
Algorithm 1 SkiLD (Skill-based Learning with Demonstrations)
1: Inputs: H-step reward function r̃(st, zt), reward weight γ, discount η, target divergences δ, δq,

learning rates λπ, λQ, λα, target update rate τ .
2: Initialize replay bufferD, high-level policy πθ(zt|st), criticQφ(st, zt), target networkQφ̄(st, zt)
3: for each iteration do
4: for every H environment steps do
5: zt ∼ π(zt|st) . sample skill from policy
6: st′ ∼ p(st+H |st, zt) . execute skill in environment
7: D ← D ∪ {st, zt, r̃(st, zt), st′} . store transition in replay buffer
8: for each gradient step do
9: rΣ = (1− γ) · r̃(st, zt) + γ ·

[
logD(st)− log

(
1−D(st)

)]
. compute combined reward

10: Q̄ = rΣ + η
[
Qφ̄(st′ , πθ(zt′ |st′))−

[
αqDKL

(
πθ(zt′ |st′), qζ(zt′ |st′)

)
·D(st′)

11: + αDKL
(
πθ(zt′ |st′), p(zt′ |st′)

)
·
(
1−D(st′)

)]
.

compute Q-target
12: θ ← θ − λπ∇θ

[
Qφ(st, πθ(zt|st))−

[
αqDKL

(
πθ(zt|st), qζ(zt|st)

)
·D(st)

13: + αDKL
(
πθ(zt|st), p(zt|st)

)
·
(
1−D(st)

)]
. update

policy weights
14: φ← φ− λQ∇φ

[
1
2

(
Qφ(st, zt)− Q̄

)2]
. update critic weights

15: α← α− λα∇α
[
α · (DKL(πθ(zt|st), p(zt|st))− δ)

]
. update alpha

16: αq ← αq − λα∇αq
[
αq · (DKL(πθ(zt|st), qζ(zt|st))− δq)

]
. update alpha-q

17: φ̄← τφ+ (1− τ)φ̄ . update target network weights
18: return trained policy πθ(zt|st)

A Full Algorithm

We detail our full SkiLD algorithm for demonstration-guided RL with learned skills in Algorithm 1.
It is based on the SPiRL algorithm for RL with learned skills [16] which in turn builds on Soft-Actor
Critic [39], an off-policy model-free RL algorithm. We mark changes of our algorithm with respect
to SPiRL and SAC in red in Algorithm 1.

The hyperparameters α and αq can either be constant, or they can be automatically tuned using dual
gradient descent [35, 16]. In the latter case, we need to define a set of target divergences δ, δq. The
parameters α and αq are then optimized to ensure that the expected divergence between policy and
skill prior and posterior distributions is equal to the chosen target divergence (see Algorithm 1).

B Implementation and Experimental Details

B.1 Implementation Details: Pre-Training

We introduce our objective for learning the skill inference network qω(z|s, a) and low-level skill
policy πφ(at|st, z) in Section 3.2. In practice, we instantiate all model components with deep neural
networks Qω,Πφ respectively, and optimize the full model using back-propagation. We also jointly
train our skill prior network P . We follow the common assumption of Gaussian, unit-variance output
distributions for low-level policy actions, leading to the following network loss:

L =

H−2∏

t=0

∥∥at −Πφ(st, z)
∥∥2

+ βDKL
(
Qω(s0:H−1, a0:H−2) || N (0, I)

)

︸ ︷︷ ︸
skill representation training

+DKL
(
bQω(s0:H−1, a0:H−2)c || P (s0)

)
︸ ︷︷ ︸

skill prior training

.

Here b·c indicates that we stop gradient flow from the prior training objective into the skill inference
network for improved training stability. After training the skill inference network with above objective,
we train the skill posterior network Qζ by minimizing KL divergence to the skill inference network’s
output on trajectories sampled from the demonstration data. We minimize the following objective:

Lpost = DKL
(
bQω(s0:H−1, a0:H−2)c || Qζ(s0)

)

12

We use a 1-layer LSTM with 128 hidden units for the inference network and 3-layer MLPs with 128
hidden units in each layer for the low-level policy. We encode skills of horizon 10 into 10-dimensional
skill representations z. Skill prior and posterior networks are implemented as 5-layer MLPs with
128 hidden units per layer. They both parametrize mean and standard deviation of Gaussian output
distributions. All networks use batch normalization after every layer and leaky ReLU activation
functions. We tune the regularization weight β to be 1e−3 for the maze and 5e−4 for kitchen and
office environment.

For the demonstration discriminator D(s) we use a 3-layer MLP with only 32 hidden units per layer
to avoid overfitting. It uses a sigmoid activation function on the final layer and leaky ReLU activations
otherwise. We train the discriminator with binary cross-entropy loss on samples from task-agnostic
and demonstration datasets:

LD = − 1

N
·
[N/2∑

i=1

logD(sdi)

︸ ︷︷ ︸
demonstrations

+

N/2∑

j=1

log
(
1−D(sj)

)

︸ ︷︷ ︸
task-agnostic data

]

We optimize all networks using the RAdam optimizer [41] with parameters β1 = 0.9 and β2 = 0.999,
batch size 128 and learning rate 1e−3. On a single NVIDIA Titan X GPU we can train the skill
representation and skill prior in approximately 5 hours, the skill posterior in approximately 3 hours
and the discriminator in approximately 3 hours.

B.2 Implementation Details: Downstream RL

The architecture of the policy mirrors the one of the skill prior and posterior networks. The critic is a
simple 2-layer MLP with 256 hidden units per layer. The policy outputs the parameters of a Gaussian
action distribution while the critic outputs a single Q-value estimate. We initialize the policy with the
weights of the skill posterior network.

We use the hyperparameters of the standard SAC implementation [39] with batch size 256, replay
buffer capacity of 1e6 and discount factor γ = 0.99. We collect 5000 warmup rollout steps to initialize
the replay buffer before training. We use the Adam optimizer [42] with β1 = 0.9, β2 = 0.999 and
learning rate 3e−4 for updating policy, critic and temperatures α and αq. Analogous to SAC, we
train two separate critic networks and compute the Q-value as the minimum over both estimates to
stabilize training. The corresponding target networks get updated at a rate of τ = 5e−3. The policy’s
actions are limited in the range [−2, 2] by a tanh "squashing function" (see Haarnoja et al. [39],
appendix C).

We use automatic tuning of α and αq in the maze navigation task and set the target divergences to 1
and 10 respectively. In the kitchen and office environments we obtained best results by using constant
values of α = αq = 1e−1. In all experiments we set κ = 0.9.

For all RL results we average the results of three independently seeded runs and display mean and
standard deviation across seeds.

B.3 Implementation Details: Comparisons

BC+RL. This comparison is representative of demonstration-guided RL approaches that use BC
objectives to initialize and regularize the policy during RL [6, 7]. We pre-train a BC policy on the
demonstration dataset and use it to initialize the RL policy. We use SAC to train the policy on the
target task. Similar to Nair et al. [7] we augment the policy update with a regularization term that
minimizes the L2 loss between the predicted mean of the policy’s output distribution and the output
of the BC pre-trained policy8.

Demo Replay. This comparison is representative of approaches that initialize the replay buffer of
an off-policy RL agent with demonstration transitions [4, 5]. In practice we use SAC and initialize a
second replay buffer with the demonstration transitions. Since the demonstrations do not come with

8We also tried sampling action targets directly from the demonstration replay buffer, but found using a BC
policy as target more effective on the tested tasks.

13

Figure 8: Qualitative results
for GAIL+RL on maze navi-
gation. Even though it makes
progress towards the goal
(red), it fails to ever obtain the
sparse goal reaching reward.

Figure 9: We compare the exploration behavior in the maze.
We roll out skills sampled from SPiRL’s task-agnostic skill
prior (left) and our task-specific skill posterior (right) and
find that the latter leads to more targeted exploration towards
the goal (red).

reward, we heuristically set the reward of each demonstration trajectory to be a high value (100 for
the maze, 4 for the robotic environments) on the final transition and zero everywhere else. During
each SAC update, we sample half of the training mini-batch from the normal SAC replay buffer and
half from the demonstration replay buffer. All other aspects of SAC remain unchanged.

B.4 Environment Details

1

2
3

4

5

6

7

a
b

c

Figure 10: Office cleanup task. The robot agent
needs to place three randomly sampled objects (1-
7) inside randomly sampled containers (a-c). Dur-
ing task-agnostic data collection we apply random
noise to the initial position of the objects.

Maze Navigation. We adapt the maze navi-
gation task from Pertsch et al. [16] which ex-
tends the maze navigation tasks from the D4RL
benchmark [43]. The starting position is sam-
pled uniformly from a start region and the agent
receives a one-time sparse reward of 100 when
reaching the fixed goal position, which also ends
the episode. The 4D observation space contains
2D position and velocity of the agent. The agent
is controlled via 2D velocity commands.

Robot Kitchen Environment. We use the
kitchen environment from Gupta et al. [24]. For
solving the target task, the agent needs to exe-
cute a fixed sequence of four subtasks by control-
ling an Emika Franka Panda 7-DOF robot via
joint velocity and continuous gripper actuation
commands. The 30-dimensional state space con-
tains the robot’s joint angles as well as object-
specific features that characterize the position
of each of the manipulatable objects. We use 20
state-action sequences from the dataset of Gupta
et al. [24] as demonstrations. Since the dataset
does not have large variation within the demon-
strations for one task, the support of those demonstration is very narrow. We collect a demonstration
dataset with widened support by initializing the environment at states along the demonstrations and
rolling out a random policy for 10 steps.

Robot Office Environment. We create a novel office cleanup task in which a 5-DOF WidowX
robot needs to place a number of objects into designated containers, requiring the execution of a
sequence of pick, place and drawer open and close subtasks (see Figure 10). The agent controls

14

position and orientation of the end-effector and a continuous gripper actuation, resulting in a 7-
dimensional action space. For simulating the environment we build on the Roboverse framework [21].
During collection of the task-agnostic data we randomly sample a subset of three of the seven objects
as well as a random order of target containers and use scripted policies to execute the task. We
only save successful executions. For the target task we fix object positions and require the agent to
place three objects in fixed target containers. The 97-dimensional state space contains the agent’s
end-effector position and orientation as well as position and orientation of all objects and containers.

Differences to Pertsch et al. [16]. While both maze navigation and kitchen environment are based
on the tasks in Pertsch et al. [16], we made multiple changes to increase task complexity, resulting
in the lower absolute performance of the SPiRL baseline in Figure 4. For the maze navigation task
we added randomness to the starting position and terminate the episode upon reaching the goal
position, reducing the max. reward obtainable for successfully solving the task. We also switched
to a low-dimensional state representation for simplicity. For the kitchen environment, the task
originally used in Gupta et al. [24] as well as Pertsch et al. [16] was well aligned with the training
data distribution and there were no demonstrations available for this task. In our evaluation we use
a different downstream task (see section F) which is less well-aligned with the training data and
therefore harder to learn. This also allows us to use sequences from the dataset of Gupta et al. [24] as
demonstrations for this task.

C Skill Representation Comparison

OursPertsch et al., 2020

Figure 11: Comparison of our closed-loop skill
representation with the open-loop representation
of Pertsch et al. [16]. Top: Skill prior rollouts
for 100 k steps in the maze environment. Bot-
tom: Subtask success rates for prior rollouts in
the kitchen environment.

In Section 3.2 we described our skill represen-
tation based on a closed-loop low-level policy
as a more powerful alternative to the open-loop
action decoder-based representation of Pertsch
et al. [16]. To compare the performance of the
two representations we perform rollouts with
the learned skill prior: we sample a skill from
the prior and rollout the low-level policy for H
steps. We repeat this until the episode terminates
and visualize the results for multiple episodes in
maze and kitchen environment in Figure 11.

In Figure 11 (top) we see that both representa-
tions lead to effective exploration in the maze
environment. Since the 2D maze navigation task
does not require control in high-dimensional
action spaces, both skill representations are suf-
ficient to accurately reproduce behaviors ob-
served in the task-agnostic training data.

In contrast, the results on the kitchen environ-
ment (Figure 11, bottom) show that the closed-
loop skill representation is able to more accu-
rately control the high-DOF robotic manipulator
and reliably solve multiple subtasks per rollout
episode.9 We hypothesize that the closed-loop
skill policy is able to learn more robust skills
from the task-agnostic training data, particularly
in high-dimensional control problems.

15

Figure 12: Downstream task performance for prior demonstration-guided RL approaches with
combined task-agnostic and task-specific data. All prior approaches are unable to leverage the
task-agnostic data, showing a performance decrease when attempting to use it.

D Demonstration-Guided RL
Comparisons with Task-Agnostic Experience

In Section 4.2 we compared our approach to prior demonstration-guided RL approaches which are
not designed to leverage task-agnostic datasets. We applied these prior works in the setting they
were designed for: using only task-specific demonstrations of the target task. Here, we conduct
experiments in which we run these prior works using the combined task-agnostic and task-specific
datasets to give them access to the same data that our approach used.

From the results in Figure 12 we can see that none of the prior works is able to effectively leverage
the additional task-agnostic data. In many cases the performance of the approaches is worse than
when only using task-specific data (see Figure 4). Since prior approaches are not designed to
leverage task-agnostic data, applying them in the combined-data setting can hurt learning on the
target task. In contrast, our approach can effectively leverage the task-agnostic data for accelerating
demonstration-guided RL.

E Skill-Based Imitation Learning

We ablate the influence of the environment reward feedback on the performance of our approach by
setting the reward weight κ = 1.0, thus relying solely on the learned discriminator reward. Our goal
is to test whether our approach SkiLD is able to leverage task-agnostic experience to improve the
performance of pure imitation learning, i.e., learning to follow demonstrations without environment
reward feedback.

We compare SkiLD to common approaches for imitation learning: behavioral cloning (BC, Pomerleau
[11]) and generative adversarial imitation learning (GAIL, Ho and Ermon [13]). We also experiment
with a version of our skill-based imitation learning approach that performs online finetuning of the
pre-trained discriminator D(s) using data collected during training of the imitation policy.

We summarize the results of the imitation learning experiments in Figure 13. Learning purely by imi-
tating the demonstrations, without additional reward feedback, is generally slower than demonstration-
guided RL on tasks that require more challenging control, like in the kitchen environment, where the
pre-trained discriminator does not capture the desired trajectory distribution accurately. Yet, we find
that our approach is able to leverage task-agnostic data to effectively imitate complex, long-horizon
behaviors while prior imitation learning approaches struggle. Further, online finetuning of the learned
discriminator improves imitation learning performance when the pre-trained discriminator is not
accurate enough.

In the maze navigation task the pre-trained discriminator represents the distribution of solution
trajectories well, so pure imitation performance is comparable to demonstration-guided RL. We find
that finetuning the discriminator on the maze “sharpens” the decision boundary of the discriminator,

9See https://sites.google.com/view/skill-demo-rl for skill prior rollout videos with both skill
representations in the kitchen environment.

16

https://sites.google.com/view/skill-demo-rl
https://sites.google.com/view/skill-demo-rl

SkiLD (Demo-RL)
SkiLD (Imitation) w/ D-finetuning BC GAIL

SkiLD (Imitation)

Figure 13: Imitation learning performance on maze navigation and kitchen tasks. Compared to prior
imitation learning methods, SkiLD can leverage prior experience to enable the imitation of complex,
long-horizon behaviors. Finetuning the pre-trained discriminator D(s) further improves performance
on more challenging control tasks like in the kitchen environment.

Bottom

Burner Microwave Kettle

Top

Burner

Light

Switch

Slide

Cabinet

Bottom

Burner

Top

Burner

Light

Switch Kettle

Top

Burner

Light

Switch

Slide

Cabinet

Hinge

Cabinet

Light

Switch

Slide

Cabinet

Bottom

Burner

Top

Burner

Light

Switch

Slide

Cabinet

Top

Burner

Light

Switch

Slide

Cabinet

Light

Switch

Slide

Cabinet

Bottom

Burner

Top

Burner

Light

Switch

9.45%
60.86%

29.68%

100.0% 46.59% 41.96%

5.72% 5.72%

100.0% 100.0%

42
.1%

0.58%16.95%

40
.3
5%

47.36% 52.63%

31
.16

%
27

.2
7%

25.32%
16.23%

100.0% 100.0%

78.21%

11.17%

10.61%

45
.0%

35
.0
%

20.0%

Figure 14: Subtask transition probabilities in the kitchen environment’s task-agnostic training dataset
from Gupta et al. [24]. Each dataset trajectory consists of four consecutive subtasks, of which we
display three (yellow: first, green: second, grey: third subtask). The transition probability to the
fourth subtask is always near 100 %. In Section 4.5 we test our approach on a target task with good
alignment to the task-agnostic data (Microwave - Kettle - Light Switch - Hinge Cabinet) and a target
task which is mis-aligned to the data (Microwave - Light Switch - Slide Cabinet - Hinge Cabinet).

i.e., increases its confidence in correctly estimating the demonstration support. Yet, this does not lead
to faster overall convergence since the pre-trained discriminator is already sufficiently accurate.

F Kitchen Data Analysis

For the kitchen manipulation experiments we use the dataset provided by Gupta et al. [24] as task-
agnostic pre-training data. It consists of 603 teleoperated sequences, each of which shows the
completion of four consecutive subtasks. In total there are seven possible subtasks: opening the
microwave, moving the kettle, turning on top and bottom burner, flipping the light switch and opening
a slide and a hinge cabinet.

17

In Figure 14 we analyze the transition probabilities between subtasks in the task-agnostic dataset. We
can see that these transition probabilities are not uniformly distributed, but instead certain transitions
are more likely than others, e.g., it is much more likely to sample a training trajectory in which the
agent first opens the microwave than one in which it starts by turning on the bottom burner.

In Section 4.5 we test the effect this bias in transition probabilities has on the learning of target tasks.
Concretely, we investigate two cases: good alignment between task-agnostic data and target task and
mis-alignment between the two. In the former case we choose the target task Kettle - Bottom Burner -
Top Burner - Slide Cabinet, since the required subtask transitions are likely under the training data
distribution. For the mis-aligned case we choose Microwave - Light Switch - Slide Cabinet - Hinge
Cabinet as target task, since particularly the transition from opening the microwave to flipping the
light switch is very unlikely to be observed in the training data.

18

	Full Algorithm
	Implementation and Experimental Details
	Implementation Details: Pre-Training
	Implementation Details: Downstream RL
	Implementation Details: Comparisons
	Environment Details

	Skill Representation Comparison
	Demonstration-Guided RL Comparisons with Task-Agnostic Experience
	Skill-Based Imitation Learning
	Kitchen Data Analysis

