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A Rationale on the Evaluation

Evaluation on driving simulator. The major focus of this work is the safety. However, in the
domain of autonomous driving, evaluating systems’ safety in real robot is costly and even unavailable.
Thus we benchmark the safety performance of baseline methods and the proposed EGPO method in
driving simulator. Using driving simulator to prototype allows us to focus on the algorithmic part of
the problem. The exact reproducible environments and vehicles allow safe and effective evaluation
of different safe training algorithms. In this work, we conduct experiments on the driving simulator
MetaDrive [1] instead of CARLA because we want to evaluate the generalization of the different safe
exploration methods. Different to the fixed maps in CARLA, MetaDrive uses procedural generation
to synthesize an unlimited number of driving maps for the split of training and test sets, which is
useful to benchmark the generalization capability of different reinforcement learning in the context
of safe driving. MetaDrive also supports scattering diverse obstacles in the driving scenes such as
fixed or movable traffic vehicles, traffic cones and warning triangles. The simulator is also extremely
efficient and flexible. The above unique features of MetaDrive driving simulator enables us to develop
new algorithms and benchmark different approaches. We intend to validate and extend the proposed
method with real data in the following two ways.

Extension to the human-in-the-loop framework. We are extending the proposed method to replace
the pre-trained policy in the guardian with real human. A preliminary experiment is provided in
Appendix B. We invite human expert to supervise the real-time exploration of the learning agent with
hands on the steering wheel. When dangerous situation is going to happen, the human guardian takes
over the vehicle by pressing the paddle and steering the wheel. Such trajectories will be explicitly
marked as “intervention occurred”. EGPO can incorporate the data generated by either a virtual
policy or human being. Therefore, EGPO can be applied to such human-in-the-loop framework
directly. We are working on further improvement of the sample efficiency of the proposed method to
accommodate the limited budget of human intervention.

Extension to the mobile robot platform. We design the workflow to immigrate EGPO to real robot
in future work. Our system includes several components: (1) a computer controlling the vehicle
remotely and training the agent with EGPO; (2) a human expert steering vehicle and watching the
images from camera on the robot; and (3) an UGV robot simulating a full-scale vehicle (as shown
in Fig. 1). During exploration, the on-board processor receives the low-level actions from human
and queries the policy network for agent’s action. Then the on-board processor executes the action
on the robot and receives new sensory data. The data is recorded and used to train the agent. EGPO
algorithm can train such real-world robot based on the above workflow.

To summarize, the essential ideas proposed in the work, such as expert as guardian, intervention
minimization, learning from partial demonstration, are sufficiently evaluated through the safe driving
experiments in the driving simulator. With on-going efforts, we are validating our method with real
data from human-in-the-loop framework and extending our method for the real-world mobile robot
experiments.
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Figure 1: We extend the proposed EGPO to Human-in-the-loop setting and real mobile robot platform.

B Preliminary Human-in-the-loop Experiment

To further demonstrate the capacity of the proposed framework, in this experiment, a human staff
supervises the learning progress of the agent in a single training map. The expert takes over once
he/she feels necessary by pressing the paddle in the wheel. At this time, an intervention cost is
yielded and the action sequences of the expert are recorded and fed into the replay buffer.

Table 1 captures the result of this experiment. We find that EGPO with a human expert can achieve a
high success rate in merely 15,000 environmental steps, while SAC-Lagrangian (with PID update)
takes 185,000 steps to achieve similar results. We also ask the expert to generate 15,000 steps
demonstrations (note that in EGPO experiment, only a small part of the 15,000 steps is given by the
expert) and train a BC agent based on those demonstrations. However, BC fails to learn a satisfactory
policy. This experiment shows the applicability of the proposed framework even with human experts.

Table 1: Human-in-the-loop experiment results

Experiment
Total

Training Cost Test Reward Test Cost
Test

Success Rate

Human expert (20 episodes) - 219.50 ±39.53 0.30 ±0.550 0.95

Behavior Cloning - 33.21 ±5.46 0.990 ±0.030 0.000 ±0.000

PPO-Lagrangian (200K steps) 285.1 197.76 ±7.90 0.427 ±0.043 0.598 ±0.029

SAC-Lagrangian (185K steps) 452.5 221.381 ±7.90 0.060 ±0.049 0.940 ±0.049

EGPO (with human expert)
(15K steps) 6.14 221.058 ±32.562 0.120 ±0.325 0.900 ±0.300

C Proof of Main Theorem

In this section, we derive the upper bound of the discounted probability of failure of EGPO, showing
that we can bound the training safety with the guardian.

Notations. Before starting, we firstly recap and describe the notations. The switch function used in
this work is:

T (s, a, E) = (â, ĉ) =

{
(a, 0), if a ∈ Aη(s)
(aE ∼ E(·|s), 1), otherwise.

(1)

Therefore, at a given state, we can split the action space into two parts: where intervention will
happen or will not happen if we sample action in it. We denote the confident action space as
Aη(s) = {a : E(a|s) ≥ η}, which is related to the expert as well as η. We also define the ground-
truth indicator I denoting whether the action will lead to unsafe state. This unsafe state is determined
by the environment and is not revealed to learning algorithm:

I(s, a) =

{
1, if s′ = P(s′|s, a) is an unsafe state,
0, otherwise.

(2)

Therefore, at a given state s the step-wise probability of failure for arbitrary policy π is
Ea∼π(·|s) I(s, a) ∈ [0, 1].
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Now we denote the cumulative discounted probability of failure as V π(st) =

Eπ
∑
t′=t γ

t′−tI(st′ , at′), counting for the chance of entering dangerous states in current
time step as well as in future trajectories deduced by the policy π. We use V E = Eτ∼E V E(s0) to
denote the expected cumulative discounted probability of failure of the expert E .

For simplicity, we can consider the actions post-processed by the guardian mechanism during training
are sampled from a mixed policy π̂, whose action probability can be written as:

π̂θ(a|s) = πθ(a|s)1a∈Aη(s) + E(a|s)
∫

a′ /∈Aη(s)

πθ(a
′|s)da′

= πθ(a|s)1a∈Aη(s) + E(a|s)F (s).

(3)

Here the second term captures the situation that the learning agent takes arbitrary action a′ that
triggers the expert to take over and chooses the action a. For simplicity, we use a shorthand
F (s) =

∫
a′ /∈Aη(s)

πθ(a
′|s)da′ .

Following the same definition as V E , we can also write the expected cumulative discounted probability
of failure of the behavior policy as: V̂ = Eτ∼π̂ V̂ (s0) = Eπ̂

∑
t=0 γ

tI(st, at).

Assumption. Now we introduce one important assumption on the expert.
Assumption 1. For all states, the step-wise probability of expert producing unsafe action is bounded
by a small value ε < 1:

E
a∼E(·|s)

I(s, a) ≤ ε. (4)

This assumption does not impose any constrain on the structure of the expert policy.

Lemmas. We propose several useful lemmas and the correspondent proofs, which are used in the
main theorem.
Lemma 1 (The performance difference lemma).

V̂ = V E +
1

1− γ E
s∼Pπ̂

E
a∼π̂

[AE(s, a)]. (5)

Here the Pπ̂ means the states are subject to the marginal state distribution deduced by the behavior
policy π̂. AE(s, a) is the advantage of the expert in current state action pair: AE(s, a) = I(s, a) +
γV E(s′)− V E(s) and s′ = P(s, a) is the next state. This lemma is proposed and proved by Kakade
and Langford [2] and is useful to show the behavior policy’s safety. In the original proposition, the
V and A represents the expected discounted return and advantage w.r.t. the reward, respectively.
However, we replace the reward with the indicator I so that the value function V̂ and V E presenting
the expected cumulative failure probability.
Lemma 2. Only a small subspace of the confident action space of expert covers the ground-truth
unsafe actions: ∫

a∈Aη(s)

I(s, a)da ≤
ε

η
.

Proof. According to the Assumption, we have:

ε ≥
∫
a∈A

E(a|s)I(s, a)da =

∫
a∈Aη(s)

E(a|s)I(s, a)da+
∫

a/∈Aη(s)

E(a|s)I(s, a)da. (6)

Following the definition of Aη(s), we get E(a|s) ≥ η,∀a ∈ Aη(s). Therefore:

ε ≥
∫

a∈Aη(s)

ηI(s, a)da+ 0 = η

∫
a∈Aη(s)

I(s, a)da. (7)

Therefore
∫
a∈Aη(s)

I(s, a)da ≤
ε

η
is hold.
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Lemma 3. The cumulative probability of failure of the expert V E(s) is bounded for all state:

V E(s) ≤
ε

1− γ

Proof.

V E(st) = E
E
[

∞∑
t′=t

γt
′−tI(st′ , at′)] =

∞∑
t′=t

γt
′−t E
E
[I(st′ , at′)] ≤

∞∑
t′=t

γt
′−tε =

ε

1− γ
(8)

Theorem. We introduce the main theorem of this work, which shows that the training safety is related
to the safety of the expert ε and the confidence level η.

Theorem 4 (Upper bound of the training risk). The expected cumulative probability of failure V̂ of
the behavior policy π̂ in EGPO is bounded by the step-wise failure probability of the expert ε as well
as the confidence level η:

V̂ ≤
ε

1− γ
(1 +

1

η
+

γ

1− γ
K ′η),

wherein K ′η = maxs
∫
a∈Aη(s)

da is negatively correlated to η.

Proof. We use the performance difference lemma to show the upper bound. At starting, we first
decompose the advantage by splitting the behavior policy:

E
a∼π̂(·|s)

AE(s, a) =

∫
a∈A

π(a|s)1a∈Aη(s)A
E(s, a)da+

∫
a∈A
E(a|s)F (s)AE(s, a)da (9)

The second term is equivalent to F (s)Ea∼E [AE(s, a)], which is equal to zero, according to the
definition of advantage. So we only need to compute the first term. Firstly we split the integral over
whole action space into the confident action space and non-confident action space (which removed by
the 1 operation), then we expand the advantage into detailed form, we have:

E
a∼π̂(·|s)

AE(s, a) =

∫
a∈Aη(s)

π(a|s)AE(s, a)da

=

∫
a∈Aη(s)

π(a|s)[I(s, a) + γV E(s′)− V E(s)]da

=

∫
a∈Aη(s)

π(a|s)I(s, a)da

︸ ︷︷ ︸
(a)

+

∫
a∈Aη(s)

π(a|s)γV E(s′)da

︸ ︷︷ ︸
(b)

−
∫

a∈Aη(s)

π(a|s)V E(s)da

︸ ︷︷ ︸
(c)

(10)

Following the Lemma 2, the term (a) can be bounded as:

∫
a∈Aη(s)

π(a|s)I(s, a)da ≤
∫

a∈Aη(s)

I(s, a)da ≤
ε

η
(11)

Following the Lemma 3, the term (b) can be written as:

∫
a∈Aη(s)

π(a|s)γV E(s′)da ≤ γ
∫

a∈Aη(s)

V E(s′)da ≤
γε

1− γ

∫
a∈Aη(s)

da =
γε

1− γ
Kη, (12)

wherein Kη =
∫
a∈Aη(s)

da denoting the area of feasible region in the action space. It is a function
related to the expert and η. If we tighten the guardian by increasing η, the confident action space
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determined by the expert Aη(s) will shrink and the Kη will decrease. Therefore Kη is negatively
correlated to η. The term (c) is always non-negative, so after applying the minus to term (c) will
make it always ≤ 0.

Aggregating the upper bounds of three terms, we have the bound on the advantage:

E
a∼π̂

AE(s, a) ≤
ε

η
+

γε

1− γ
Kη (13)

Now we put Eq. 13 as well as Lemma 3 into the performance difference lemma (Lemma 1), we have:

V̂ = V E +
1

1− γ E
s∼Pπ̂

E
a∼π̂

[AE(s, a)]

≤
ε

1− γ
+

1

1− γ
[
ε

η
+

γε

1− γ
K ′η]

=
ε

1− γ
[1 +

1

η
+

γ

1− γ
K ′η].

(14)

Here we have K ′η = maxs
∫
a∈Aη(s)

da . Now we have proved the upper bound of the cumulative
probability of failure for the behavior policy in EGPO.

D Detail on Simulator and the Safe Driving Environments

The MetaDrive simulator is implemented based on Panda3D [3] and Bullet Engine that has high
efficiency as well as accurate physics-based 3D kinetics. Some traffic cones and broken vehicles
(with warning triangles) are scattered in the road network, as shown in Fig. 2. Collision to any object
raises an environmental cost +1. The cost signal can be used to train agents or to evaluate the safety
capacity of the trained agents.

In all environments, the observation of vehicle contains (1) current states such as the steering, heading,
velocity and relative distance to boundaries etc., (2) the navigation information that guides the vehicle
toward the destination, and (3) the surrounding information encoded by a vector of length of 240
Lidar-like cloud points with 50m maximum detecting distance measures of the nearby vehicles.
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Figure 2: The demonstrations of generated safety environments.

E Learning Curves

Fig. 3 and Fig. 4 present the detailed learning curves of different approaches. Note that in CQL,
the first 200,000 steps is for warming up and it uses the behavior cloning to train. In each DAgger
iteration, a mixed policy will explore the environment and collect new data aggregated into the dataset.
The mixed policy chooses action following amixed = βaexpert + (1− β)aagent, where the parameter β
anneals from 1 to 0 during training. Therefore DAgger agent achieves high training success rate at
the beginning. In DAgger experiment, we only plot the result after each DAgger iteration.

We find that EGPO achieves expert-level training success rate at the very beginning of the training,
due to the takeover mechanism. Besides, the test success rate improves drastically and achieves
similar results as the expert. On the contrary, other baselines show inferior training efficiency.

In term of safety, due to the guardian mechanism, EGPO can constrain the training cost to a minimal
value. Interestingly, during test time, EGPO agent shows even better safety compared to the expert.
However, according to the main table in paper and the curves in Fig. 4, BC agent can achieve lower
cost than EGPO agent. We find that the reason is because BC agent drives the vehicle conservatively
in low velocity, while EGPO agent drives more naturally with similar velocity as the expert.
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Figure 3: Detailed learning curves of EGPO and Safe RL baselines.
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Figure 4: Detailed learning curves of BC, CQL, GAIL and DAgger.

F Hyper-parameters

Table 2: EGPO
Hyper-parameter Value

Discounted Factor γ 0.99
τ for target network update 0.005
Learning Rate 0.0001
Environmental horizon T 1500
Steps before Learning start 10000
Intervention Occurrence Limit C 20
Number of Online Evaluation Episode 5
Kp 5
Ki 0.01
Kd 0.1
CQL Loss Temperature β 3.0

Table 3: PPO/PPO-Lag
Hyper-parameter Value

KL Coefficient 0.2
λ for GAE [4] 0.95
Discounted Factor γ 0.99
Number of SGD epochs 20
Train Batch Size 2000
SGD mini batch size 100
Learning Rate 0.00005
Clip Parameter ε 0.2

Cost Limit for PPO-Lag 1

Table 4: SAC/SAC-Lag/CQL
Hyper-parameter Value

Discounted Factor γ 0.99
τ for target network update 0.005
Learning Rate 0.0001
Environmental horizon T 1500
Steps before Learning start 10000

Cost Limit for SAC-Lag 1

BC iterations for CQL 200000
CQL Loss Temperature β 5
Min Q Weight Multiplier 0.2

Table 5: BC
Hyper-parameter Value

Dataset Size 250000
SGD Batch Size 32
SGD Epoch 200000
Learning Rate 0.0001
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Table 6: DAgger
Hyper-parameter Value

SGD Batch Size 64
SGD Epoch 2000
Learning Rate 0.0005
Number of DAgger Iteration 5
Initial β 0.3
Batch Size to Aggregate 5000

Table 7: GAIL
Hyper-parameter Value

Dataset Size 250000
SGD Batch Size 64
Sample Batch Size 12800
Generator Learning Rate 0.0001
Discriminator Learning Rate 0.005
Generator Optimization Epoch 5
Discriminator Optimization Epoch 2000
Clip Parameter ε 0.2
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