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Abstract: Real world robotics often operates in uncertain and dynamic environ-
ments where generalisation over different scenarios is of practical interest. In the
absence of a model, value-based reinforcement learning can be used to learn a
goal-directed policy. Typically, the interaction between robots and the objects in
the environment exhibit a first-order structure. We introduce first-order, or re-
lational, features to represent an approximation of the Q-function so that it can
induce a generalised policy. Empirical results for a service robot domain show
that our online relational reinforcement learning method is scalable to large scale
problems and enables transfer learning between different problems and simulation
environments with dissimilar transition dynamics.
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1 Introduction

Adaptation to different scenarios is essential for real world robotic applications. As a motivating
example, consider a service robot interacting with people and objects as shown in Figure 1. The
robot is required to attend to a person who requires assistance and complete the tasks given by
the person. The uncertainty in who needs assistance, what these task could be, and the number
of people and objects in the environment necessitates generalisation of learned knowledge from
past observations in order to complete new but similar tasks in a different environment. If the
model of the interaction between the robot and its environment is unknown due to its complexity,
then value-based reinforcement learning (RL) methods can be used to solve the planning problems.
The amount of observations required to achieve near-optimal behaviour, or sample complexity, is
usually prohibitive, especially in large scale problems. This restricts the practicality of RL methods
in applications where data collection is expensive. One solution is to utilise transfer learning which
can reduce sample complexity by leveraging the knowledge learned in small scale problems where
learning can be more efficient, or in simulated environments where data collection is cheap and safe.

Interactions between robots and objects in its environment often exhibit a first-order structure (i.e.,
ground actions of a lifted action change the relations or properties of all objects of the same type in
similar manner). We model problems with a first-order structure using Relational Markov Decision
Processes (RMDPs). Relational reinforcement learning (RRL) learns in a first-order representation
rather than a propositional representation and can achieve knowledge transfer without the need of
a mapping between problems [1]. In this work, we propose a model-free RRL method where the
action-value function, or Q-function, is approximated by projecting the state space into a lower
dimensional space using a set of features. We utilise an existing online feature discovery algorithm,
iFDD+ [2], to incrementally add conjunctive state predicates as features to reduce the approximation
error. Since state predicates are ground over objects, problems with different objects or numbers of
objects have different sets of state predicates, or feature spaces, and generalisation is not possible.
Instead, we use lifted state predicates, or first-order features, to approximate the Q-values of lifted
actions rather than ground actions. By learning in a abstract state-action space which is common
across all problems of the same domain (related problems), knowledge transfer is possible.
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Figure 1: An environment in Gazebo for the Service Robot domain. A TIAGo robot fulfils a task
from person P1 who requested assistance, by bringing an item O1 to a location WP5.

Our contribution is threefold. First, we propose a method to generate a first-order feature space au-
tomatically given a RMDP without the use of a model, expert knowledge, or training data. Second,
we implement an online, model-free RRL method which learns a first-order linear function approx-
imation of the Q-function given an initial set of first-order features. The approximated Q-function
induces a generalised policy which allows transfer learning between related problems independent
of the objects, number of objects, initial states, and goal states. Third, we introduce the concept
of contextual knowledge to reduce granularity in the first-order function approximation, improve
plan optimality, and reduce computational cost. We evaluate our method empirically on randomised
problems in a service robot domain and in different simulation environments.

2 Related Work

Exploitation of the first-order structure of planning problems could reduce the sample complexity of
RL methods. There are broadly two types of methods: model-based and model-free. Model-based
methods such as [3, 4, 5, 6] learn relational models and employ planning techniques. Our work
is a model-free RRL method and, therefore, we focus on reviewing model-free learning methods.
Mausam and Weld [7] and Džeroski et al. [8] partition the state space into finer regions, each of
which has a real-value representing the Q-value, using relational regression trees. Wu and Givan [9]
perform supervised learning of relational features, represented as decision trees, by adding features
which correlate well to the Bellman error of value functions. A decision tree is sensitive to the order
of node splitting and is ill-suited in online RL where later observations yield new information which
might necessitate the reconstruction of the trees. Ramon et al. [10] propose a tree restructuring
operation but require statistics to be stored for every node. We use conjunctive features similar to
SVRRL [11] which avoids the issue faced by decision trees. SVRRL represents a value function with
a relational naive Bayes net and learns both the values and structure of the network. It utilises a
distance metric to generalise over handcrafted non-binary relational features. Likewise, RIB [12],
which uses instance-based learning where selected observed examples are stored, requires a domain-
specific distance metric to compute Q-values of unseen state-action pairs. Our work does not require
any distance metric to be defined. In these aspects, [13] and [14] are most similar to our work. The
former samples features from a set of features with the use of prior training data while we discover
features online. The latter restricts features to have at most one free variable while our features can
have any number of free variables. Other works such as [8, 10, 15, 12] do not consider free variables.
Instead, only objects in the arguments of the goal predicate and action are considered which restricts
the applicability of their methods to problems with simple goals.

Some approaches require extensive domain knowledge to define specific representations that facili-
tate efficient learning. Morales [16] defines abstract actions (r-actions) and abstract states (r-states)
in a relational representation, then learns policies in this abstract state-action space. Konidaris and
Barto [17] learn a shaping reward in the action space, represented by sensory measurements which
are common and hold the same semantics for all problems, to accelerate learning in another prob-
lem. In later work [18], options in the agent-space are learned and transferred. Van Otterlo [19]
solves an abstract MDP, which is created with the use of background knowledge, of the underlying
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Algorithm 1: RRL with Online Feature Discovery
Input: RMDP (O,P,S,A, T ,R, s0, H, γ), Discovery threshold ξ

1 Initialise: Φ← initialise features(P,A); w = 0; Q̃ := wTΦ
2 for t = 0 to H − 1 and st is not terminal state do
3 at ← πQ̃(st)

4 st+1, rt,∆t ← Execute action at in simulation environment or real-world
5 TD error δt = rt + γmaxa∈A Q̃(st+1, a)− Q̃(st, at); Updatew

6 ηt(φi) =

∣∣∑t
j=0,φi(sj,âj)=1 δj

∣∣√∑t
j=0,φi(sj,âj)=1

1
∀φi ∈ P(Φa); if ηt(φi) > ξ then append φi to Φa and 0 tow

RMDP. Sharma et al. [20] perform case-based learning and quantify state similarity by the Euclidean
distance between a pair of states which are represented by handcoded, real-valued state variables.
The Q-values of an action are a weighted sum of the Q-values of matching cases, weighted by how
similar these cases are to the current state. Our work uses trivial domain knowledge for contextual
grounding which we posit are known in most, if not all, planning problems anyway.

3 Preliminaries

We solve planning problems represented with RMDPs using RL methods where the Q-function is
approximated with a linear function approximation.

Relational Markov Decision Process (RMDP). Factored Markov Decision Processes (MDPs) [21]
represent a state s with a set of state predicates P where s =

∧|P|
i=1 pi and pi ∈ P . We use

symbols with boldface to indicate sets. If the transition of pi depends only on a small number
of state predicates P̄ ⊂ P , then the transition function T , which defines a probability distribu-
tion over possible successor states after executing an action, can be represented compactly; for
a predicate pi, T (p′i |P , a) = T (p′i | P̄ , a) where p′i is the predicate at the next time step and
a is an action. A RMDP is a first-order representation of a factored MDP given by the tuple
(O,P ,S,A, T ,R, s0, H, γ). O is a set of objects, each associated with a type, P is defined
over O, S is a set of all possible state specifications over O and P , A is the set of all possible
instantiated actions, T : S × A × S → [0, 1], R : S × A → R is the reward function, s0 is
the initial state, H is the planning horizon, and γ is the discount factor. Each predicate is applied
over a type-consistent tuple of objects. Different planning problems of a domain can be constructed
where their RMDPs have different O, initial states, and goal states. A generalised policy is a policy
π : s→ a which directly solves any problem of a domain.

Linear Function Approximation. The Q-function estimates the expected return, or Q-value
Q(s, a), of executing an action a in the state s and following a policy thereafter. The Q-function can
be represented with some form of parametric function approximation such as a linear combination
of features: Q̃ =

∑k
i=1 wiφi, where Φ = {φ1, . . . , φk} is a set of features and w = {w1, . . . , wk}

is a set of scalar weights. A feature φi maps (s, a) to a scalar. The learning objective is to find the
set of features and weights such that Q̃ closely approximates the optimal Q-function. A policy π
induced by the optimal Q-function maximises the total discounted reward

∑H
t=0 γ

trt, where rt is
the reward observed at time step t. A feature partitions the state space into regions such that states
in a region are considered the same for the purpose of approximating the Q-values. The coverage of
a feature is the region of the state space for which the feature evaluates to non-zero [22]. Features
with low coverage give fine granularity in approximation and thus have better accuracy than features
with high coverage. This impacts the soundness of policies. Conversely, features with high coverage
offer better generalisation as learning is done over a smaller number of partitions of the state space.

4 Online Learning with First-Order Linear Function Approximation

Our objective is to learn a generalised policy which can be used to directly solve every problem
of the same domain. We present our online RRL method in Algorithm 1 which learns a linear

3



function approximation of the Q-function, Q̃, where the features Φ are first-order (initialised in
line 1). Algorithm 1 uses iFDD+ [2] for online feature discovery. Q̃ is defined over the abstract
state space (represented by the first-order features) and lifted action space which are the same in
all related problems. This allows transfer learning where Q̃ is learned in a problem and transferred
directly to solve another problem. Thus, the policy πQ̃ induced by Q̃ is a generalised policy. At each
time step t (line 2), the robot executes an action at given by πQ̃ (lines 3 and 4) and observes the
successor state st+1, reward rt, and duration of execution ∆t. The temporal difference (TD) error
is computed and the weights w are updated accordingly (line 5) with a TD learning method. We
used Double Q-learning [23] with replacing eligibility traces for each feature [24]. iFDD+ adds new
features, which are the conjunction of two existing features in Φ, to Φ if their relevances ηt exceed
the discovery threshold ξ (line 6). This reduces the approximation errors of Q̃ by introducing a finer
granularity in Q̃. In the remainder of this section, we elaborate on Algorithm 1.

4.1 Generalisation with First-Order Features

A feature φi is a set of conjunctive state predicates or a single state predicate which evaluates to 1 if
it is satisfied in a state; otherwise it evaluates to 0. We denote a function approximation which uses
ground state predicates for features as a ground approximation. Let Q̃1 be a ground approximation
for a RMDP with state-action space S1 ×A1, and φi be one of its features. Evaluating the value
of φi = p1 ∧ . . . ∧ pn ∈ S1 is straightforward. However, in a second RMDP (i.e., a different
planning problem) with state-action space S2 ×A2, φi cannot be evaluated if any of its constituent
state predicates p1, ..., pn is not in S2. Extending this further, Q̃1(s, a) does not map to a real value
if s ∈ {S2 − S1} or a ∈ {A2 − A1}. Thus, Q̃1 cannot induce a policy for the second RMDP
unless S1 = S2 and A1 = A2. However, the two RMDPs are trivially identical with possibly
different initial states and goal states. We are interested in transfer learning between related problems
with different state-action spaces. This motivates our use of a first-order approximation which is
independent of S, A, and O. In a ground approximation, the features for each ground action a, Φa,
are initialised as the set of every state predicate and their negation: Φ := [Φa1 , ...,Φam ], where m
is the number of ground actions. We use ˆ to denote a lifted predicate or a set of lifted predicates
and lowercase (uppercase) letters to represent variables (objects). In a first-order approximation,
we instantiate a set of first-order features for each lifted action â instead of every ground action.
Otherwise, Q̃ will not be independent of O because ground actions are defined over O. â can be
ground with the variable binding σa = {x/X, y/Y } to a ground action a(X,Y ). For every â ∈ Â,
we initialise Φâ (line 1 of Algorithm 1) with the following steps:

1. We denote the set of ground actions for â as Aâ. The initial set of ground features for every
ground action a ∈ Aâ are lifted in accordance with the binding σa where objects in the
arguments of a are substituted with their corresponding bound variables.

2. Φâ is the union of the features from step 1. The remaining objects are substituted with free
variables, where ?obj denotes a free variable of type obj.

This procedure will generate the same set of first-order features for every related problem. Since Â
is also the same, our first-order approximation has the same representation in all related problems.
A first-order feature must be fully grounded in order to evaluate its value in a state. In contrast to
bound variables which are ground with objects in the arguments of actions, free variables can be
ground to any object of the same type. We discuss the grounding of free variables in Section 4.3.

Service robot domain. We introduce a novel domain, Service Robot (SR), which is illustrated
in a Gazebo environment in Figure 1. In SR, a TIAGo robot has to assist some people. The
robot navigates from location wp1 to wp2 with the action move(wp1, wp2). A person can re-
quest assistance

(
represented by the state predicate need assistance(person)

)
which is a prob-

abilistic exogenous effect (i.e., it is not due to the robot’s actions). The robot does not initially
know where the people are located and has to find them

(
find(person)

)
. It then moves to

the person and talks to them
(
talk(person)

)
. If the person has requested assistance, the robot

would receive some tasks (or goals) of two possible types: (1) bring an item obj to location wp(
goal object at(obj, wp)

)
, or (2) deliver obj to person

(
goal object with(obj, person)

)
.
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The robot could pick up an item
(
pick up(obj, wp)

)
, put down an item

(
put down(obj, wp)

)
,

give an item to a person
(
give(obj, person)

)
, or take an item from a person

(
take(obj, person)

)
.

Example 1. In a ground approximation, we use the predicates P̄ = {need assistance(P1),
..., need assistance(Pm)} as features (i.e., |P̄ | number of features), where Pi are objects of
type person. In a first-order approximation, these predicates are lifted to a first-order feature.
For the lifted action talk(person), φi = need assistance(person). The number of first-order
features does not increase with the number of person objects unlike the ground approximation. This
demonstrates that the first-order approximation does not scale with the number of objects and is
independent of O. To evaluate φi, it must be grounded. The bound variable person is substituted
according to the variable binding of talk (e.g., for talk(P3), person is substituted with P3). One
of the first-order features for move(wp1, wp2) is φj = need assistance(?person); because move
does not have an argument of type person, Pi is substituted with a free variable ?person. φj could
be grounded by substituting ?person to any object of type person.

4.2 Online Feature Discovery

In Section 4.1, we describe the initialisation of Φ where each feature is a lifted state predicate. There
could be large approximation errors in Q̃ as each of these feature has a high coverage. Hence, adding
conjunctive state predicates, which have lower coverage, to Φ could reduce the approximation error.
The problem of feature discovery is to determine which features to add. We utilise iFDD+, a model-
free, online feature discovery algorithm (line 6 of Algorithm 1). A set of candidate features Φc

a
consists of features which are the conjunction of any two features (its parent features) in Φa. We
denote the generation of Φc

a from Φa as P(Φa). iFDD+ iteratively adds candidate features to Φa at
each time step if their cumulative absolute approximation errors, or relevances, exceed the discovery
threshold ξ which is a user-defined parameter. The relevance of a candidate feature is updated at each
time step by accumulating the TD error only if the candidate feature is active. A feature is active if
it is true in the state and is not a parent feature of any active feature. The weight of a newly added
feature is equals to the sum of the weights of its parents. When a feature φi is added to Φa, this in
turn generates new candidate features with φi as one of its parent features.

4.3 Contextual Grounding of Free Variables

To evaluate the values of first-order features in a state, they must be fully ground. This is required in
Algorithm 1 to determine the Q-values (lines 3 and 5) and the active features and candidate features
(line 6). The grounding influences the step update of w (line 5) and feature discovery (line 6).
Bound variables are substituted with objects of the same type in the arguments of a ground action
(see Example 1). Features with at least one free variable are not fully ground. The set of possible
substitutions for these features consists of every combination of objects for the free variables. The
number of substitutions for a first-order feature φi and for Φâ are:

|σφi | =
∏
v∈v
|v|, and |σΦâ

| =
∏

φi∈Φâ

|σφi |, (1)

respectively, where σφi (σΦâ
) is the set of possible substitutions for φi (Φâ), v is the set of free

variables in φi and |v| is the number of objects of the same type as v. If we consider every substi-
tution (i.e., to treat a free variable like an existential quantifier) where φi is true in s if there exists a
substitution in σφi which makes it true, then there would be many such states (e.g., in Example 1,
need assistance(?person) will be true if any person needs assistance). Thus, first-order approx-
imation has a coarse granularity which can deteriorate performance. We propose two methods to re-
solve this. First, we use contextual knowledge to reduce the number of objects which a free variable
can be grounded to (i.e., reduce |v| in Equation 1). Any substitution which conflicts with the substitu-
tion due to contextual knowledge is removed from σΦâ

. Two substitutions conflict if they substitute
a free variable with a different object. We introduce two forms of contextual knowledge which re-
quire trivial domain knowledge: goal and location. Second, after contextual knowledge is applied,
we select σM ⊆ σΦâ

such that a metricM is maximised: σM = {arg maxσ∈σΦâ
M
(
Φσ
â

)
}, where

Φσ
â is the grounding of Φâ with σ. We define M

(
Φσ
â

)
=
∑
φi ∈ Φσ

â
φi(s, a)(|φi|)2, where |φi| is

the number of state predicates in φi. This maximises the number of active, complex features. The
choice of M must be dependent on the state only to preserve the Markovian property of RMDPs.

5



Goal Context. The goals G in a planning problem are state predicates which can be trivially deter-
mined from the definition of terminal states which are commonly assumed to be known. The objects
in g ∈ G are used for grounding free variables of the same type: σgoal=g = {?x1/X1, . . . , ?xn/Xn}
where g = p(X1, . . . , Xn). We consider only active goals: a goal is active if it is known and has
not been achieved (e.g., in SR, a goal is known only after a person has given a task). We assume that
achieved goals are inconsequential for decision making in the present and future. The Q-values after
applying goal context represent the expected values of actions for achieving the goal. This is similar
to the goal-associated Q-function in [25] but is not the same as additive rewards as defined in [26]
where each goal is assumed to contribute uniformly and additively to the reward. φi = 1 if there
exists a g such that σgoal=g results in φi being true; the value does not change even if more of such
goals exist. A goal typically gives a contextual grounding which is in conflict with another goal. We
propose two goal selection schemes: (1) GA uses every goal with the maximal metric M , and (2) G1
uses only one goal at a time. G1 selects the next goal in an ordering of active goals, Ḡ, when the
currently selected goal is achieved. The order in Ḡ could affect the optimality and soundness of the
policy. We determine Ḡ from the state trajectories observed in the previous episode. A partial order
gi < gj is added if gi is achieved before gj . Ḡ is randomly shuffled at the start of an episode such
that every partial order is satisfied. If every goal is achieved, then the total order is known though it
might not be optimal. However, due to exploration in RL, the order of goals achieved might not be
the same as Ḡ. Thus, a more optimal Ḡ could still be found.
Example 2. In SR, the goals are represented by the state predicates
goal object with(obj, person) and goal object at(obj, wp). Suppose that the goals
are to deliver item O1 to location WP5 and item O2 to person P1. The former is denoted as
g1 = goal object at(O1,WP5) and the latter as g2 = goal object with(O2, P1). The goal
g1 involves the objects O1 with type obj and WP5 with type wp, and the corresponding contextual
grounding is σgoal=g1 = {?obj/O1, ?wp/WP5}. Likewise, σgoal=g2 = {?obj/O2, ?person/P1}.

Location Context. Mobile robots move in an environment and can only interact with objects in their
vicinity. Following this observation, location context substitutes the free variable with the current
location of the robot: σloc = {?wp/WP} if the robot is at location WP of type wp. Location
context can be used with the goal context if there is no conflict (i.e., they substitute free variables of
different types)—this queries if the robot is at the same location as the goal of interest. If there is a
conflict between goal context and location context, then either one takes precedence. We let location
context take precedence in our experiments.
Example 3. In SR, the state predicate robot at(wp) represents the location of a robot. If the
robot is at WP4, then the contextual grounding is σloc = {?wp/WP4}. Following Example 2,
we can apply σgoal=g2 and σloc together without any conflict to give the contextual grounding
σloc,goal=g2 = {?wp/WP4, ?obj/O2, ?person/P1}. On the other hand, σgoal=g1 and σloc are
conflicting as they ground ?wp to WP5 and to WP4, respectively. They can still be applied to-
gether by letting either one takes precedence (i.e., ignore the grounding of the other one). If location
context takes precedence, then σloc,goal=g1 = {?obj/O1, ?wp/WP4}.

4.4 Granularity of First-Order Approximations

The lifted state-action space Ŝ × Â is often much smaller than the ground state-action space since
a lifted predicate p(x, y) can be ground in |x||y| ways. Since Ŝ , P̂ , and Â are independent of O,
the lifted state-action space does not increase with the scale of the planning problem which makes
first-order approximations scalable to large scale problems (see Example 1). However, the downside
is a coarser granularity in approximation. The maximum number of features is

∑
a∈A |Φ(a)| =

22|P|×|A| in a ground approximation, and
∑
â∈Â |Φâ| = 22|P̂|×|Â| in a first-order approximation.

Since |P̂ | ≤ |P | and |Â| ≤ |A| (they are equal if there is one object for each type), a first-order
approximation uses fewer features to partition the state space. Therefore, the size of the partitions
(or granularity) must be larger than a ground approximation. Furthermore, free variables in a first-
order feature increase its coverage because there only needs to exist a substitution among several
possible substitutions to make the feature true. This deteriorates performance if there are plateaus
in the induced policy. Plateaus are regions of the state space where there are multiple non-optimal
actions with the maximal Q-value. The coarse granularity limits the type of problems a first-order
approximation can be applied in. Because first-order approximation does not consider every ground
state predicates, it is suited for planning in factored MDPs with independent goals.
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Figure 2: Results for Psmall (top row) and Plarge (bottom row) using RDDLSim as a simulator. The
performance of first-order approximation with different combinations of contextual grounding is
compared with ground approximation (Ground). Results for transfer learning (Transfer) from
Psmall to Plarge are included as well. The shading represents one standard deviation.

Psmall (ROS) Psmall (RDDLSim) Plarge (ROS) Plarge (RDDLSim)

Reward 22.7± 10.6 28.6± 0.9 45.2± 21.0 46.0± 24.7
Mission Time (s) 303.7± 86.7 289.8± 30.3 607.3± 116.4 648.6± 122.3

Table 1: Results for transfer learning from RDDLSim to ROS aggregated over 100 runs. This is
compared with results from RDDLSim

(
Loc.+G1 for Psmall and Loc.+G1 (Transfer) for Plarge

)
.

5 Experiments and Results

We now demonstrate empirically that our work (1) learns a generalised and goal-directed policy,
(2) enables transfer learning from small scale problems (Psmall) to large scale problems (Plarge)
and between different simulation environments, and (3) reduces memory and computational costs.
Results are averaged over 10 independent runs where a different, randomised problem is used. The
problems are randomised in the locations of items and in the tasks given. We assume that the
preconditions of actions are known (i.e., an illegal action will never be executed).

Experimental Setup. In Psmall (Plarge), O contains three (six) items, one person (three people),
and five (ten) locations; the probability of people needing assistance is 0.5 (0.5, 0.3, and 0.0 for
three people). The size of the state-action spaces are 256 × 65 for Psmall and 2216 × 264 for Plarge.
Each person who requires assistance gives two tasks when talked to. Executing an action provides
a reward of −1 and completing a task (or goal) provides a reward of 20. We tested our work
in two simulation environments: RDDLSim [27] and ROS (Robot Operating System) [28] with the
ROSPlan [29, 30] package. Both simulators return an observation for executing an action in a state
(line 4 of Algorithm 1). We augment the observation from RDDLSim with the execution duration
∆ which is the mean of the observed ∆ in ROS injected with normally distributed noise (standard
deviation is 20% of the mean). We built a Gazebo environment (see Figure 1) for a more realistic
simulation relative to RDDLSim. Firstly, in RDDLSim, the robot loses localisation when moving with
a probability of 0.1; in ROS, it is deemed to have lost localisation when the covariance of the pose
estimation from adaptive Monte-Carlo localisation exceeds a user-defined threshold. Secondly, in
RDDLSim, the robot always succeeds in finding a person and ends up in the same location as the
person. In ROS, the robot follows an exploration path to find a person. It might find the intended
person and/or other people it encounters along the way, and might not be in the same location as
the person since it could detect people from a distance. Lastly, in RDDLSim, picking up and putting
down an item always succeeds while these actions might fail in ROS. Each experiment in RDDLSim
is conducted on a single core AMD Opteron 6376 and with 8 GB of RAM.
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Ablation Study. We conducted an ablation study for contextual grounding in first-order approxima-
tion and benchmarked it against ground approximation. RDDLSim was used. The results are shown
in Figure 2. We measure performance by the total undiscounted reward received in each episode and
by the total duration of plan execution (mission time). Executing an action incurs a reward of −1
which could result in a learned policy which minimises the number of actions executed; this seems to
suffice in reducing the mission time as it was observed that the mission time reduces asymptotically
while the reward increases. G1 and Loc.+G1 (combination of location context and G1) generally
outperforms GA and Loc.+GA. This is because the goals in SR are independent of each other and
considering one goal at a time reduces σΦâ

and the coarseness of granularity more than GA does. In
Psmall, using no context or only location context has the worst performances. Due to our modelling
choice to includewp in arguments of actions

(
e.g., pick up(obj, wp) and put down(obj, wp)

)
, fea-

tures with ?wp are unnecessary to approximate the Q-values of some actions—we opt against using
domain knowledge to prune these features. Nevertheless, location context is crucial in reducing
the memory and computational cost; experiments for Plarge without location context are computa-
tionally expensive and are omitted. The computation time for Plarge is further reduced when goal
context is also used. The computation time for Psmall is comparable for all runs and is thus omitted.
Although ground approximation has the best performance in Psmall, it has the worst performance
and the highest computational cost in Plarge. The former is due to a lack of generalisation and the
latter is due to the large set of features. For Psmall, ground approximation has 6894 ± 2.7 (one
standard deviation) features while the various configurations of first-order approximation have 280
to 316 features. In contrast, for Plarge, ground approximation has 94.1× 103 ± 8.1× 103 features
while the various configurations of first-order approximation have 382 to 417 features. Evidently,
ground approximation has poorer scalability than first-order approximation.

Transfer Learning. In Figure 2, we show the results of transfer learning where Q̃ trained in Psmall(
Q̃Psmall

)
is used, and continues to be updated in Plarge. The type of contextual grounding used

in Psmall must also be used in Plarge for transfer learning to work. We consider only Loc.+G1
or Loc.+GA as these are computationally tractable. The former outperforms the latter due to the
aforementioned reason. The boost in performance due to transfer learning is evident in episode
1. The asymptotic performance without transfer learning approaches that of transfer learning as
expected. However, for Loc.+GA, transfer learning performed asymptotically poorer than without
transfer learning. This is because GA considers multiple goals for contextual grounding. Thus, it
generalises poorly from Psmall, which has two goals, to Plarge, which has four goals.

Lastly, we evaluate the generalisation from RDDLSim simulations to ROS simulations. We used ten
randomised problems for Psmall and Plarge which are different from the ones used in RDDLSim. A
greedy policy induced by Q̃Psmall using Loc.+G1 can directly solve Psmall but not Plarge. There-
fore, we trained Q̃Psmall further in 500 episodes of Plarge using RDDLSim with a modified transition
function (i.e., the robot’s location does not change when finding a person) to solve Plarge. Without
further training, the policy could fail to instruct the robot to move to a person after finding that per-
son. The results are shown in Table 1 alongside the results from RDDLSim (i.e., Figure 2) for ease
of comparison. For Psmall, the performance in RDDLSim is better with smaller variances which is
expected since the simulations do not consider real-world dynamics and are more optimistic. The
results for Plarge are comparable for both simulation environments. Thus, the first-order approxi-
mations are successful at generalising over both simulation environments.

6 Conclusion

In this paper, we proposed a model-free, online RRL algorithm which learns an approximation of the
Q-function with first-order features that is able to generalise across different problems of the same
domain. Free variables in the first-order features caused ambiguity in how they should be substituted.
The choice of a substitution influences the learning and is critical to performance. We resolve this
problem by utilising contextual knowledge to substitute free variables. Empirical results showed
that our method is scalable to large scale problems by keeping memory usage and computational
cost tractable, and can generalise across problems of different scales and across different simulation
environments. In future work, we plan to investigate other forms of contextual knowledge.
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A Appendix

A.1 Relational Reinforcement Learning

We elaborate on our relational reinforcement learning method (an abridged version is outlined in
Algorithm 1) which is shown in Algorithm 2. The inputs to the algorithm are a RMDP representing
a planning problem, a set of features Φ and weights w0 which approximate the Q-function Q̃,
candidate features Φc with their relevance η, the discovery threshold ξ for iFDD+, learning rate α,
contextual knowledge CK (if any), and a maximisation metric M . Φ, w0, Φc, and η are learned
in another planning problem and transferred to the current problem. If transfer learning is not used,
then they are the empty set ∅ and need to be initialised (lines 1 to 5). The initial set of first-order
features Φ is the concatenation of first-order features for each lifted action, Φâ. Φâ is initialised
with Algorithm 4 (line 4) which is described later. The weights are initialised to a vector of zeroes
(line 5). In a linear function approximation, the Q-value of a state-action pair (s, a) is the dot product
of w and Φ(s, a) (line 6). The latter is returned by Algorithm 3 which is described later.

Lines 7 to 25 show the planning cycle for H time steps. To select an action using a policy πQ̃
generated by Q̃ (line 8), the Q-values of every action must be evaluated. This implies that Φ(st, a)
must be evaluated for every a ∈ A. Thus, Algorithm 3 is called |A| times. The action returned
by πQ̃ is executed (line 10) which returns an observation (st+1, rt,∆t) where st+1 is the successor
state, rt is the reward, and ∆t is the duration of the execution. The TD error is computed (line 12)
and the weights are updated (line 13) following the observation.

The vector of real numbers, Φ(st, at) (line 11), has a value of 1 if the corresponding feature is
active. The set of active features is extracted (line 14). The set of active candidate features is the
set of conjunction of every pair of active features in Φ (line 15). For each active candidate feature,
its relevance is computed (line 17). Candidate features with relevances greater than ξ are added to
Φ with initial weights equal to the sum of the weights of their parent features (lines 18 to 22). New
candidate features can be constructed from these newly added features in the next time step. The set
of candidate features accumulated thus far, Φc, and its relevances, η, are updated accordingly (lines
24 and 25). The algorithm terminates after H time steps or if the terminal state is reached (line 7).
It returns w, Φ, Φc, and η (line 26) which are used as inputs for the next planning problem (i.e.,
transfer learning).

Algorithm 3 evaluates the binary value of each feature φf ∈ Φ and returns a vector of real numbers.
The set of possible substitutions σΦ consists of every combination of objects for the free variables
(line 2). We apply contextual grounding (line 3) by considering the state s (e.g., to determine the
goal(s) and the location of the agent). Then, a selection method selects a subset of substitutions from
σΦ ∩ σCK (line 4) such that the metric M is maximised. Φσ represents the grounding of Φ with
σ. Lastly, an element-wise logical disjunction operator is applied to every grounding of Φ with σM
(line 5).

A.2 Initialisation of First-Order Features

We describe the initialisation of a set of first-order features, Φâ, for each lifted action â as
shown in Algorithm 4. The inputs are the set of state fluents P and the set of ground ac-
tions for â, Aâ. For each ground action a ∈ Aâ, a set of ground features Φa is initialised
(initialise ground features in line 4). In this work, we used the set of every state fluent
and their negation, as well as the non-fluents. Each feature φf ∈ Φa is lifted in accordance with the
substitution of a, σa (lift in line 5). A feature might be partially lifted if it contains objects that are
not in the arguments of a. Φâ is the union of these partially or fully lifted features for each a ∈ Aâ

(line 5). Remaining objects in Φâ are substituted with free variables to yield a set of fully lifted, or
first-order, features (quantify in line 6).

A.3 Domain Model

RDDL [27] is a planning language for describing planning problems, and is used in recent In-
ternational Probabilistic Planning Competitions (IPPCs) [31, 32]. Semantically, RDDL describes
dynamic Bayesian Networks extended with an influence diagram. A RDDL domain is described
by object types, non-fluents, fluents, conditional probability functions (CPFs), and a reward func-
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Algorithm 2: RRL with Online Feature Discovery (in details)
Input: RMDP (O,P,S,A, T ,R, s0, H, γ),

Features Φ,
Weightsw0,
Candidate features Φc with relevance η,
Discovery threshold ξ,
Contextual knowledge CK,
Maximisation metric M

1 if Φ = ∅ then
2 Â← Get lifted actions from A
3 for â ∈ Â do
4 Φ← Φ ∪ initialise features(P,Aâ)
5 ifw0 = ∅ thenw0 ← 0

6 Q̃(s, a) := wTΦ(s, a) where Φ(s, a)← evaluate features(O,Φ, CK,M, s, a)
7 for t = 0 to H − 1 and st is not terminal state do
8 at ← πQ̃(st)

9 ât ← lift(at)
10 st+1, rt,∆t ← Execute action at in simulation environment or real-world
11 Φ(st, at)← evaluate features(O,Φ, CK,M, st, at)

12 δt = rt + γmaxa∈A Q̃(st+1, a)− Q̃(st, at)

13 Updatew : wit+1 = wit + αδt
φi(s,a)

||Φ(s,a)||1
∀wit ∈ w

14 Φactive ← Get features in Φ which are active in s
15 Φc

active = P(Φactive)
16 for φi ∈ Φc

active do

17 Relevance ηt(φi) =

∣∣∑t
j=0,φi(sj,aj)=1 δj

∣∣√∑t
j=0,φi(sj,aj)=1

1

18 if ηt(φi) > ξ then
19 Append φi to Φâ ⊂ Φ
20 Append wi = wj + wk to the sub-vector ofw for ât where φi = φj ∧ φk
21 if φi ∈ Φc then remove φi from Φc

22 if ηt(φi) ∈ η then remove ηt(φi) from η
23 else
24 if φi 6∈ Φc then add φi to Φc

25 Add or update ηt(φi) in η
26 returnw, Φ, Φc, η

Algorithm 3: Evaluate a set of features
11 Function evaluate features(O,Φ, CK,M, s, a):

Input: Set of objects O,
Features Φ,
Contextual knowledge CK,
Maximisation metric M ,
State s,
Ground action a

2 σΦ ← Get the set of possible substitutions from O for Φ
3 σCK ← Apply contextual grounding CK given s
4 σM ←

{
arg maxσ∈σΦ∩σCK

M
(
Φσ(s, a)

)}
5 Φ(s, a)←

∨
σ∈σM

Φσ(s, a)

6 return Φ(s, a)

tion. State fluents (non-fluents) are state variables that change (do not change) with time. A RDDL
problem is specified by objects, initial state, and values of non-fluents. A domain can have different
problems by randomising the initial state and non-fluents. We have included the RDDL domain and
problems files for our Service Robot (SR) planning problem as supplementary material. We briefly
describe the state fluents, non-fluents, and actions for SR. We omitted the argument robot for brevity
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Algorithm 4: Initialise a set of first-order features for a lifted action
11 Function initialise features(P ,Aâ):

Input: Set of state predicates P ,
Set of ground actions Aâ

2 Φâ = ∅
3 for a ∈ Aâ do
4 Φa ← initialise ground features(P , a)

5 Φâ ← Φâ ∪ lift
(
Φa, σa

)
6 return quantify

(
Φâ

)
as SR is a single-agent problem but included them here for consistency with the RDDL domain and
problem files.

A fluent or non-fluent is represented by its name and typed variables in its arguments. We use the
type robot to represent a robot, wp to represent a location, obj to represent an item, and person to
represent a person. The state fluents which describe the states and goals are:

• robot at(robot, wp): robot is at location wp,
• localised(robot): robot is localised,
• emptyhand(robot): robot is not holding any items,
• holding(robot, obj): robot is holding item obj,
• object at(obj, wp): item obj is at location wp,
• object with(obj, person): item obj is with person,
• goal object at(obj, wp): a goal is for item obj to be at location wp,
• goal object with(obj, person): a goal is for item obj to be with person,
• person at(person,wp): person is at location wp,
• need assistance(person): person needs assistance,
• needed assistance(person): person needed assistance (a person only needs assistance

once per problem), and
• reward received(obj): the goal involving obj has been achieved (each obj can be in-

volved in at most one goal).

We use non-fluents to represent the location of each person and the tasks (goals) they would give.
These non-fluents are not made known to Algorithm 2. The non-fluents are:

• PROB NEED ASSISTANCE(person): the probability of person needing assistance,
• PERSON GOAL OBJECT AT(person, obj, wp): person will instruct the robot to place item
obj at location wp,

• PERSON GOAL OBJECT WITH(person1, obj, person2): person1 will instruct the robot to
bring item obj to person2 where person1 and person2 could refer to the same person, and

• PERSON IS AT(person,wp): person is at location wp (this is different from
person at(person,wp) which represents the knowedge of the robot).

The actions which the robot could execute are:

• move(robot, waypoint1, waypoint2): robot moves from waypoint1 to waypoint2,
• localise(robot): robot localises by performing simultaneous localisation and mapping

(SLAM),
• find person(robot, person): robot explores the room to find person (this action termi-

nates at the end of the exploration path or when person is found),
• talk to person(robot, person): robot talks to person

(
if need assistance(person)

is true, then two goals from person will be made known and are represented by
goal object at(obj, wp) and/or goal object with(obj, person)

)
,
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Figure 3: Results for an ablation study where different combinations of contextual grounding are
used. The results are aggregated over 10 randomised large scale problems of Service Robot where
three people need assistance (SR3). The shading represents one standard deviation. The simulator
used is RDDLSim. For transfer learning (Transfer), the Q-function learned in SR1 is transferred to
SR3.

• pick up(robot, obj, wp): robot picks up item obj from location wp,

• put down(robot, obj, wp): robot puts down item obj at location wp,

• take(robot, obj, person): robot takes item obj from person, and

• give(robot, obj, person): robot gives item obj to person.

A.4 Experiment Details

In our experiments, we used an ε-greedy policy with a linearly decaying ε over episodes. The
parameters used are εinitial = 1 for experiments without transfer learning and 0.2 otherwise, α =
0.3 (learning rate), γ = 0.9, λ = 0.7 (decay rate for eligibility traces), and ξ = 3. H is 20 (40)
for Psmall (Plarge). We utilise two simulators in our experiments: RDDLSim [27] and ROS [28].
RDDLSim returns a successor state and reward based on the CPFs and reward function defined in
the RDDL domain. It does not simulate a robot operating in an environment. For a more realistic
simulation, we use ROS which considers aspects such as sensors (for localisation, navigation and
detecting people), motion planning (for navigation, manipulation planning (for grasping), etc. For
manipulation planning, we observed that the robot fails to grasp the item frequently. Since our work
does not deal with manipulation planning, we simulated the success of grasping. If the robot fails to
grasp an item, we would still consider it a success with a probability of 0.8 and update the successor
state accordingly (e.g., holding(robot, obj) is true even if the robot fails to pick up an item obj in
ROS). Regardless, we observed that our learned policy will repeatedly attempt to pick up an item if
it failed to in previous attempts.

A.5 Additional Results for the Service Robot Domain

In Section 5, we present results for small scale (one person, three obj, and five wp) and large scale
(three person, six obj, and 10 wp) problems. Here, we denote the former as SR1 and the latter
as SR2. In SR1, person p1 needs assistance with a probability of 0.5. In SR2, person p1 needs
assistance with a probability of 0.5, person p2 needs assistance with a probability of 0.3, and person
p3 does not require assistance. We now consider a variant of SR2 where p3 also needs assistance
with a probability of 0.3. We denote this variant as SR3. For SR1, SR2, and SR3, the problems are
randomised in the initial locations of objects and the types of goals:

• PERSON GOAL OBJECT AT(p1, obj, wp): a goal from p1 where obj and wp are randomised
object instances,

• PERSON GOAL OBJECT WITH(p1, obj, p1): a goal from p1 where obj is a randomised object
instance,

• PERSON GOAL OBJECT AT(p2, obj, wp): a goal from p2 where obj and wp are randomised
object instances,
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Figure 4: Results for an ablation study where different combinations of contextual grounding
or no contextual grounding (NoContext) are used. The performance for ground approximation
(GroundApprox.) and transfer learning (Transfer) is also included. The results are aggregated
over 10 randomised problems of three IPPC domains: Recon, Academic Advising, and Triangle
Tireworld. The shading represents one standard deviation. Omitted experiments are either due to
high computational costs or are inapplicable for a problem.

• PERSON GOAL OBJECT AT(p2, obj, wp): a goal from p2 where obj and wp are randomised
object instances,

• PERSON GOAL OBJECT WITH(p3, obj, p1): a goal from p3 where obj is a randomised object
instance, and

• PERSON GOAL OBJECT WITH(p3, obj, p2): a goal from p3 where obj is a randomised object
instance.

The goals are randomised such that no obj is involved in more than one goal. The goals from p3
involve another person (i.e., p3 requires the robot to bring obj to the others). The results for SR3
are shown in Figure 3. The findings are similar to those discussed in Section 5 (see Figure 2): (1)
the use of contextual grounding reduces computation time and improves performance, (2) transfer
learning from a small scale problem (i.e., SR1) to a large scale problem (i.e., SR3) gives an initial
performance boost, and (3) ground approximation does not scale well to large scale problems.

A.6 Ablation Study for IPPC Domains

The IPPCs use several planning domains as benchmarks to evaluate the performance of compet-
ing planners. We conducted an ablation study on three benchmark domains: Recon (RC) [31],
Academic Advising (AA) [33], and Triangle Tireworld (TT) [34]. These domains have prob-
lems which are numbered from 1 to 10 (a larger number represents a problem with a larger scale).
We use Domain# to denote a problem numbered # for Domain. We conducted experiments for both
small and large scale problems for each domain. A Q-function is learned in the small scale prob-
lems and transferred to the large scale problems. The results are shown in Figure 4. Since these
domains do not involve durative actions, there are no results for mission time. The simulator used is
RDDLSim.

In RC, an agent moves in a grid environment where there is a base, hazard, and objects. The goal is
to use the tools to get readings on objects; tools can be damaged if the agent is at or adjacent to a
hazard and this reduces the probability of getting a good reading. The agent can repair a tool at the
base. We replaced the actions up, down, left, and right with move(wp). This does not simplify
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the problem but allows separate weights for each ground action of move. We used RC3 and RC6,
where the size of the state-action spaces are 242 × 28 and 255 × 38, respectively.

In AA, a student has to pass some required courses. The passing rate of a course course1 depends
on the number of prerequisites course2 the student has passed. A reward is given at each time step
for taking a course (−1) or retaking a failed course (−3), and if any required course has not been
passed (−5). Passing a required course gives a reward of 5. We used AA3 and AA5, where the size
of the state-action spaces are 230 × 16 and 240 × 21, respectively.

In TT, a vehicle moves in a grid environment to reach a goal location. There is a probability of 0.5
of getting a flat tire when moving. The tire needs to be replaced with a spare tire; if there isn’t one,
a deadend is reached. The vehicle can load a spare tire if it doesn’t have one and there is a spare at
its current location. We used TT3 and TT6, where the size of the state-action spaces are 233 × 242
and 259 × 814, respectively.

Ablation Study. We investigate the utility of contextual grounding by benchmarking the perfor-
mance against two baselines: ground approximation and first-order approximation without contex-
tual grounding. In RC6, first-order approximation outperforms ground approximation. The exper-
iments for first-order approximation without contextual grounding could not be completed due to
high computational costs. In AA5, first-order approximation performs poorly. This is because the
goals could be dependent on other goals—the success of passing a course depends on the number
of prerequisites passed. This cannot be represented by binary features. This issue is mitigated in a
ground approximation due to the inclusion of every ground state fluent as features which serves as
implicit counting. In TT6, the use of location context or goal context (they cannot be used together in
this domain) improved the performance of first-order approximation which performed comparably
to ground approximation.

Next, we consider the computational time. In RC6, location context and the combination of location
and GA context have the highest computation time. G1 considers only one goal at a time while
GA considers every unachieved goal. The former has a significantly faster computation time. In
AA5, the highest computation time is incurred when no context is used. Since contextual grounding
reduces the set of possible substitutions for Φ, the computation time decreases sharply. The same
observation is seen in TT6.

Knowledge Transfer. We used a greedy policy generated by the Q-functions learned in the small
scale problems (i.e., RC3, AA3, and TT3) to solve the large scale problems (i.e., RC6, AA5, and
TT6). The Q-functions are kept unchanged while solving the large scale problems (i.e., knowledge
transfer where no learning takes place). This is different from the setup in SR where an ε-greedy
policy is used and the Q-function continues to be updated (i.e., transfer learning). Figure 4 shows
that in all problems, knowledge transfer performed significantly better than those which learn the Q-
function online from scratch (i.e., online RL). Since the Q-function is not updated, the performance
of knowledge transfer does not improve over episodes. Thus, in RC6 and AA5, they are outperformed
by online RL in later episodes. The computation time for knowledge transfer is lower than online
RL as expected since no learning is done in the former.
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