-
tribution p̃(ξ), which is initialized with the prior p(ξ), and requires importance reweighting of the
posterior except for the first round. Sampling from the proposal prior has the advantage that the do-
main parameters could be sampled in more narrow regions where the actual support of the domain
parameter distribution lies. In a multi-round setup, the proposal prior p̃(ξ) is set to be the posterior
of the previous round conditioned on the previously observed data p̂φ

(
ξ|x = xobs

)
.

3 Neural Posterior Domain Randomization (NPDR)

The goal of NPDR is to learn a control policy in simulation such that it transfers to the real device,
making as few assumptions as possible about the properties of the simulator, e.g., not assuming dif-
ferentiability or use of rigid-body dynamics. To achieve this, NPDR augments the nominal RL task
with domain randomization and leverages LFI methods powered by normalizing flows to approxi-
mate the posterior over the domain parameters. The complete procedure is described in Algorithm 1.

NPDR does not impose any restrictions on the inference subroutine (Line 11) or on the policy
optimization subroutine (Lines 2 and 13). A key feature of NPDR is the ability to use the current
belief over the simulation parameters at every iteration. This belief is inferred such that it explains
the data observed from the real system best. Furthermore, the algorithm was implemented in a way
that it is possible to jointly condition on multiple real-world rollouts (Lines 6 and 10). To execute the
inference (Line 11), we integrated the sbi toolbox [20], which enables us to easily switch between
LFI methods. The sbi package expects all observations used to condition the posterior to have the
same size. Satisfying this constrain for arbitrary time series embeddings, requires the rollouts to be
of equal length. Thus, if a policy causes an emergency stop, e.g., by exceeding the state boundaries,
we pad the remainder of the rollout with zeros. During our experiments, we did not observe any
negative effect of this measure on the inference routine.

Complementarily, the rollouts are simulated segmentwise, i.e., the states are synchronized with the
real trajectory everyK time steps. This repeated synchronization is especially beneficial for systems
with a fast dynamics like the Furuta pendulum (Figure 1), since the trajectories diverge quickly even
for well-fit parameters. Finally, if the policy has an internal model, e.g., true for MPC or the energy-
based control law used in Section 4.3, NPDR allows to set the parameters of the internal model to
the most likely sample from the current posterior (Line 13). Updating the controller’s model was
also done in [15], however not in combination with updating the policy parameters.

3

Algorithm 1: Neural Posterior Domain Randomization (NPDR)

input : initial policy πθ (a|s), generative model gsim(ξ), physical device greal, prior p(ξ),
initial density estimator qφ(ξ|x), summary statistics fψ(τ), LFI subroutine INFER,
policy optimization subroutine POLOPT,

output: approximate (conditional) posterior over the domain parameters p̂φ
(
ξ|x = xreal

)
,

policy πθ?(a|s) trained using the approximate (conditional) posterior
1 Initialize the parameters θ , φ, ψ randomly
2 Train an initial policy θ? ← POLOPT[θ, p(ξ)] with samples from the prior ξ ∼ p(ξ)
3 Initialize the approximate posterior with the prior p̂φ(ξ|x)← p(ξ)

4 for each iteration i = 1:I do . Sim-to-real loop
5 Execute H target domain rollouts τ real ← greal(θ?)

6 Compute the observations from the rollouts using learned summ. stats. xreal ← fψ
(
τ real

)
7 for each round r = 1:R do . multi-round LFI, first round is amortized
8 Sample N domain parameters ξ ∼ p̂φ

(
ξ|x=xreal

)
9 Sample N associated rollouts τ sim ← gsim(θ?, ξ)

10 Compute the observations from the rollouts using learned summ. stats. xsim ← fψ
(
τ sim

)
11 Optimize the density estimator and embedding φ?,ψ? ← INFER

[
xreal,xsim,φ,ψ

]
12 Obtain the cond. posterior from the density estimator p̂φ

(
ξ|x=xreal

)
← qφ

(
ξ|x=xreal

)
13 Train the policy using the latest conditional posterior θ? ← POLOPT

[
θ?, p̂φ

(
ξ|x=xreal

)]

4 Experiments and Evaluations

We conduct three experiments to analyze the properties of the proposed NPDR algorithm. First,
the correctness of the algorithm is evaluated on a simulated environment for which a ground truth
solution is available. Namely, a sim-to-sim experiment on the pendulum is conducted to allow for
visual inspection of the complete posterior distribution over the domain parameters (Section 4.1).
Next, we conduct an experiment in a contact-rich mini golf environment, inferring a 10-dimensional
posterior using a state-of-the-art physics engine (Section 4.2). Finally, we integrate policy optimiza-
tion and solve an underactuated swing-up and balancing task on the Furuta pendulum (Section 4.3).
The configurations of all experiments are provided in the appendix.

Baselines Depending on the experiment, we chose BayesSim [14] or its online variant [15] as
baseline, because they are the only other approaches that work on the same assumptions and yield a
flexible estimator of the domain parameter distribution as well as a trained policy (see Section 5.1 for
a detailed description of BayesSim). To obtain comparable results, it was necessary to adapt online
BayesSim such that the policy optimization is done until convergence (lines 13–14 of Algorithm 1 in
[15]), i.e., we made this part identical to NPDR. For the Furuta pendulum experiment (Section 4.3),
we additionally validated the system identification module against Bayesian linear regression.

Metrics In order to assess the quality of the domain parameter posteriors found by the LFI sub-
routines in NPDR and BayesSim, we compare the state trajectories generated by domain instances
sampled from the approximate posterior against the ground truth data that was recorded on the phys-
ical system. Before computing the performance metrics, all trajectories are normalized by the state
bounds to equalize the importance of the different state dimensions. We decided to use two metrics:
the Root-Mean-Square Error (RMSE) and the Dynamic Time Warping (DTW) similarity computed
by the python-dtw package [21]. Both metrics are desired to be small. DTW is a dynamic program-
ming algorithm that calculates an optimal match between two temporal sequences [22]. Different
DTW methods vary in the cost function and in the assignment of points to each other. We configured
DTW to be symmetric, with the beginning and end of the assignment being chosen by the optimizer.

Code The implementations of NPDR as well as the baselines are building on the SimuRLacra
framework [17], the sbi toolbox [20], and on the scikit-learn package [23], all open source.

4

0.5 1.0 1.5
mass mp

0.5

1.0

1.5

le
ng

th
l p

0.5 1.0 1.5
mass mp

0.5 1.0 1.5
mass mp

(a) 3 rounds of BayesSim [14]

0.5 1.0 1.5
mass mp

0.5

1.0

1.5

le
ng

th
l p

0.5 1.0 1.5
mass mp

0.5 1.0 1.5
mass mp

(b) 3 rounds of NPDR

Figure 2: Learned (full) posterior distributions over the two domain parameters of the pendulum.
The LFI rounds are chronologically sorted from left to right. Warmer colors represent higher prob-
abilities. Both algorithms managed to find the manifold of domain parameter configurations which
yields observations highly similar ones of the ground truth environment (white circle). Comparing
the two sub-figures, we can see benefits of using SNPE-C with a MAF (b) instead of SNPE-A with
a MoG (a) to fit the domain parameter posterior.

4.1 Sim-to-Sim Validation with a Fully Observable Posterior

The first experiment is set up such that there is a manifold of domain parameters Ξid ⊂ Ξ producing
almost identical trajectories τ id which are highly similar to the nominal ones. Thus, the observations
xid = fψ

(
τ id
)

are close to indistinguishable, independent of the summary statistic f . The rationale
is that the mass mp and the length lp always appear coupled in the pendulum’s Equations of Mo-
tion (EoMs), and are dominated by the term mpl

2
p. Thus, if we only randomize these two domain

parameters, then configurations where the product mpl
2
p has a value similar to the one of the ground

truth environment should be inferred as more likely than others. Figure 2 confirms this hypothesis
empirically, by clearly capturing the manifold Ξid. To generate the rollouts, the pendulum has been
excited by applying a feed-forward sinusoidal action signal. Both algorithms used the summary
statistic function proposed in [14] and the same prior.

4.2 Sim-to-Real Bayesian System Identification in a Contact-Rich Environment

Figure 3: Robot mini golf

One of the main benefits that NPDR and BayesSim inherit from their
LFI subroutines is the ability to incorporate state-of-the-art physics
engine which expose their parameters. To showcase this advantage,
we chose mini golf (Figure 1 and 3) since it requires correct contact
modeling to align simulation and reality. We employed the Bullet
physics engine to randomize the ball’s radius rb, mass mb, restitution
coefficient eb, rolling friction coefficient µb, the two rails’ Cartesian
offsets ∆x1, ∆x2, ∆y1, ∆y2, as well as their angular offsets around
the vertical axis ∆γ1, ∆γ2. The goal location was a circular piece
of double-sided tape, modeled as a material with very high rolling
friction, that stops the ball quickly. To hit the ball reliably, the robot was driven by a hand-tuned,
time-dependent policy. For the inference, we used the ball positions, recorded by a Vicon system,
and the robot’s joint angles.

Figure 4 displays a slice through the 10-dimensional domain parameter posteriors learned with
NPDR and BayesSim on the same data. As expected, the mass of an ideally rolling object has
no influence on the dynamics, thus the marginal of mb should be uniform. The prior for the an-
gular offsets were chosen informatively, i.e., the object can be rotated by ±π at the beginning of
the simulation. Therefore, the posterior should have two modes for γi. Both algorithms were able
to recognize this multi-modality as well as the coupling between eb and rb. However, the correla-
tion between ∆xi and ∆yi was only inferred by NPDR. A quantitative assessment of the modeling
accuracy is given in Table 1, which reports the best experiment for every method.

4.3 Sim-to-Real Transfer with Policy Optimization in the Loop

The final experiment is aimed at evaluating NPDR on the challenging continuous control task of
swinging up and stabilizing a rotary inverted pendulum (Figure 1). This system, known as the Furuta
pendulum [24], is particularly hard to control due to its underactuated nature and fast oscillatory

5

https://pybullet.org/wordpress/
https://pybullet.org/wordpress/

r b
m
b

e b
µ
b

∆
x

2
∆
y 2

rb

∆
γ

2

mb eb µb ∆x2 ∆y2 ∆γ2

Figure 4: A 7-dimensional slice
from the 10-dimensional posteri-
ors learned with NPDR (blue) and
BayesSim (orange) in the mini
golf experiment. The nominal
values (green), were either deter-
mined by prior measurements or
by coarse estimates. Every do-
main off-diagonal plot shows the
same 200 samples for 2 dimen-
sions, whereas the diagonal plots
show the marginal distributions.
The omitted domain parameters of
the first obstacle ∆x1, ∆y1, γ1 are
similar to ∆x2, ∆y2, γ2. As de-
scribed in Section 4.2, the mini golf
experiment is set up such that mul-
tiple parameter configurations can
result in the same trajectory. This
arises naturally from broad or non-
minimal choices. Details on the
domain parameters ranges can be
found in the appendix.

movements [25]. To capture a wide range of dynamics, we chose to randomize the link masses mr,
mp, the link lengths, lr, lp, the motor constant and resistance km, Rm, the gravity constant g, as
well as the viscous friction parameters dp, dr of both joints. As derived in the appendix, it is not
possible to linearly separate all of these domain parameters and obtain a unique solution. Therefore,
we excluded g, km, and Rm for the Bayesian linear regression, which makes the results baseline
comparable to the others. The policy is given as a parameterized hybrid controller consisting of two
components: an energy-shaping swing-up controller that brings the pendulum close to the upright
position and a stabilizing PD controller that switches on in the vicinity of the upright position [26].
We used Policy learning by Weighting Exploration with the Returns (PoWER) [27] to optimize the
policy parameters for all experiments reported in Table 2. During policy execution on the physical
device, the parameters of the energy-shaping controller’s internal model were set to the most likely
domain parameter set, sampled from the posterior during training.

The results show that our LFI-based domain randomization approach outperforms Bayesian linear
regression and the nominal baseline, both in terms of the real-world return and the RMSE error. We
believe that the advantage of NPDR over BayesSim is due to its superior neural LFI subroutine as
well as the fact that our method, in contrast to online BayesSim, trains the policy until convergence
before executing the next target domain rollout. This hypothesis is supported by the better metrics for
the trajectory differences (Table 2). See Section 5.1 for a more in-depth discussion of the differences
between the two algorithms. Comparing the trajectories resulting from the nominal simulation with
the ones resulting from the learned distribution (Figure 5), we observe that all approaches improved
over the nominal simulator. Moreover, NPDR and BayesSim learned a predictive distribution that
includes the ground truth trajectory, except for the segment between 3 s and 4 s. Since all simulator
configurations fail to reproduce the recorded trajectories, we conclude that the modeled EoMs are
missing effects which are decisive of the last part of the swing-up.

Table 1: Performances of the Bayesian system identification on the real mini golf environment. The
metrics quantify how well each approach fits a common ground truth data set.

Metric NPDR BayesSim Nominal

DTW dist. [3.30 ± 0.16]e+1 [9.21± 0.64]e+1 1.51e+2
RMSE [7.19 ± 0.65]e−3 [2.19± 0.51]e−2 8.60e−2

6

0 1 2 3 4

6

0

6

α
 [r

ad
]

0 1 2 3 4

1
0
1

θ
[r

ad
]

(a) NPDR (blue), nominal (green dashed), ground truth (black)

0 1 2 3 4

6

0

6

α
 [r

ad
]

0 1 2 3 4

1
0
1

θ
[r

ad
]

(b) BayesSim (orange), nominal (green dashed), ground truth (black)

0 1 2 3 4
time [s]

6

0

6

α
 [r

ad
]

0 1 2 3 4
time [s]

2

0

2

θ
[r

ad
]

(c) Bayesian linear regression (purple), nominal (green dashed), ground truth (black)

Figure 5: Distributions over trajectories generated from 200 domain parameter sets sampled by the
learned posteriors. The simulations were synchronized with the ground truth (black) data every 200
time steps, hence show the feed-forward predictions 200 time steps. The nominal system (dashed
green) uses a singe domain parameter set, taken from the manufacturer’s data sheet.

5 Related Work

The topic of sim-to-real transfer in robot learning has grown in prominence in the last few years.
For a broad overview of the existing approaches, we refer the reader to the survey paper [28]. In the
following, we focus on the methods directly related to the proposed NPDR algorithm.

5.1 Adapting the Source Domain Distribution

The domain parameter distribution can be updated in multiple ways [29, 3, 5, 6, 30]. Most ap-
proaches assume independent domain parameters, i.e., they cannot represent the correlations be-
tween them. In contrast, NPDR, BayesSim [14], and DISCO [31] model the whole posterior, and
thus capture the correlations between the parameters. As observed in the experiments in Section 4,
these kinds of correlations are abundant in models of robotic systems. BayesSim [14], especially its
online variant [15], share the concepts such as the combination of LFI and domain randomization
with NPDR. However, the approaches differ in three important ways: (i) NPDR approximates the
posterior using a normalizing flow instead of a mixture model, which is coupled with using SNPE-C
instead of SNPE-A as inference algorithm. The results in Section 4 highlight the importance of the

Table 2: Performances of the Bayesian system identification and of the final policies on the real
Furuta pendulum. The first two metrics quantify how well each approach fits a common ground
truth data set. To quantify the return of a methods, we evaluated 5 (final) policies, generating 10
rollouts per policy. A policy can be considered successful if its return exceeds approximately 1400.

Metric NPDR BayesSim Bayes. Lin. Reg. Nominal

DTW dist. [1.07 ± 0.03]e+3 [1.24± 0.06]e+3 [2.24± 0.04]e+3 [1.43± 0.03]e+3
RMSE [2.63 ± 0.04]e−1 [2.95± 0.02]e−1 [4.46± 0.07]e−1 [3.84± 0.03]e−1

Return sim [9.34± 9.35]e+2 [1.31± 3.57]e+2 [2.05 ± 0.30]e+3 [2.13 ± 0.05]e+3
Return real [2.02 ± 0.18]e+3 [1.11± 0.76]e+3 [3.28± 1.44]e+2 [1.10± 0.33]e+2

7

LFI subroutine and clearly favour the neural density estimator. This finding is consistent with [32].
(ii) The policy optimization and domain parameter inference in NPDR are not alternated at every
(time) step, but trained until convergence, which stabilizes the training. (iii) We demonstrated that
NPDR is able to not only update the policy’s internal model, as done with MPC in [15], but also to
train the policy parameters directly based on the latest posterior.

5.2 Bayesian System Identification for Robotics

A crucial step in NPDR is the approximate inference of the domain parameter distribution. While
NPDR makes no assumptions on the simulator properties, other methods provide more domain-
specific solutions by assuming more structure in the model. For example, identification of rigid-body
dynamics can be framed as a (Bayesian) linear regression problem [33, 34]. However, the identified
parameters commonly turn out to be physically implausible [16]. Nonlinear system identification
of rigid-body dynamics with neural networks [35, 36] allows for greater flexibility and physical
plausibility, but it is not straightforward to obtain confidence estimates based on these methods. For
more general dynamical systems, approaches utilizing the classification loss between simulated and
real samples have been considered [37, 30]. If the simulator model is non-differentiable, episodic
RL has been proposed to optimize the posterior using trajectory similarity as the reward signal [3].
Our NPDR method is the closest to the latter family of algorithms, but instead of episodic RL, it
utilizes neural LFI methods, which enable the use of more expressive posteriors, such as normalizing
flows, and are more sample efficient, requiring only a few rollouts to be trained.

5.3 Likelihood-Free Inference

LFI is a collective term for Bayesian inference methods which are able to learn a posterior distri-
bution in scenarios where the likelihood is either not available or too expensive to evaluate. Ap-
proximate Bayesian Computation (ABC) applies Monte-Carlo sampling to infer the parameters by
comparing summary statistics of synthetically generated and observed data [38]. Although MCMC-
ABC [39] and SMC-ABC [40] enhance the sample efficiency of the classical rejection-ABC by
employing more sophisticated sampling schemes, the ABC approach does not scale well because
of the inherent problems of sampling in high-dimensional spaces. Amortized methods have been
more successful in scaling LFI to more challenging problems by utilizing flexible neural density
models [41]. Such models can be used both to generate samples from the posterior and to evaluate
the likelihood of parameter configurations. SNPE approaches [8, 9, 10] approximate the conditional
posterior, allowing for direct sampling from the posterior, foregoing MCMC. Learning the likeli-
hood [11] can be useful in the context for hypothesis testing. Alternatively, posterior samples can be
generated from likelihood-ratios [12] which can be trained using contrastive learning [13]. A tabu-
lar summary of state-of-the-art LFI approaches can be found in the appendix. For a comprehensive
survey on LFI from simulations, see [42].

6 Conclusion
In this paper, we introduced and empirically studied a new adaptive domain randomization algorithm
Neural Posterior Domain Randomization (NPDR) that employs normalizing flows for representing
the posterior distribution over the domain parameters. Our approach makes no assumptions on the
simulator except the ability to sample from it, and it is guaranteed to identify physically plausible
parameters. NPDR interleaves approximate posterior inference with policy optimization, leading to
an iterative refining of the posterior distribution from which more transferable policies are trained.
Our results showed that NPDR improves the flexibility and precision of the existing methods and re-
quires only a few real-world rollouts to train robust policies in a randomized simulation environment.
We believe that the proposed method, powered by likelihood-free inference with normalizing flows
as density estimators, is a valuable addition to the toolbox of domain randomization algorithms,
enabling rapid domain adaptation and training of effective control policies.

Future work will investigate alternative likelihood-free inference approaches, such as sequential neu-
ral ratio estimation. Additionally, we plan to apply NPDR to problems involving more challenging
dynamical systems such as soft body simulation and fluid dynamics. It is furthermore of interest to
consider other modalities of domain parameters, such as parameters of a vision system.

8

Acknowledgments

Fabio Muratore gratefully acknowledges the financial support from Honda Research Institute Eu-
rope. Boris Belousov and Jan Peters have received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 640554. Calculations for this
research were conducted on the Lichtenberg high performance computer of the TU Darmstadt.

References

[1] F. Muratore, M. Gienger, and J. Peters. Assessing transferability from simulation to reality
for reinforcement learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43:1172–1183, 11 2021. doi:10.1109/TPAMI.2019.2952353. URL https://doi.org/10.

1109/TPAMI.2019.2952353.
[2] N. Ruiz, S. Schulter, and M. Chandraker. Learning to simulate. In ICLR, New Orleans,

LA, USA, May 6-9. OpenReview.net, 2019. URL https://openreview.net/forum?id=

HJgkx2Aqt7.
[3] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. D. Ratliff, and D. Fox.

Closing the sim-to-real loop: Adapting simulation randomization with real world experience.
In ICRA, Montreal, QC, Canada, May 20-24, pages 8973–8979, 2019. doi:10.1109/ICRA.
2019.8793789. URL https://doi.org/10.1109/ICRA.2019.8793789.

[4] B. Mehta, A. Handa, D. Fox, and F. Ramos. A user‘s guide to calibrating robotics simulators. In
CoRL, Virtual Event, November 16 - 18, Proceedings of Machine Learning Research. PMLR,
2020. URL https://arxiv.org/abs/2011.08985.

[5] X. B. Peng, E. Coumans, T. Zhang, T. E. Lee, J. Tan, and S. Levine. Learning agile robotic
locomotion skills by imitating animals. In RSS, Virtual Event / Corvalis, Oregon, USA, July
12-16, 2020. doi:10.15607/RSS.2020.XVI.064. URL https://doi.org/10.15607/RSS.

2020.XVI.064.
[6] F. Muratore, C. Eilers, M. Gienger, and J. Peters. Data-efficient domain randomization with

bayesian optimization. IEEE Robotics Automation Letters, 6(2):911–918, 2021. doi:10.1109/
LRA.2021.3052391. URL https://doi.org/10.1109/LRA.2021.3052391.

[7] J. Truong, S. Chernova, and D. Batra. Bi-directional domain adaptation for sim2real transfer
of embodied navigation agents. IEEE Robotics Automation Letters, 6(2):2634–2641, 2021.
doi:10.1109/LRA.2021.3062303. URL https://doi.org/10.1109/LRA.2021.3062303.

[8] G. Papamakarios and I. Murray. Fast ε-free inference of simulation models with
bayesian conditional density estimation. In NIPS, Barcelona, Spain, December 5-10,
pages 1028–1036, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/

6aca97005c68f1206823815f66102863-Abstract.html.
[9] J. Lueckmann, P. J. Gonçalves, G. Bassetto, K. Öcal, M. Nonnenmacher, and J. H. Macke.

Flexible statistical inference for mechanistic models of neural dynamics. In NIPS, Long Beach,
CA, USA, December 4-9, pages 1289–1299, 2017. URL https://proceedings.neurips.

cc/paper/2017/hash/addfa9b7e234254d26e9c7f2af1005cb-Abstract.html.
[10] D. S. Greenberg, M. Nonnenmacher, and J. H. Macke. Automatic posterior transformation

for likelihood-free inference. In ICML, Long Beach, California, USA, 9-15 June, volume 97
of Proceedings of Machine Learning Research, pages 2404–2414. PMLR, 2019. URL http:

//proceedings.mlr.press/v97/greenberg19a.html.
[11] G. Papamakarios, D. C. Sterratt, and I. Murray. Sequential neural likelihood: Fast likelihood-

free inference with autoregressive flows. In AISTATS, Naha, Okinawa, Japan, April 16-18,
volume 89 of Proceedings of Machine Learning Research, pages 837–848. PMLR, 2019. URL
http://proceedings.mlr.press/v89/papamakarios19a.html.

[12] J. Hermans, V. Begy, and G. Louppe. Likelihood-free MCMC with amortized approximate
ratio estimators. In ICML, Virtual Event, 13-18 July, volume 119 of Proceedings of Ma-
chine Learning Research, pages 4239–4248. PMLR, 2020. URL http://proceedings.

mlr.press/v119/hermans20a.html.

9

http://dx.doi.org/10.1109/TPAMI.2019.2952353
https://doi.org/10.1109/TPAMI.2019.2952353
https://doi.org/10.1109/TPAMI.2019.2952353
https://openreview.net/forum?id=HJgkx2Aqt7
https://openreview.net/forum?id=HJgkx2Aqt7
http://dx.doi.org/10.1109/ICRA.2019.8793789
http://dx.doi.org/10.1109/ICRA.2019.8793789
https://doi.org/10.1109/ICRA.2019.8793789
https://arxiv.org/abs/2011.08985
http://dx.doi.org/10.15607/RSS.2020.XVI.064
https://doi.org/10.15607/RSS.2020.XVI.064
https://doi.org/10.15607/RSS.2020.XVI.064
http://dx.doi.org/10.1109/LRA.2021.3052391
http://dx.doi.org/10.1109/LRA.2021.3052391
https://doi.org/10.1109/LRA.2021.3052391
http://dx.doi.org/10.1109/LRA.2021.3062303
https://doi.org/10.1109/LRA.2021.3062303
https://proceedings.neurips.cc/paper/2016/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/addfa9b7e234254d26e9c7f2af1005cb-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/addfa9b7e234254d26e9c7f2af1005cb-Abstract.html
http://proceedings.mlr.press/v97/greenberg19a.html
http://proceedings.mlr.press/v97/greenberg19a.html
http://proceedings.mlr.press/v89/papamakarios19a.html
http://proceedings.mlr.press/v119/hermans20a.html
http://proceedings.mlr.press/v119/hermans20a.html

[13] C. Durkan, I. Murray, and G. Papamakarios. On contrastive learning for likelihood-free infer-
ence. In ICML, Virtual Event, July 13-18, volume 119 of Proceedings of Machine Learning
Research, pages 2771–2781. PMLR, 2020. URL http://proceedings.mlr.press/v119/

durkan20a.html.
[14] F. Ramos, R. Possas, and D. Fox. Bayessim: Adaptive domain randomization via probabilistic

inference for robotics simulators. In RSS, Freiburg im Breisgau, Germany, June 22-26, 2019.
doi:10.15607/RSS.2019.XV.029. URL https://doi.org/10.15607/RSS.2019.XV.029.

[15] R. Possas, L. Barcelos, R. Oliveira, D. Fox, and F. Ramos. Online bayessim for combined
simulator parameter inference and policy improvement. In IROS Las Vegas, NV, USA, October
24 - January 24, pages 5445–5452. IEEE, 2020. doi:10.1109/IROS45743.2020.9341401. URL
https://doi.org/10.1109/IROS45743.2020.9341401.

[16] J. Ting, A. D’Souza, and S. Schaal. Bayesian robot system identification with input and output
noise. Neural Networks, 24(1):99–108, 2011. doi:10.1016/j.neunet.2010.08.011. URL https:

//doi.org/10.1016/j.neunet.2010.08.011.
[17] F. Muratore. SimuRLacra - a framework for reinforcement learning from randomized simula-

tions. https://github.com/famura/SimuRLacra, 2020.
[18] T. M. Moerland, J. Broekens, and C. M. Jonker. Model-based reinforcement learning: A

survey. arXiv, 2006.16712, 2020. URL https://arxiv.org/abs/2006.16712.
[19] I. Kobyzev, S. Prince, and M. Brubaker. Normalizing flows: An introduction and review of

current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.
doi:10.1109/TPAMI.2020.2992934.

[20] Á. Tejero-Cantero, J. Boelts, M. Deistler, J. Lueckmann, C. Durkan, P. J. Gonçalves, D. S.
Greenberg, and J. H. Macke. sbi: A toolkit for simulation-based inference. J. Open Source
Softw., 5(52):2505, 2020. doi:10.21105/joss.02505. URL https://doi.org/10.21105/

joss.02505.
[21] T. Giorgino. Computing and visualizing dynamic time warping alignments in r: The dtw

package. Journal of Statistical Software, 31(7):1–24, 2009.
[22] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recog-

nition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43–49, 1978.
[23] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Pretten-

hofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux.
API design for machine learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning, pages 108–122, 2013.

[24] K. Furuta, M. Yamakita, and S. Kobayashi. Swing-up control of inverted pendulum using
pseudo-state feedback. Proc. Inst. Mech. Eng. Part I, 206(4):263–269, 1992.

[25] C. Eilers, J. Eschmann, R. Menzenbach, B. Belousov, F. Muratore, and J. Peters. Underactuated
waypoint trajectory optimization for light painting photography. In ICRA Paris, France, May
31 - August 31, pages 1505–1510. IEEE, 2020. doi:10.1109/ICRA40945.2020.9196516. URL
https://doi.org/10.1109/ICRA40945.2020.9196516.

[26] J. A. Acosta, J. Aracil, and F. Gordillo. Nonlinear control strategies for the furuta pendulum.
Control and intelligent systems, 29(3):101–107, 2001.

[27] J. Kober and J. Peters. Policy search for motor primitives in robotics. Machine Learning,
84(1-2):171–203, 2011. doi:10.1007/s10994-010-5223-6. URL http://dx.doi.org/10.

1007/s10994-010-5223-6.
[28] W. Zhao, J. P. Queralta, and T. Westerlund. Sim-to-real transfer in deep reinforcement learn-

ing for robotics: a survey. In SSCI Canberra, Australia, December 1-4, pages 737–744.
IEEE, 2020. doi:10.1109/SSCI47803.2020.9308468. URL https://doi.org/10.1109/

SSCI47803.2020.9308468.
[29] J. Harrison, A. Garg, B. Ivanovic, Y. Zhu, S. Savarese, L. Fei-Fei, and M. Pavone. Adapt: Zero-

shot adaptive policy transfer for stochastic dynamical systems. In ISRR, Puerto Varas, Chile,
December 11-14, volume 10 of Springer Proceedings in Advanced Robotics, pages 437–453.

10

http://proceedings.mlr.press/v119/durkan20a.html
http://proceedings.mlr.press/v119/durkan20a.html
http://dx.doi.org/10.15607/RSS.2019.XV.029
https://doi.org/10.15607/RSS.2019.XV.029
http://dx.doi.org/10.1109/IROS45743.2020.9341401
https://doi.org/10.1109/IROS45743.2020.9341401
http://dx.doi.org/10.1016/j.neunet.2010.08.011
https://doi.org/10.1016/j.neunet.2010.08.011
https://doi.org/10.1016/j.neunet.2010.08.011
https://github.com/famura/SimuRLacra
https://arxiv.org/abs/2006.16712
http://dx.doi.org/10.1109/TPAMI.2020.2992934
http://dx.doi.org/10.21105/joss.02505
https://doi.org/10.21105/joss.02505
https://doi.org/10.21105/joss.02505
http://dx.doi.org/10.1109/ICRA40945.2020.9196516
https://doi.org/10.1109/ICRA40945.2020.9196516
http://dx.doi.org/10.1007/s10994-010-5223-6
http://dx.doi.org/10.1007/s10994-010-5223-6
http://dx.doi.org/10.1007/s10994-010-5223-6
http://dx.doi.org/10.1109/SSCI47803.2020.9308468
https://doi.org/10.1109/SSCI47803.2020.9308468
https://doi.org/10.1109/SSCI47803.2020.9308468

Springer, 2017. doi:10.1007/978-3-030-28619-4 34. URL https://doi.org/10.1007/

978-3-030-28619-4_34.
[30] Y. Du, O. Watkins, T. Darrell, P. Abbeel, and D. Pathak. Auto-tuned sim-to-real transfer. arXiv,

2104.07662, 2021. URL https://arxiv.org/abs/2104.07662.
[31] L. Barcelos, R. Oliveira, R. Possas, L. Ott, and F. Ramos. DISCO: double likelihood-free

inference stochastic control. In ICRA, Paris, France, May 31 - August 31, pages 10969–10975.
IEEE, 2020. doi:10.1109/ICRA40945.2020.9196931. URL https://doi.org/10.1109/

ICRA40945.2020.9196931.
[32] J. Lueckmann, J. Boelts, D. S. Greenberg, P. J. Gonçalves, and J. H. Macke. Benchmarking

simulation-based inference. In AISTATS, Virtual Event, April 13-15, volume 130, pages 343–
351. PMLR, 2021. URL http://proceedings.mlr.press/v130/lueckmann21a.html.

[33] C. G. Atkeson, C. A. H, and J. M. Hollerbach. Estimation of inertial parameters of manipulator
loads and links. The International Journal of Robotics Research, 5(3):101–119, 1986.

[34] J. Ting, M. N. Mistry, J. Peters, S. Schaal, and J. Nakanishi. A bayesian approach to nonlinear
parameter identification for rigid body dynamics. In RSS, Philadelphia, Pennsylvania, USA,
August 16-19. The MIT Press, 2006. doi:10.15607/RSS.2006.II.032. URL http://www.

roboticsproceedings.org/rss02/p32.html.
[35] G. Sutanto, A. S. Wang, Y. Lin, M. Mukadam, G. S. Sukhatme, A. Rai, and F. Meier.

Encoding physical constraints in differentiable newton-euler algorithm. In L4DC, Virtual
Event, Berkeley, CA, USA, 11-12 June, volume 120 of Proceedings of Machine Learning
Research, pages 804–813. PMLR, 2020. URL http://proceedings.mlr.press/v120/

sutanto20a.html.
[36] M. Lutter, J. Silberbauer, J. Watson, and J. Peters. Differentiable physics models for real-

world offline model-based reinforcement learning. arXiv, 2011.01734, 2021. URL https:

//arxiv.org/abs/2011.01734.
[37] Y. Jiang, T. Zhang, D. Ho, Y. Bai, C. K. Liu, S. Levine, and J. Tan. Simgan: Hybrid simulator

identification for domain adaptation via adversarial reinforcement learning. arXiv, 2101.06005,
2021. URL https://arxiv.org/abs/2101.06005.

[38] M. Sunnåker, A. G. Busetto, E. Numminen, J. Corander, M. Foll, and C. Dessimoz. Ap-
proximate bayesian computation. PLoS Comput. Biol., 9(1), 2013. doi:10.1371/journal.pcbi.
1002803. URL https://doi.org/10.1371/journal.pcbi.1002803.

[39] P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré. Markov chain monte carlo without likeli-
hoods. Proceedings of the National Academy of Sciences, 100(26):15324–15328, 2003. ISSN
0027-8424. doi:10.1073/pnas.0306899100. URL https://www.pnas.org/content/100/

26/15324.
[40] M. A. Beaumont, J.-M. Cornuet, J.-M. Marin, and C. P. Robert. Adaptive approximate

Bayesian computation. Biometrika, 96(4):983–990, 10 2009. ISSN 0006-3444. doi:
10.1093/biomet/asp052. URL https://doi.org/10.1093/biomet/asp052.

[41] G. Papamakarios, I. Murray, and T. Pavlakou. Masked autoregressive flow for
density estimation. In NIPS, Long Beach, CA, USA, December 4-9, pages
2338–2347, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/

6c1da886822c67822bcf3679d04369fa-Abstract.html.
[42] K. Cranmer, J. Brehmer, and G. Louppe. The frontier of simulation-based inference. Pro-

ceedings of the National Academy of Sciences, 117(48):30055–30062, 2020. URL http:

//arxiv.org/abs/1911.01429.

11

http://dx.doi.org/10.1007/978-3-030-28619-4_34
https://doi.org/10.1007/978-3-030-28619-4_34
https://doi.org/10.1007/978-3-030-28619-4_34
https://arxiv.org/abs/2104.07662
http://dx.doi.org/10.1109/ICRA40945.2020.9196931
https://doi.org/10.1109/ICRA40945.2020.9196931
https://doi.org/10.1109/ICRA40945.2020.9196931
http://proceedings.mlr.press/v130/lueckmann21a.html
http://dx.doi.org/10.15607/RSS.2006.II.032
http://www.roboticsproceedings.org/rss02/p32.html
http://www.roboticsproceedings.org/rss02/p32.html
http://proceedings.mlr.press/v120/sutanto20a.html
http://proceedings.mlr.press/v120/sutanto20a.html
https://arxiv.org/abs/2011.01734
https://arxiv.org/abs/2011.01734
https://arxiv.org/abs/2101.06005
http://dx.doi.org/10.1371/journal.pcbi.1002803
http://dx.doi.org/10.1371/journal.pcbi.1002803
https://doi.org/10.1371/journal.pcbi.1002803
http://dx.doi.org/10.1073/pnas.0306899100
https://www.pnas.org/content/100/26/15324
https://www.pnas.org/content/100/26/15324
http://dx.doi.org/10.1093/biomet/asp052
http://dx.doi.org/10.1093/biomet/asp052
https://doi.org/10.1093/biomet/asp052
https://proceedings.neurips.cc/paper/2017/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html
http://arxiv.org/abs/1911.01429
http://arxiv.org/abs/1911.01429

	Introduction
	Background and Notation
	Markov Decision Processes with Randomized Dynamics
	Sequential Neural Posterior Estimation (SNPE)

	Neural Posterior Domain Randomization (NPDR)
	Experiments and Evaluations
	Sim-to-Sim Validation with a Fully Observable Posterior
	Sim-to-Real Bayesian System Identification in a Contact-Rich Environment
	Sim-to-Real Transfer with Policy Optimization in the Loop

	Related Work
	Adapting the Source Domain Distribution
	Bayesian System Identification for Robotics
	Likelihood-Free Inference

	Conclusion

