Supplemental Materials

We provide two appendices. Appendix A includes a detailed explanation of our predicates, model
architectures, and training. Appendix B contains additional qualitative results, including a number
of real world placement examples and a discussion of our results.

A Implementation Details

This section describes how we created our dataset and trained the model. One major advantage of
our approach is that it only relies on having positive data; we automatically generate “unrealistic”
data during the training process with which to train our scene-realism predictor.

A.1 Dataset Implementation

Each scene consists of 3 to 7 random Shapenet [1] objects in stable configurations on various sur-
faces, including in stacks. We include mugs, bowls, plates, bottles, pots, and various small objects,
as well as boxes and cylinders of random sizes. We specifically included only objects that appear in
the ACRONYM grasp dataset [2] as well as in Shapenet [1].

Figure 1: Examples of PyBullet scenes containing objects placed in different locations. We train on these
scenes, with each object either hidden if it is query (to get scene and anchor embeddings) or hidden if it is not
query (to get the query object embedding).

We use PyBullet! to simulate scenes. Figure 1 includes renderings of some example scenes contain-
ing the shapenet objects. Objects are moved around throughout the scene to generate data. In order
to train the rotation model, we take the point cloud from before the motion, apply the correct rota-
tion, and move it into its “observed” position. This constitutes a positive example that can be used
to train our placement planner. Objects are placed either in a random orientation at a random height
above the planar surface, or on top of a flat surface (which can include the table or other objects,
inducing object stacks). The physics engine is then simulated forward until the objects come to rest,
which results in a stable scene.

We used 5563 scenes for training our orientation model and 427 scenes for testing it. Examples of
these scenes are shown in the supplemental video. In practice, we also tested a version of our model
that was trained purely on static scenes, without orientation, and with only the directional predicates.
This dataset contained generated 25,441 scenes with 5 images per scene from random viewpoints,
resulting in a total of 221,336 relational predicates. Additional simulation results in Sec. B.2 are
using this model.

"https://pybullet.org

https://pybullet.org

We define the following predicates in our simulator: above, left_of, right_of, touching,
below, near, aligned, centered, behind, and in_front_of.

A.1.1 Directional Predicate Implementation

We define the predicates shown in Table 1. Let ¢, 5 denote the objects that will be considered for
a pairwise predicate, and o; be the 3D center of object . We first obtain the eight bounding box
corners and center for ¢, 7 in the camera frame. We use a left-handed coordinate system with the
X-axis pointing right, y-axis pointing up. For the z-axis, we have it pointing towards the scene (away
from the user), but we orient it such that it is parallel to the planar surface so that the above/below
predicates are easy to compute.

Here, we give a high-level description of the algorithm used to de-
termine the left predicate (i.e. is ¢ to the left of ;7). Essentially,
we compute whether o; is within the trapezoidal volume defined
by j’s bounding box corners, and an angle 6. To implement this,
we can first check this in the zz-plane. Figure 2 shows a mock-up
of this in the xz-plane. Object ¢’s center (red dot in green object)
must lie below the line defined by object j’s upper corner (purple
dot) and 6, which is denoted with the red dashed line. Similarly, it Figure 2: Illustration of left
must lie above the line defined by the bottom corner (yellow dot) predicate for the xz-plane.

and 6. Lastly, o; must be to the left of j’s bounding box corners, which completes the trapezoidal
volume definition in the zz-plane. This same computation is repeated for the xy-plane to obtain the
3D trapezoidal volume. Note that this computation assumes full knowledge of the object bounding
boxes and centers, which we can obtain via the simulator.

Specifically, we consider the following set of rules:

o; must be in the half-space defined by 02 upper corner and 6 in the zz-plane
o; must be in the half-space defined by 02 lower corner and 6 in the zz-plane
do same as 1) for zy-plane
do same as 2) for zy-plane

1’s center must be to left of all 02 corners

AN T

All corners of object ¢ must be to the left of j’s center

Right can be computed by applying the same set of rules to the flipped order of objects: j,¢. Ad-
ditionally, front/behind and above/below can be computed with the exact same set of rules, but
considering different planes (e.g. zy and zy planes for above/below).

Model-based baseline: on point cloud data, we simply use the bounding box computed from the
labeled point cloud for each object as a model-based baseline to compare against. We apply the exact
same rules as in the point cloud cases.

A.2 Other Predicates

We have four additional predicates in our dataset: centered, touching, near, and aligned.
Both touching and near are defined based on mesh geometry. The mesh distance thresholds are
set to Imm for touching and 5 cm for near, but are based on the actual mesh as it appears in
each scene.

The centered and aligned predicates are both based on the ground-truth pose of the objects.
centered is true if the center of the object is object is within 1 mm. Two objects were considered
aligned if the difference in orientation was less than 7/20. In practice, our dataset was filled with
Shapenet objects [1], which were not well aligned, so this proved difficult to learn; this can be fixed
with better object annotations and will be explored in depth in future work.

Model-based baseline: We compute a reasonable model-based baseline for each approach in our
dataset. For the centered predicate, we compute xy distance on the table and use the same thresh-
old that appears in our dataset (1 mm). For touching, we compute minimum distance between
point clouds and threshold it with 2.5mm. For near, the threshold is a 5 cm distance.

A.3 Model Architecture

All pointnets are trained just on zyz for each point. Our encoder e(x) is a Pointnet++ network with
three set abstraction layers. These are:

1. 128 points, 64 samples, scale of 0.04, and an MLP of size [3, 32, 32, 64]
2. 32 points, 32 samples, scale of 0.08, and MLP of size [64, 64, 64, 128]
3. A full set Pointnet layer with MLP of [128, 128, 128, 256]

This is followed by a single fully connected layer going from the input size to 256 with ReLU
and layer norm, and then down to an h of size 128. Input size is the PointNet encoder output,
concatenated with a 128-D encoding of the object center output by a second MLP.

We concatenate h; and h; as inputs to the predicate classifier p,(h;, h;). It consists of a single fully
connected layer going from 256 to 128, and then to the number of predicates (nine, in our case; one
was omitted because it was not applicable to real world experiments).

The prior 7 takes the concatenation of hz, h;, h, and the predicate goal 5. It is then a fully connected
layer from 384 4 Npredicates to 128, followed by a batchnorm. This then goes into the MDN, which
predicted k& = 5 clusters. J is the 3D vector xyz.

The discriminator was a 4-layer Pointnet, with four set abstraction layers:

1. 512 points, 64 samples, scale of 0.05, and an MLP of size [3, 32, 64]
2. 256 points, 64 samples, scale of 0.10, and MLP of size [64, 64, 128]

3. 128 points, 64 samples, scale of 0.20, and MLP of size [128, 128, 256]
4. A full set Pointnet layer with MLP of [256, 256, 512]

The layer ends in a norm and a ReLU activation, a fully connected layer, and maps to a 1d output
with sigmoid activation. All models were implemented using Pytorch Pointnet++ [3].

A.4 Rotation Training

We trained a version of the model that predicts orientation instead of just xyz Cartesian transforma-
tions, as from previous work (e.g. [4]). However, training the rotation prior requires a slightly differ-
ent consideration from Cartesian motions. We take two subsequent frames in our rotation placement
dataset and use the frame at time ¢ — 1 for an observation at time ¢ to extract the object’s point cloud.
We compute the rotation € as the component of the transformation around the world’s z axis and use
this rotation from ¢ — 1 to ¢ to train the rotational component of our MDN prior.

When training models on data without rotations, we can instead use the frame at time ¢ alone.
Instead, we save extra images with and without each object rendered in the scene, to get virtual
placement data.

A.5 Segmentation and Grasping

We used recent work by Xiang et al. [5] for unknown object instance segmentation, as the code is
open source and available on Github?. This worked very well in many cases, but needed some minor
modifications in order to be used on the real world.

In particular, we had a problem with individual pixels from around the objects being labeled as a
part of those objects. This meant that even after moving an object, parts of it would be left behind,
creating geometry that the planner could occasionally place things on top of. We mitigated this
problem by adding a dilate and erode to each object mask, and — crucially — ignoring any 3d points
that fell within the region of this dilation and erosion. This is the source of the white boundaries
around all of our objects in these figures.

Even with these modifications we still saw occasional issues where segmentation problems could
cause planning issues; see Fig. 3 for an example. In this case, the red mug - an object that was gen-
erally very easy to reliably grasp during our experiments — was broken up into two different pieces

https://github.com/NVlabs/UnseenObjectClustering

https://github.com/NVlabs/UnseenObjectClustering

Figure 3: Example of segmentation causing issues when manipulating objects. In this case, the mug was broken
up into two objects. Though the object was correctly placed, this made grasping very difficult because the
available grasps made less sense.

before being placed “above” the large cardboard box. While the placement planning component was
successful, this has clear ramifications for grasping — in particular, the generated grasps are of lower
quality, and often in cases like this our motion planning will fail for safety reasons.

In the real world, grasps were computed via 6-DOF Graspnet [6], which gives us a range of grasp
poses that we can use for each object. Many failures we observed in practice were due to unpre-
dictable behavior of objects once grasped, or due to the fact that grasps would fail.

B Additional Experiments

Figure 4: Real-world setup with multiple objects. The robot has an Intel Realsense D415 RGB-D camera
mounted on its end effector at a known offset. We changed the scene geometry by positioning several large
boxes.

We implemented our system on a real-world robot rearrangement task and show a variety of results
for how our placement planner works in practice. Figure 4 shows the real-world scenario, with the

robot and a selection of the objects we tested on. We used ROS?® for messaging and execution [7].
The setup also has a Microsoft Azure camera for viewing the entire scene, but this was not used in
these experiments; instead, we used an Intel Realsense D415 camera to capture RGB-D images of
the scene.

All tests were performed with images taken from the same camera pose to the right side of the
robot, and then executed closed-loop after a manipulation plan was found. We plan motions using
RRT-Connect [8].

Object selection. Objects were selected via a user interface, where the user would input the number
associated with a particular mask (0 through) for each part of the query.

B.1 Real World Placement

Figure 5: Placing mustard behind the bowl, with a large box in the way. There are two possible solutions to
the problem: either placing the mustard on the table or placing it on top of the box. Our approach found stable
placement positions in both locations.

Fig. 5 shows two examples of the model generalizing to a configuration where a large box obstructs
much of the area. One major advantage of our approach is the ability to come up with a range of
different placements satisfying various conditions.

We changed the scene by adding various boxes and moving things around. In one case, the system
decides to place the mustard in front of the box, on the black cart surface; in the other, the mustard is
placed on top of the box. Fig. 6 shows some examples of different problems solved by our method.

Figure 6: Examples of placement actions given individual snapshots of real-world scenes. In the top row, the
robot was asked to move either the orange macaroni box to behind the milk (left), or the milk to the left of the
macaroni (right), on a flat table. In the bottom row, the goal was to place macaroni (left) or juice (right) behind
the milk; we added a cardboard box, which means that the object has to be placed off the table.

Figure 7: Some additional arrangement results for the “granola box” object. The planner finds a variety of
poses, including stacking objects on top of one another, should that satisfy the specified predicate.

Fig. 7 shows some extra results for moving a box of granola around, placing it in different positions
according to various predicate queries. Our discriminator f is very capable of finding realistic-

*https://ros.org

https://ros.org

looking poses for a variety of objects; we see that it is able to plan a placement on top of the large
cookie box rather easily, for example. In cases like this, execution is the main limitation preventing
successes.

behind

behind behind
.

oy

Figure 8: Examples of before and after computation of final gol psitions by our planner. For each pair, on
the left, we show the initial scene observation, as read in by our planning algorithm. On the right, we show the
planned goal position output by the model. The white gap denotes empty space where the object was moved
from.

There are white gaps left in each point cloud where the granola box was moved from. These are also
visible in Fig. 8, which show a number of additional successful planning queries in a very simple
environment.

“Place the mug left of the box.”

Figure 9: A sequential manipulation. The system decides to place the bowl on top of the mug in the second
step, as this is a valid placement that satisfies the specified goal condition without any collisions.

Sequential manipulation results can lead to interesting outcomes. In Fig. 9, we see the results of
performing a sequential manipulation, where the goal is to place the mug and bowl to the right of
a large cardboard box. These sorts of actions are totally valid outcomes for our planner, and show
how it has learned a variety of valid positions. Rather than picking something unrealistically close
to the mug, it decides the safest thing to do is to simply stack the two.

Finally, we performed some tests in more complex or cluttered scenes, including multiple objects of
which some are obstacles.

“Place the mustard left of “Place the mustard in “place the mustard left
the pitcher.” front of the pitcher.” of the pitcher”

b

= %4

“Place the bowl left “Place the pitcherin “Place the macaroni
of the mug.” front of the mustard.” left of the mug.”

Figure 10: A variety of objects moved into various configurations on the table, with different heights of obsta-
cles and different predicates chosen as commands.

Fig. 10 includes a set of experiments performed with the mustard, where the planner must adapt to
the mustard bottle while dealing with a mug that might be in several different positions or with a
much higher placement surface. Depending on circumstances, the planner either attempts to place
the object beside or on top of the mug.

We notice here that the discriminator generally avoids placing near something unless explicitly told
to; this is possibly a side effect of the discriminator training process. Due to differences between the
simulated and real object dataset, the mustard placement in the top left of Fig. 10 is highly likely to
fail, either falling into the mug or off of it.

B.2 Cabinet Placement

A ‘!); (B |

Figure 11: Examples of interesting placements in sim. The planner is able to place objects in the drawer (if
told to place below a different object) or on top of the other objects, as is appropriate.

Fig. 11 shows some additional placement results from simulation testing. These include placing
the object in drawers, as appropriate, and stacking objects on top of one another, as in the lower
right corner of the figure. The advantage of our model is how few assumptions it makes about the
environment, which means that we can apply it to many different scenarios, even ones that we have
not seen before.

Table 1 shows sensitivity (true positive rate) and specificity (true negative rate) by predicate on a
set of randomly-generated simulation scenes, similar to Fig. 11. To compute classifier accuracy, we
generated 100 random scenes and evaluated the classifier on each to determine if it was correct.
To determine prior and planner accuracy, we sampled 100 poses for each object and determined the
accuracy of each pose. The hardest predicates to classify were those based on occlusions, presumably
because 3d representations are not very useful for this.

Predicate Sensitivity (%) Specificity (%)

Front 98.8% 89.0%
Back 96.2% 93.1%
Left 96.2% 85.0%
Right 96.5% 86.3%
Above 79.3% 97.4%
Below 79.3% 98.1%

Table 1: Accuracy of the predicate predictor p, in randomly-generated simulated test scenes by predicate.

Predicate Learned Model-based Total Examples
F1 Specificity ~ Sensitivity F1 Specificity ~ Sensitivity %True %False
Left of 0911 97.3% 85.6% 0914 98.8% 85.1% 139% 81.6%
Right of 0.929 96.9% 89.3% 0.885 99.0% 80.0% 14.0% 86.0%
In front of 0.759 97.0% 62.3% 0.660 91.9% 51.4% 4.6% 95.4%
Behind 0.653 97.8% 49.0% 0.852 86.9% 83.4% 50% 95.0%
Above 0.867 99.5% 76.7% 0.784 98.4% 65.1% 43% 95.7%
Below 0.822 99.4% 70.0% 0.756 98.1% 61.5% 43% 95.7%
Near 0.869 93.7% 81.0% 0.825 98.4% 71.1% 29.0% 71.0%
Touching 0.923 97.9% 88.5% 0.418 99.2% 26.5% 127% 96.3%
Centered 0.659 97.6% 49.7% 0.035 100.0% 1.8% 5.6% 84.4%

Table 2: Accuracy of the predicate predictor p, in held-out randomly-generated simulated test scenes. Some
predicates in our scenes can be very difficult due to clutter and occlusions, such as in front of.

B.3 Additional Predicate Comparisons

Table 2 shows extra results from our baseline comparison. This includes sensitivity and specificity,
as well as prevalence in the dataset overall. We can see here that for the most part our model is better
than the baseline, although not always. We should note, though, that even in the case where it is not
better, it’s still an improvement since we do not need to implement some complex logic to define
the predicates — as mentioned above in Sec. A.1.1, the logic for computing these arrangements isn’t
trivial.

References

[1] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich 3D Model Repository.
arXiv:1512.03012, 2015.

[2] C. Eppner, A. Mousavian, and D. Fox. ACRONYM: A large-scale grasp dataset based on sim-
ulation. In ICRA 2021, 2020.

[3] E. Wijmans. Pointnet++ pytorch. https://github.com/erikwijmans/Pointnet2 "PyTorch, 2018.

[4] A. H. Qureshi, A. Mousavian, C. Paxton, M. C. Yip, and D. Fox. Nerp: Neural rearrangement
planning for unknown objects. arXiv preprint arXiv:2106.01352, 2021.

[5] Y. Xiang, C. Xie, A. Mousavian, and D. Fox. Learning rgb-d feature embeddings for unseen
object instance segmentation. In Conf. on Robot Learning, 2020.

[6] A. Mousavian, C. Eppner, and D. Fox. 6-dof graspnet: Variational grasp generation for object
manipulation. In Intl. Conf. on Computer Vision, 2019.

[7] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng. ROS:
an open-source robot operating system. In /CRA workshop on open source software, 2009.

[8] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to single-query path plan-
ning. In Intl. Conf. on Robotics and Automation, 2000.

	Implementation Details
	Dataset Implementation
	Directional Predicate Implementation

	Other Predicates
	Model Architecture
	Rotation Training
	Segmentation and Grasping

	Additional Experiments
	Real World Placement
	Cabinet Placement
	Additional Predicate Comparisons

