
In the appendix, we provide additional details on the derivations of our methods and analysis, in ad-
dition to methodological details omitted from the main paper. In Appendix A, we directly derive the
formulas necessary for our querying via information gain optimization approach. Appendices B to D
present details on our main approach in Algorithm 1. Appendix E provides the arguments needed
to justify the claims of Section 4.4. Finally, Appendices F to I present details on our experimental
setups, while Appendix J presents a compelling additional synthetic data experiment demonstrating
learning a reward function mixture with five modes.

A Information Gain Derivation
We present the derivation of the formula for computing the maximum information gain query Q∗.
Assume at a fixed timestep t we have made past query observations D = {Q(t′), x(t′)}t−1

t′=1. The
desired query is then

Q∗ = argmax
Q

I(X; Θ | Q,D), (6)

where I(·; ·) denotes mutual information. Equivalently, denoting conditional entropy with H[· | ·],
we note

I(X; Θ | Q,D)= H
[︂
{αm, ωm}Mm=1 | D

]︂
− E

P (X|Q,D)

[︃
H
[︂
{αm, ωm}Mm=1 |Q,X= x,D

]︂]︃
,

which allows us to write the optimization in Eq. (6) equivalently as

Q∗ = argmin
Q

E
P (X|Q,D)

[︃
H
[︂
{αm, ωm}Mm=1 | Q,X = x,D

]︂]︃
.

We further simplify this minimization objective by denoting the joint distribution over x and θ =

{αm, ωm}Mm=1 conditioned on Q and D as P (X,Θ | Q,D) and expanding the entropy term:

Q∗ = argmin
Q

E
P (X,Θ|Q,D)

log
Pr [X = x | Q,D]
Pr[X = x | Q, θ]

= argmin
Q

E
P (X,Θ|Q,D)

log
Eθ′∼Θ|D Pr [X = x | Q, θ′]

Pr[X = x | Q, θ]
. (see 4)

B Metropolis-Hastings
B.1 Approach

Figure 7: Multi-chain Metropolis-Hastings sampling
(left) gives more representative samples from the dis-
tribution compared to the single-chain variant (right).

To sample from Pr(Θ | D) using Eq. (3), we
use the Metropolis-Hastings algorithm [62], run-
ning N chains simultaneously for HMH itera-
tions. To avoid autocorrelation between sam-
ples, unlike in conventional Metropolis-Hastings
we only use the last state in each chain as a sam-
ple. In contrast, for conventional Metropolis-
Hastings, multiple samples would be drawn
from a single chain at set intervals after a short
burn-in period. As we see in Fig. 7, for our mul-
timodal Plackett-Luce posteriors, performing multi-chain Metropolis-Hastings yields posterior sam-
ples that are far more evenly distributed across different posterior modes. Thus, to achieve well-
distributed posterior samples, we set our effective burn-in period to be HMH − 1, taking only the
last sample from each chain.

For two states in the chain Θ = {αm, ωm}Mm=1 and Θ′ = {α′
m, ω′

m}
M
m=1, our proposal distribution

is then

g(Θ′ | Θ) =

M∏︂
m=1

φ(ωm − ω′
m),

where φ is the pdf of the diagonal Gaussian N (0, σMHI).

12



B.2 Multimodal Metropolis-Hastings Demonstration

The posterior distribution in the figure is that of a 2-mode Plackett-Luce mixture with fixed uniform
mixing coefficients and 1-D weights conditioned on the observations 50 ≻ −50 and−50 ≻ 50. The
single-chain algorithm ran for 2000 steps with a burn-in period of 200 steps after which every 18th
sample was selected, while the multi-chain algorithm used 100 chains for 20 iterations each, taking
only the last sample from each chain.

C Simulated Annealing
For our simulated annealing, we run NSA chains in parallel for HSA iterations each, returning the
best query Q found across each run. We define the transition proposal distribution g(Q′ | Q) to
be a positive constant if Q′ and Q differ by one trajectory and 0 otherwise. We run with a starting
temperature of T 0

SA, cooling by a factor of γSA with each subsequent iteration past the first.

D Hyperparameters
We use the hyperparameters in Table 1 for the simulated annealing and Metropolis-Hastings algo-
rithms, whose details are provided in Appendix B and Appendix C, respectively.

Table 1: Hyperparameters

Constant Value

N 100
HMH 200
σMH 0.15
NSA 10
HSA 30
T 0
SA 10

γSA 0.9

E Proofs and Analysis
E.1 Proof of Corollary 1.1

Corollary 1.1. A mixture of M Plackett-Luce models with query size K is generically identifiable
if M ≤

⌊︁
K−2
2

⌋︁
!.

Suppose we have such a mixture of M Plackett-Luce models that is not identifiable. Then, there
must exist two distinct sets of parameters Θ1 and Θ2 such that for every query Q, the induced
ranking distributions X1 and X2 respectively are identical. But since Θ1 and Θ2 are distinct, there
is either (1) two mixing coefficients in Θ1 and Θ2 that disagree or (2) two items ξ1 and ξ2 that
have a different difference in rewards across Θ1 and Θ2 under one of the reward functions. Let Q̄
with corresponding ranking distribution X̄ be an arbitrary query in case (1) and an arbitrary query
containing ξ1 and ξ2 in case (2). Note that X̄ is the marginal distribution of the overall Plackett-Luce
distribution, which by construction is a mixture of M Plackett-Luce models with parameters Θ1 and
Θ2, restricted to the items in Q̄. But now there are two distinct sets of parameters representing the
distribution over the full ranking of Q since we know Θ1 and Θ2 differ on the restricted set of items
Ξ′ = Q (either because they have differing mixing coefficients or because their induced rewards on
Ξ′ are not a within a constant additive factor of each other since ξ1 and ξ2 are in Ξ′). But we know
|Ξ′| = |Q| = K, so this finding contradicts the fact that X̄ must be identifiable by Theorem 1. We
conclude every mixture of M Plackett-Luce models is identifiable subject to the query size bounds
in the statement of this corollary.

E.2 Justification for Remark 1

Remark 1. Greedy selection of queries maximizing information gain in Eq. (4) is not necessarily
within a constant factor of optimality.

Here, we define the optimal adaptive set of queries D to be the one which, in expectation, mini-
mizes the uncertainty over model parameters H[Θ | D]. It is a well-known result that for adaptive
submodular functions, greedy optimization yields results that are within a constant factor

(︁
1− 1

e

)︁
of optimality [63]. While our mutual information objective in Eq. (4) is adaptive submodular in the
non-adaptive setting (where all queries Q are selected before observing their results), in our adap-

13



tive setting these guarantees no longer hold (conditional entropy is only submodular with respect to
conditioned variables if those variables are unobserved).

F Baselines
F.1 Random

We benchmark against a random agent, wherein at each step the query selected by the agent is a
collection of K random items without replacement. We also use the random querying method for
comparing the multimodal reward learning with the existing approaches that assume a unimodal
reward (e.g. [5]), as it does not introduce any bias in the query selection.

F.2 Volume Removal

Volume removal seeks to maximize the difference between the prior distribution over model param-
eters and the unnormalized posterior. Volume removal notably fails to be optimal in domains where
there are similar trajectories [29]. In these settings, querying sets of trajectories with similar features
removes a large amount of volume from the unnormalized posterior (since the robot is highly un-
certain about their relative quality), yet yields little information about the model parameters (since
the human also has high uncertainty). Information gain approaches such as our method are better
able to generate trajectories to query for which the robot has high uncertainty while the human has
enough certainty to yield useful information for the robot.

G Trajectory Generation
G.1 LunarLander Trajectories

We designed 8 trajectory features based on: absolute heading angle accumulated over trajectory,
final distance to the landing pad, total amount of rotation, path length, task completion (or failure)
time, final vertical velocity, whether the lander landed on the landing pad without its body touching
the ground, and original environment reward from OpenAI Gym. Using these features, we randomly
generated 10 distinct reward functions based on the linear reward model and trained a DQN policy
[61] for each reward. Finally, we generated 100 trajectories by following each of these 10 policies in
the environment to obtain 1000 trajectories in total. We used these trajectories as our dataset for the
ranking queries. Fig. 8 presents an example trajectory with extracted scaled and centered features.

Feature Value

Mean angle 2.27683634
Total angle −0.20375356

Distance to Goal 5.41860642
Total rotation 0.25948072
Path length 3.71660086

Final vertical velocity −0.57097337
Crash time 1.11112885

Score −0.15500268

Figure 8: Sample LunarLander trajectory (left) with extracted features (right).

G.2 Fetch Trajectories

To design our 351 trajectories, we varied the target shelf (3 variations), the movement speed (3),
the grasp point on the banana (3) and where in the shelf it is placed (13). We then designed 12
trajectory features based on these varied parameters and appended another binary feature which
indicates whether any object dropped from the shelves on that trajectory.

Specifically, for τ a trajectory, let
xi =

{︂
1 i is the target shelf
0 otherwise

,

14



ygrasp, yheight, ywidth, yspeed specify the grasp position and speed, and ysuccess specify whether the robot
did not drop any objects from the shelves. Our featurization is then

Φ(τ) =
(︁
x1, x2, x3, yspeed, yspeed(1− yspeed), ygrasp,

ygrasp(1− ygrasp), yheight, yheight(1− yheight),

ywidth, ywidth(1− ywidth), 1− (ygrasp − ywidth)
2, ysuccess

)︁
.

Fig. 9 presents a sample Fetch trajectory with its featurization.

Feature Value

x1 1.0000
x2 0.0000
x3 0.0000

yspeed 0.5000
yspeed(1− yspeed) 0.2500

ygrasp 1.0000
ygrasp(1− ygrasp) 0.0000

yheight 0.7500
yheight(1− yheight) 0.1875

ywidth 0.2500
ywidth(1− ywidth) 0.1875

1− (ygrasp − ywidth)
2 0.4375

ysuccess 1.0000

Figure 9: Sample Fetch trajectory (left) with extracted features (right).

H Metrics
H.1 MSE

Our metric is

MMSE =

M∑︂
m=1

∥ω∗
m − ˆ︁ωm∥22 (7)

where Θ∗ = {α∗
m, ω∗

m}
M
m=1 and ˆ︁Θ = {ˆ︁αm, ˆ︁ωm}Mm=1 and the learned reward weights of the ex-

perts are matched with the true weights using the Hungarian algorithm. When the learning model
assumes a unimodal reward function, as in our simulations for Fig. 3, we compute the MSE metric
as

∑︁M
m=1 ∥ω∗

m − ω̂∥22.

H.2 Log-Likelihood

Formally, we define the log-likelihood metric as
MLL = EQ∼Q

[︁
Ex∼P (X|Q) log Pr(x | Q, D)

]︁
(8)

for Q the uniform distribution across all possible queries and P (x | Q) the distribution over the
human’s response to query Q (as in Eq. (2)). We can compute the inner term

Pr(x | Q,D) = EΘ|D[Pr(x | Q,Θ)]

using Metropolis-Hastings as in Section 4.3 to sample from the posterior Pr(Θ | D) and computing
the inner term with Eq. (2).

H.3 Learned Policy Rewards

Similar to the MSE metric, we match the rewards learned via DQN [61] with the true rewards using
the Hungarian algorithm.

I Experimental Setup
I.1 Shelf Descriptions

A picture of each shelf accompanied the following descriptions.

15



Figure 10: The user interface for the online studies with the real Fetch robot. The user selected the 2nd trajectory
as their top choice and the 6th trajectory as the second top.

• The top shelf has some space, but you usually put cooked meals there.
• The middle shelf is for fruits, but it is already full. The robot may accidentally drop other fruits.
• The bottom shelf has a lot of space, but you have been using it for toys.

I.2 User Interface

For both environments, subjects were told they need to rank the six trajectories in each query by
clicking on the trajectories starting from the most preferred to the least. The web interface (see
Fig. 10) equipped them with “Undo” and “Sync” buttons. “Undo” allowed the subjects to undo a
selection they make within a query. “Sync” enabled them to restart all videos in the query.

J Synthetic Experiment
J.1 Testing M > 2

Figure 11: Different querying methods are compared
on a synthetic environment (mean±se over 250 runs).

For our first experiment with synthetic data, we
demonstrate effectiveness of our approach for
learning mixtures of more than two Plackett-
Luce models. In particular, we evaluate
our approaches using 250 sets of five ran-
domly simulated reward weights (M = 5,
K = 6), and trajectory features defined by
Φ(ξ1:10) ∼ N (0, I), Φ(ξ11:110) ∼ N (0, 0.1I),
and Φ(ξ111:1110) ∼ N (0, 0.01I) where I is the
3 × 3 identity matrix and ξn:k refers to the nth
through kth trajectory in the environment . This
environment models complex multimodal structure in the trajectory feature space, which is common
to many robotic settings.

Figure 12: Different values of M
for the IG approach are compared
(mean±se over 100 runs).

Fig. 11 shows the results of our experiments. We see our ap-
proach, Mixture - IG dramatically outperforms the other ap-
proaches in both the MSE and log-likelihood metrics.

J.2 Testing Robustness to M Parameter

We also test the robustness of our Mixture - IG approach to
misspecified M values. We repeat the previous experiment,
testing the Mixture - IG approach varying the misspecified
value of M between M = 1 (Unimodal) and M = 3, 5, 7
(see Fig. 12). We use the log-likelihood metric since MSE is
not well-defined for methods with M ̸= 5 because they learn
a mixture of a different number of reward functions from the
true synthetic mixture.

We see the best performance occurs for M = 5 and M = 7, with only M = 1 performing signifi-
cantly worse. We conclude that in this experiment our Mixture - IG approach is relatively robust to
the value of M , as long as a sufficiently large value > 1 is selected.

16



K Additional Unimodal Baseline
We test an additional baseline on the random queries made during user studies to show the superior-
ity of our learning approach. The additional baseline represents selecting the unimodal reward with
fixed norm that maximizes the reward of the top trajectory of each expert-ranked query. We com-
pare this baseline against a learning method that computes the bimodal MLE of the reward function.
Formally, for query responses D =

{︁
Q(t′), x(t′)

}︁t

t′=1
with ξ(t

′) the top trajectory in the ranking
x(t′) = (ξ(t

′), . . .), we define this baseline to learn the parameters θ = {α, ω} where α = 1 and

ω̃ =

t∑︂
t′=1

Φ(ξ(t
′))

ω =
ω̃

∥ω̃∥2
.

Note that we do not vary the querying method in this experiment. Rather, we compare two methods
of learning reward weights from the 15 random human queries that were performed by the Mixture
- Random algorithm on the Fetch Robot and LunarLander during our user studies, and then eval-
uate these methods on the 10 random evaluation queries presented to the humans at the end of the
experiment. We compare the two methods in terms of the log-likelihood metric. The results are
presented in Table 2, with our method denoted as “Mixture MLE” and the new baseline described
above denoted as “Baseline”.

Table 2: Additional User Study Reward Learning Baseline

LunarLander Fetch Robot

log-likelihood

p-value

Baseline Mixture MLE

−8.23± 0.31 −5.91± 0.18

6.2 · 10−7

Baseline Mixture MLE

−5.21± 0.22 −4.70± 0.35

0.11

We see the Mixture MLE method outperforms the Baseline method on both environments, with
statistical significance (p < 0.05) in LunarLander when conducting paired t-TESTS.

17


	Information Gain Derivation
	Metropolis-Hastings
	Approach
	Multimodal Metropolis-Hastings Demonstration

	Simulated Annealing
	Hyperparameters
	Proofs and Analysis
	Proof of thm:largeident
	Justification for thm:remark

	Baselines
	Random
	Volume Removal

	Trajectory Generation
	LunarLander Trajectories
	Fetch Trajectories

	Metrics
	MSE
	Log-Likelihood
	Learned Policy Rewards

	Experimental Setup
	Shelf Descriptions
	User Interface

	Synthetic Experiment
	Testing M>2
	Testing Robustness to M Parameter

	Additional Unimodal Baseline

