
Smooth Exploration for Robotic Reinforcement
Learning

A Supplementary Material

A.1 State Dependent Exploration

In the linear case, i. e. with a linear policy and a noise matrix, parameter space exploration and SDE
are equivalent:

at = µ(st; θµ) + ε(st; θε), θε ∼ N (0, σ2)

= θµst + θεst
= (θµ + θε)st

Because we know the policy distribution, we can obtain the derivative of the log-likelihood
log π(a|s) with respect to the variance σ:

∂ log π(a|s)
∂σij

=
∑
k

∂ log πk(ak|s)
∂σ̂j

∂σ̂j
∂σij

(1)

=
∂ log πj(aj |s)

∂σ̂j

∂σ̂j
∂σij

(2)

=
(aj − µj)2 − σ̂j2

σ̂j
3

s2iσij
σ̂j

(3)

This can be easily plugged into the likelihood ratio gradient estimator [1], which allows adapting σ
during training. SDE is therefore compatible with standard policy gradient methods, while address-
ing most shortcomings of the unstructured exploration.

A.2 Algorithms

In this section, we shortly present the algorithms used in this paper. They correspond to state-of-
the-art methods in model-free RL for continuous control, either in terms of sample efficiency or
wall-clock time.

A2C A2C is the synchronous version of Asynchronous Advantage Actor-Critic (A3C) [2]. It is
an actor-critic method that uses parallel rollouts of n-steps to update the policy. It relies on the
REINFORCE [1] estimator to compute the gradient. A2C is fast but not sample efficient.

PPO A2C gradient update does not prevent large changes that lead to huge drop in performance.
To tackle this issue, Trust Region Policy Optimization (TRPO) [3] introduces a trust-region in the
policy parameter space, formulated as a constrained optimization problem: it updates the policy
while being close in terms of KL divergence to the old policy. Its successor, Proximal Policy
Optimization (PPO) [4] relaxes the constraints (which requires costly conjugate gradient step) by
clipping the objective using importance ratio. PPO makes also use of workers (as in A2C) and
Generalized Advantage Estimation (GAE) [5] for computing the advantage.

5th Conference on Robot Learning (CoRL 2021), London, UK.

TD3 Deep Deterministic Policy Gradient (DDPG) [6] combines the deterministic policy gradient
algorithm [7] with the improvements from Deep Q-Network (DQN) [8]: using a replay buffer and
target networks to stabilize training. Its direct successor, Twin Delayed DDPG (TD3) [9] brings
three major tricks to tackle issues coming from function approximation: clipped double Q-Learning
(to reduce overestimation of the Q-value function), delayed policy update (so the value function con-
verges first) and target policy smoothing (to prevent overfitting). Because the policy is deterministic,
DDPG and TD3 rely on external noise for exploration.

SAC Soft Actor-Critic [10], successor of Soft Q-Learning (SQL) [11] optimizes the maximum-
entropy objective, that is slightly different compared to the classic RL objective:

J(π) =

T∑
t=0

E(st,at)∼ρπ [r(st,at) + αH(π(· |st))] . (4)

where H is the policy entropy and α is the entropy temperature and allows to have a trade-off
between the two objectives.

SAC learns a stochastic policy, using a squashed Gaussian distribution, and incorporates the clipped
double Q-learning trick from TD3. In its latest iteration [12], SAC automatically adjusts the entropy
coefficient α, removing the need to tune this crucial hyperparameter.

Which algorithm for robotics? A2C and PPO are both on-policy algorithms and can be easily
parallelized, resulting in relatively small training time. On the other hand, SAC and TD3 are off-
policy and run on a single worker, but are much more sample efficient than the two previous methods,
achieving equivalent performances with a fraction of the samples.

Because we are focusing on robotics applications, having multiple robots is usually not possible,
which makes TD3 and SAC the methods of choice. Although TD3 and SAC are very similar, SAC
embeds the exploration directly in its objective function, making it easier to tune. We also found,
during our experiments in simulation, that SAC works for a wide range of hyperparameters. As a
result, we adopt that algorithm for the experiment on a real robot and for the ablation study.

A.3 Real Robot Experiments

Common Setup For each real robot experiment, to improve smoothness of the final controller and
tackle communication delays (which would break Markov assumption), we augment the input with
the previous observation and the last action taken and add a small continuity cost to the reward.
For each task, we decompose the reward function into a primary (what we want to achieve) and
secondary component (soft constraints such as continuity cost). Each reward term is normalized,
which allows to easily weight each component depending on their importance. Compared to previ-
ous work, we use the exact same algorithm as the one used for simulated tasks and therefore avoid
the use of filter.

Learning to control an elastic neck. An episode terminates either when the agent reaches the
desired pose or after a timeout of 5s, i. e. each episode has a maximum length of 200 steps. The
episode is considered successful if the desired pose is reached within a threshold of 10mm for the
position and 5deg for the orientation.

Learning to walk with the elastic quadruped robot bert. The agent receives joint angles, veloc-
ities, torques and IMU data as input (over Wi-Fi) and commands the desired absolute motor angles.
The primary reward is the distance traveled and the secondary reward is a weighted sum of different
costs: heading cost, distance to the center line and continuity cost. Thanks to a treadmill, the reset of
the robot was semi-automated. Early stopping and monitoring of the robot was done using external
tracking, but the observation is computed from on-board sensors only. An episode terminates if the
robot falls, goes out of bounds or after a timeout of 5s. Training is done directly with the real robot
over several days, totalizing around 8 hours of interaction.

Learning to drive with a RC car. The agent receives an image from the on-board camera as input
and commands desired throttle and steering angle. Features are computed using a pre-trained auto-
encoder as in Raffin and Sokolkov [13]. The primary reward is a weighted sum between a survival

2

bonus (no intervention by the safety driver) and the commanded throttle. There is only the continuity
cost as secondary reward. One episode terminates when the safety driver intervenes (crash) or after
a timeout of 1 minute. Training is done directly on the robot and requires less than 30 minutes of
interaction.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Walltime (in hours)

45

40

35

30

25

20

15

10

5

Tr
ai

ni
ng

 E
pi

so
di

c
Re

wa
rd

Neck Robot Learning Curve

SAC w/ gSDE
SAC w/ Low-Pass Filter

Figure 1: Learning curve for the tendon-driven robot. SAC with gSDE performs similarly to SAC with a
low-pass filter for the primary reward (reaching target).

80

90

x
(m

m
)

Desired Pose vs Current Pose

−10

0

10

θ x
(d

eg
)

−25

0

θ y
(d

eg
)

0 2 4 6 8 10 12 14 16

Time (s)

−50

0

θ z
(d

eg
)

Desired Pose

Model Based

SAC + gSDE

Low-pass filter

Figure 2: Comparison of the model-based controller with the learned RL agent on an evaluation trajectory: the
two performs similarly.

SAC + gSDE Model-Based [14]

Error in position (mm) 2.65 +/- 1.6 1.32 +/- 1.2
Error in orientation (deg) 2.85 +/- 2.9 2.90 +/- 2.8

Table 1: Comparison of the mean error in position and orientation on the evaluation trajectory. The model-based
and learned controller yield comparable results.

3

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Continuity Cost

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

gSDE-Episodic

gSDE-128

gSDE-2

gSDE-256

gSDE-32

gSDE-4

gSDE-512

gSDE-8

Unstructured

Continuity vs. Performance on MountainCar

Figure 3: Normalized return and continuity cost of SAC on MountainCar task with different type of exploration.
gSDE provides a compromise between performance and smoothness.

A.4 Addtional Experiments: MountainCar

To assess the applicability of gSDE on a non-periodic task, we train SAC with on the continuous
version of the mountain car problem [15, 16]. In this environment, the agent must drive an under-
powered car up a steep mountain road. The reward is deceptive: the agent must reach the goal using
as few energy as possible and gets rewarded only when up the hill. The agent commands the power
which indirectly influences its velocity.

Although low-dimensional (2-dimensional state and 1-dimensional action), this environment was
shown to be challenging for DDPG [17].

Algorithm MountainCar
SAC Return ↑ Ctrain ↓
w/ unstructured -1.0 +/- 0.4 12.3 +/- 0.0

w/ gSDE-2 27.7 +/- 14 5.5 +/- 0.4
w/ gSDE-4 75.6 +/- 12.8 1.8 +/- 0.2
w/ gSDE-8 94.8 +/- 0.1 0.8 +/- 0.0
w/ gSDE-16 94.8 +/- 0.1 0.4 +/- 0.0
w/ gSDE-32 94.5 +/- 0.1 0.3 +/- 0.0
w/ gSDE-64 93.9 +/- 0.3 0.2 +/- 0.0
w/ gSDE-128 94.0 +/- 0.3 0.2 +/- 0.0
w/ gSDE-256 46.6 +/- 15.8 0.2 +/- 0.0
w/ gSDE-512 7.9 +/- 9.2 0.0 +/- 0.0
w/ gSDE-Episodic -0.8 +/- 0.3 0.0 +/- 0.0

Table 2: Detailed return and continuity cost results for SAC with different type of exploration on the Moun-
tainCar environment. We report the mean and standard error over 10 runs of 60000 steps. For each benchmark,
we highlight the results of the method(s) with the best mean when the difference is statistically significant.

Table 2 and Fig. 3 shows the results on MountainCar task and the compromise between continuity
and performance.

4

Despite hyperparameter optimization, the problem cannot be solved by the original SAC (with un-
structured noise) without additional external noise1.

Because of the unstructured exploration, the commanded power oscillates at high frequency, making
the velocity stay around the initial value of zero. The policy thus converges to a local minimum of
doing nothing, which minimizes the consumed energy.

On the other hand, SAC with gSDE works for a wide range of the noise sampling interval n (gSDE-
4 to gSDE-128), while also improving a lot on the continuity cost at train time. If the sampling
interval is too large (for instance with gSDE-Episodic), the agent would not explore enough during
long episodes and then converge to the local minimum.

A.5 Implementation Details

We used a PyTorch [18] version of Stable-Baselines [19] library, together with the RL Zoo training
framework [20]. It uses the common implementations tricks for PPO [21] for the version using
independent Gaussian noise.

For SAC, to ensure numerical stability, we clip the mean to be in range [−2, 2], as it was causing
infinite values. In the original implementation, a regularization L2 loss on the mean and standard
deviation was used instead. The algorithm for SAC with gSDE is described in Algorithm 1.

Compared to the original SDE paper, we did not have to use the expln trick [22] to avoid ex-
ploding variance for PyBullet tasks. However, we found it useful on specific environment like
BipedalWalkerHardcore-v2. The original SAC implementation clips this variance.

Algorithm 1 Soft Actor-Critic with gSDE

Initialize parameters θµ, θQ, σ, α
Initialize replay buffer D
for each iteration do

θε ∼ N (0, σ2) . Sample noise function parameters
for each environment step do

at = π(st) = µ(st; θµ) + ε(st; θε) . Get the noisy action
st+1 ∼ p(st+1|st,at) . Step in the environment
D ← D ∪ {(st,at, r(st,at), st+1)} . Update the replay buffer

end for
for each gradient step do

θε ∼ N (0, σ2) . Sample noise function parameters
Sample a minibatch from the replay buffer D
Update the entropy temperature α
Update parameters using∇JQ and∇Jπ . Update actor µ, critic Q and noise variance σ
Update target networks

end for
end for

A.6 Learning Curves and Additional Results

Figure 5 shows the learning curves for SAC with different types of exploration noise.

Figure 6 and Figure 7 show the learning curves for off-policy and on-policy algorithms on the four
PyBullet tasks, using gSDE or unstructured Gaussian exploration.

A.7 Ablation Study: Additional Plots

Figure 8 displays the ablation study on remaining PyBullet tasks. It shows that SAC is robust against
initial exploration variance, and PPO results highly depend on the noise sampling interval.

Parallel Sampling The effect of sampling a set of noise parameters per worker is shown for PPO
in Figure 9a. This modification improves the performance for each task, as it allows a more diverse

1See issue on the original SAC repository https://frama.link/original-sac-mountaincar

5

https://frama.link/original-sac-mountaincar

HalfCheetah Ant Hopper Walker2D

Environment

0

500

1000

1500

2000

2500

3000

3500

S
co

re

SAC Performance on PyBullet Tasks

Method

SAC-gSDE-8

SAC-Unstructured

SAC-Param-Noise

SAC-OU-Noise

Figure 4: Performance results for SAC with different type of exploration on PyBullet tasks

A2C PPO
Environments gSDE Gaussian gSDE Gaussian

HALFCHEETAH 2028 +/- 107 1652 +/- 94 2760 +/- 52 2254 +/- 66
ANT 2560 +/- 45 1967 +/- 104 2587 +/- 133 2160 +/- 63
HOPPER 1448 +/- 163 1559 +/- 129 2508 +/- 16 1622 +/- 220
WALKER2D 694 +/- 73 443 +/- 59 1776 +/- 53 1238 +/- 75

Table 3: Final performance (higher is better) of A2C and PPO on 4 environments with gSDE and unstructured
Gaussian exploration. We report the mean over 10 runs of 2 million steps. For each benchmark, we highlight
the results of the method with the best mean, when the difference is statistically significant.

SAC TD3
Environments gSDE Gaussian gSDE Gaussian

HALFCHEETAH 2850 +/- 73 2994 +/- 89 2578 +/- 44 2687 +/- 67
ANT 3459 +/- 52 3394 +/- 64 3267 +/- 34 2865 +/- 278
HOPPER 2646 +/- 45 2434 +/- 190 2353 +/- 78 2470 +/- 111
WALKER2D 2341 +/- 45 2225 +/- 35 1989 +/- 153 2106 +/- 67

Table 4: Final performance (higher is better) of SAC and TD3 on 4 environments with gSDE and unstructured
Gaussian exploration. We report the mean over 10 runs of 1 million steps. For each benchmark, we highlight
the results of the method with the best mean, when the difference is statistically significant.

exploration. Although less significant, we observe the same outcome for A2C on PyBullet environ-
ments (cf. Figure 9b). Thus, making use of parallel workers improves both exploration and the final
performance.

A.8 Hyperparameter Optimization

PPO and TD3 hyperparameters for unstructured exploration are reused from the original papers [4,
9]. For SAC, the optimized hyperparameters for gSDE are performing better than the ones from
Haarnoja et al. [11], so we keep them for the other types of exploration to have a fair comparison.
No hyperparameters are available for A2C in Mnih et al. [2] so we use the tuned one from Raffin
[23].

To tune the hyperparameters, we use a TPE sampler and a median pruner from Optuna [24] library.
We give a budget of 500 candidates with a maximum of 3 · 105 time-steps on the HALFCHEETAH
environment. Some hyperparameters are then manually adjusted (e. g. increasing the replay buffer
size) to improve the stability of the algorithms.

6

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps (1e6)

−1000

0

1000

2000

3000

S
co

re

HalfCheetah

SAC-gSDE-8

SAC-Unstructured

SAC-Param-Noise

SAC-OU-Noise

(a) HALFCHEETAH

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps (1e6)

0

500

1000

1500

2000

2500

3000

3500

S
co

re

Ant

SAC-gSDE-8

SAC-Unstructured

SAC-Param-Noise

SAC-OU-Noise

(b) ANT

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps (1e6)

0

500

1000

1500

2000

2500

S
co

re

Hopper

SAC-gSDE-8

SAC-Unstructured

SAC-Param-Noise

SAC-OU-Noise

(c) HOPPER

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps (1e6)

0

500

1000

1500

2000

2500

S
co

re

Walker2D

SAC-gSDE-8

SAC-Unstructured

SAC-Param-Noise

SAC-OU-Noise

(d) WALKER2D

Figure 5: Learning curves for SAC with different type of exploration on PyBullet tasks. The line denotes the
mean over 10 runs of 1 million steps.

A.9 Hyperparameters

For all experiments with a time limit, as done in [25, 26, 27, 19], we augment the observation with
a time feature (remaining time before the end of an episode) to avoid breaking Markov assumption.
This feature has a great impact on performance, as shown in Figure 10b.

Figure 10a displays the influence of the network architecture for SAC on PyBullet tasks. A bigger
network usually yields better results but the gain is minimal passed a certain complexity (here, a two
layers neural network with 256 unit per layer).

7

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps (1e6)

1000

0

1000

2000

3000

Sc
or

e

HalfCheetahBulletEnv-v0

A2C-SDE
A2C-Gaussian
PPO-SDE
PPO-Gaussian

(a) HALFCHEETAH

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps (1e6)

0

500

1000

1500

2000

2500

Sc
or

e

AntBulletEnv-v0

A2C-SDE
A2C-Gaussian
PPO-SDE
PPO-Gaussian

(b) ANT

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps (1e6)

0

500

1000

1500

2000

2500

Sc
or

e

HopperBulletEnv-v0

A2C-SDE
A2C-Gaussian
PPO-SDE
PPO-Gaussian

(c) HOPPER

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps (1e6)

0

250

500

750

1000

1250

1500

1750

Sc
or

e

Walker2DBulletEnv-v0

A2C-SDE
A2C-Gaussian
PPO-SDE
PPO-Gaussian

(d) WALKER2D

Figure 6: Learning curves for on-policy algorithms on PyBullet tasks. The line denotes the mean over 10 runs
of 2 million steps.

Table 5: SAC Hyperparameters

Parameter Value

Shared
optimizer Adam [28]
learning rate 7.3 · 10−4

learning rate schedule constant
discount (γ) 0.98
replay buffer size 3 · 105
number of hidden layers (all networks) 2
number of hidden units per layer [400, 300]
number of samples per minibatch 256
non-linearity ReLU
entropy coefficient (α) auto
target entropy −dim(A)
target smoothing coefficient (τ) 0.02
train frequency episodic
warm-up steps 10 000
normalization None

gSDE
initial log σ -3
gSDE sample frequency 8

8

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (1e6)

1000

0

1000

2000

3000

Sc
or

e

HalfCheetahBulletEnv-v0

SAC-SDE
SAC-Gaussian
TD3-SDE
TD3-Gaussian

(a) HALFCHEETAH

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (1e6)

0

500

1000

1500

2000

2500

3000

Sc
or

e

AntBulletEnv-v0

SAC-SDE
SAC-Gaussian
TD3-SDE
TD3-Gaussian

(b) ANT

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (1e6)

0

500

1000

1500

2000

2500

Sc
or

e

HopperBulletEnv-v0

SAC-SDE
SAC-Gaussian
TD3-SDE
TD3-Gaussian

(c) HOPPER

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (1e6)

0

500

1000

1500

2000

Sc
or

e

Walker2DBulletEnv-v0

SAC-SDE
SAC-Gaussian
TD3-SDE
TD3-Gaussian

(d) WALKER2D

Figure 7: Learning curves for off-policy algorithms on PyBullet tasks. The line denotes the mean over 10 runs
of 1 million steps.

HalfCheetah Ant Hopper Walker2D

Environment

0

500

1000

1500

2000

2500

3000

3500

S
co

re

Influence of the exploration variance logσ

logσ

- 6

- 5

- 4

- 3

- 2

- 1

0

1

(a) Initial exploration variance log σ (SAC)

HalfCheetah Ant Hopper Walker2D

Environment

0

500

1000

1500

2000

2500

3000

S
co

re

Influence of the sampling frequency

Interval

1

4

8

16

32

64

128

256

512

1000

(b) Noise sampling interval (PPO)

Figure 8: Sensitivity of SAC and PPO to selected hyperparameters on PyBullet tasks

Table 6: SAC Environment Specific Parameters

Environment Learning rate schedule

HopperBulletEnv-v0 linear
Walker2dBulletEnv-v0 linear

9

HalfCheetah Ant Hopper Walker2D

Environment

0

500

1000

1500

2000

2500

S
co

re

Influence of the sampling frequency

Method

Parallel

No Parallel

Influence of the parallel sampling

(a) Effect of parallel sampling for PPO

HalfCheetah Ant Hopper Walker2D

Environment

0

500

1000

1500

2000

2500

S
co

re

Parallel vs No Parallel Sampling

Method

Parallel

No Parallel

(b) Effect of parallel sampling for A2C

Figure 9: Parallel sampling of the noise matrix has a positive impact for PPO (a) and A2C (b) on PyBullet
tasks.

HalfCheetah Ant Hopper Walker2D

Environment

0

500

1000

1500

2000

2500

3000

S
co

re

Influence of the network architecture

Method

SAC-64-64

SAC-256-256

SAC-400-300

(a) Influence of the network architecture

HalfCheetah Ant Hopper Walker2D

Environment

0

500

1000

1500

2000

2500

3000

S
co

re

Influence of the time feature

Method

SAC-no-time-feature

SAC-with-time-feature

PPO-no-time-feature

PPO-with-time-feature

(b) Influence of the time feature

Figure 10: (a) Influence of the network architecture (same for actor and critic) for SAC on PyBullet environ-
ments. The labels displays the number of units per layer. (b) Influence of including the time or not in the
observation for PPO and SAC.

10

Table 7: TD3 Hyperparameters

Parameter Value

Shared
optimizer Adam [28]
discount (γ) 0.98
replay buffer size 2 · 105
number of hidden layers (all networks) 2
number of hidden units per layer [400, 300]
number of samples per minibatch 100
non-linearity ReLU
target smoothing coefficient (τ) 0.005
target policy noise 0.2
target noise clip 0.5
policy delay 2
warm-up steps 10 000
normalization None

gSDE
initial log σ -3.62
learning rate for TD3 6 · 10−4

target update interval 64
train frequency 64
gradient steps 64
learning rate for gSDE 1.5 · 10−3

Unstructured Exploration
learning rate 1 · 10−3

action noise type Gaussian
action noise std 0.1
train frequency every episode
gradient steps every episode

11

Table 8: A2C Hyperparameters

Parameter Value

Shared
number of workers 4
optimizer RMSprop with ε = 1 · 10−5

discount (γ) 0.99
number of hidden layers (all networks) 2
number of hidden units per layer [64, 64]
shared network between actor and critic False
non-linearity Tanh
value function coefficient 0.4
entropy coefficient 0.0
max gradient norm 0.5
learning rate schedule linear
normalization observation and reward [19]

gSDE
number of steps per rollout 8
initial log σ -3.62
learning rate 9 · 10−4

GAE coefficient [5] (λ) 0.9
orthogonal initialization [21] no

Unstructured Exploration
number of steps per rollout 32
initial log σ 0.0
learning rate 2 · 10−3

GAE coefficient [5] (λ) 1.0
orthogonal initialization [21] yes

12

Table 9: PPO Hyperparameters

Parameter Value

Shared
optimizer Adam [28]
discount (γ) 0.99
value function coefficient 0.5
entropy coefficient 0.0
number of hidden layers (all networks) 2
shared network between actor and critic False
max gradient norm 0.5
learning rate schedule constant
advantage normalization [19] True
clip range value function [21] no
normalization observation and reward [19]

gSDE
number of workers 16
number of steps per rollout 512
initial log σ -2
gSDE sample frequency 4
learning rate 3 · 10−5

number of epochs 20
number of samples per minibatch 128
number of hidden units per layer [256, 256]
non-linearity ReLU
GAE coefficient [5] (λ) 0.9
clip range 0.4
orthogonal initialization [21] no

Unstructured Exploration
number of workers 1
number of steps per rollout 2048
initial log σ 0.0
learning rate 2 · 10−4

number of epochs 10
number of samples per minibatch 64
number of hidden units per layer [64, 64]
non-linearity Tanh
GAE coefficient [5] (λ) 0.95
clip range 0.2
orthogonal initialization [21] yes

Table 10: PPO Environment Specific Parameters

Environment Learning rate schedule Clip range schedule initial log σ

gSDE
AntBulletEnv-v0 default default -1
HopperBulletEnv-v0 default linear -1
Walker2dBulletEnv-v0 default linear default

Unstructured Exploration
Walker2dBulletEnv-v0 linear default default

13

References
[1] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning. Machine learning, 8(3-4):229–256, 1992.

[2] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International
conference on machine learning, pages 1928–1937, 2016.

[3] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In International conference on machine learning, pages 1889–1897, 2015.

[4] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[5] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[7] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy
gradient algorithms. In Proceedings of the 31st International Conference on International
Conference on Machine Learning - Volume 32, ICML’14, page I–387–I–395. JMLR.org, 2014.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[9] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-
critic methods. arXiv preprint arXiv:1802.09477, 2018.

[10] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-
based policies. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 1352–1361. JMLR. org, 2017.

[11] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

[12] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

[13] A. Raffin and R. Sokolkov. Learning to drive smoothly in minutes. https://github.com/
araffin/learning-to-drive-in-5-minutes/, 2019.

[14] B. Deutschmann, A. Dietrich, and C. Ott. Position control of an underactuated continuum
mechanism using a reduced nonlinear model. In 2017 IEEE 56th Annual Conference on Deci-
sion and Control (CDC), pages 5223–5230. IEEE, 2017.

[15] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[16] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[17] C. Colas, O. Sigaud, and P.-Y. Oudeyer. Gep-pg: Decoupling exploration and exploitation in
deep reinforcement learning algorithms. arXiv preprint arXiv:1802.05054, 2018.

[18] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann. Stable baselines3.
https://github.com/DLR-RM/stable-baselines3, 2019.

[19] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse,
O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu. Stable
baselines. https://github.com/hill-a/stable-baselines, 2018.

[20] A. Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo, 2020.

14

https://github.com/araffin/learning-to-drive-in-5-minutes/
https://github.com/araffin/learning-to-drive-in-5-minutes/
https://github.com/DLR-RM/stable-baselines3
https://github.com/hill-a/stable-baselines
https://github.com/DLR-RM/rl-baselines3-zoo

[21] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry. Im-
plementation matters in deep {rl}: A case study on {ppo} and {trpo}. In International Con-
ference on Learning Representations, 2020. URL https://openreview.net/forum?id=
r1etN1rtPB.

[22] T. Rückstieß, M. Felder, and J. Schmidhuber. State-dependent exploration for policy gradient
methods. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 234–249. Springer, 2008.

[23] A. Raffin. Rl baselines zoo. https://github.com/araffin/rl-baselines-zoo, 2018.

[24] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyper-
parameter optimization framework. In Proceedings of the 25rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2019.

[25] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforce-
ment learning for continuous control. In International Conference on Machine Learning, pages
1329–1338, 2016.

[26] F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev. Time limits in reinforcement learning.
arXiv preprint arXiv:1712.00378, 2017.

[27] A. Rajeswaran, K. Lowrey, E. V. Todorov, and S. M. Kakade. Towards generalization and
simplicity in continuous control. In Advances in Neural Information Processing Systems, pages
6550–6561, 2017.

[28] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

15

https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=r1etN1rtPB
https://github.com/araffin/rl-baselines-zoo

	Supplementary Material
	State Dependent Exploration
	Algorithms
	Real Robot Experiments
	Addtional Experiments: MountainCar
	Implementation Details
	Learning Curves and Additional Results
	Ablation Study: Additional Plots
	Hyperparameter Optimization
	Hyperparameters

