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Abstract: If a robot’s dynamics are difficult to model solely through analytical
mechanics, it is an attractive option to directly learn it from data. Yet, solely data-
driven approaches require considerable amounts of data for training and do not
extrapolate well to unseen regions of the system’s state space. In this work, we em-
phasize that when a robot’s links are sufficiently rigid, many analytical functions
such as kinematics, inertia functions, and surface constraints encode informative
prior knowledge on its dynamics. To this effect, we propose a framework for learn-
ing probabilistic forward dynamics that combines physics knowledge with Gaus-
sian processes utilizing automatic differentiation with GPU acceleration. Com-
pared to solely data-driven modeling, the model’s data efficiency improves while
the model also respects physical constraints. We illustrate the proposed structured
model on a seven joint robot arm in PyBullet. Our implementation of the proposed
framework can be found here: https://git.io/JP4Fs
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1 Introduction

An accurate dynamics model is essential for computing a robot’s actions via model-based control
approaches such as model predictive control [1–4] or model-based reinforcement learning [5–10].
Yet, in many robotic systems including legged robots and robot arms, physical phenomena such
as friction and elasticities considerably affect the dynamics, are often environmental dependent,
and unknown a-priori which in turn aggravates analytical physics modeling. As an alternative to
analytical modeling, recent works resort to learning dynamics solely from input-output data using
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Figure 1: Computational graph of the proposed framework. A robot arm’s forward dynamics model
is augmented by a GP approximating unknown forces QU. The semi-parametric model predicts
acceleration q̈ while potentially including knowledge in form of analytical functions {M,A, b,QK}.
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regression models. Yet, data collection on robotic systems must be done in real-time using poten-
tially sub-optimal control strategies that only operate in small regions of the system’s state-space.
Therefore, data sets that stem from physical systems are often limited in size and information value.
This raises a considerable obstacle for successfully training data-driven models such as a neural net-
work (NN) or a Gaussian process (GP), as these are data-hungry compared to physics models and
usually do not extrapolate well. To overcome the limitations of data-driven modeling, recent works
combine analytical mechanics with data-driven models resulting in so-called structured models or
graybox models. In structured models, the target function, that is the parts of an analytical physics
model that are difficult to model a-priori, is being approximated by a carefully designed data-driven
model. By use of physical prior knowledge, the data efficiency of a structured model is potentially
improved by: i) Reducing the complexity of the target function; ii) Reducing the dimensionality of
the target function; or iii) Building prior knowledge on physical properties of the target function into
the data-driven model. This target function ideally contains all erroneous parts of the physics model
while the sample-complexity of a regression model is smaller when learning such a target function
compared to simply learning the residual function in the physics model’s output.

In general, finding a suitable candidate for a target function inside an analytical physics model is not
trivial. In the following, we suggest that for sufficiently rigid bodies the majority of the analytical
model errors arise from an inaccurate depiction of forces. As many of these forces are potentially
uncertain and stochastic in nature, we propose a probabilistic structured dynamics model in which
we approximate unknown forces inside an analytical dynamics model by a GP. In particular, the
contribution of this work are as follows:

• We propose a modelling framework using PyTorch that combines a library for (implicitly
constrained) rigid-body mechanics with a novel implementation of structured multi-task
GP regression. We analyze the proposed framework by learning the dynamics of a seven
dimensional robot arm whose end-effector touches a surface in PyBullet.

• We show that analytical parameters can be efficiently estimated alongside a seven-
dimensional structured multi-output GP with 154 hyperparameters.

• We emphasize the new research opportunities that evolve from the proposed framework.
Such as the prediction of implicit contact forces by solely resorting to measurements of the
robot’s constrained acceleration as well as using Baumgarte stabilization to enforce that
long-term trajectory predictions made using the structured GP respect implicit constraints.

1.1 Problem Formulation

We assume that the following assumptions apply to a robot whose forward dynamics (FD) we aim
to identify:

Assumption 1 The underlying kinematics function of the robot arm and kinematic surface equation,
as well as their parameters, are known a-priori.

Assumption 2 The bodies (aka links) of the mechanical system are rigid.

Further, we assume that the state of a robot’s forward dynamics description is given by q ∈ Rnq ,
q̇, q̈, and u ∈ Rnu being the joint angles, velocity, acceleration, and control input respectively. As
discussed in Section 1.3, these assumptions are commonly found in literature on nonlinear robot
dynamics identification [11–15]. Given input points xk = [qk, q̇k, uk]T, acceleration measurements
are modeled as

yk(xk) = q̈(xk) + εk with εk ∼ N (0,Σy) , (1)

where Σy denotes a diagonal matrix containing the measurement variances. Further, an infor-
mative data-set D = {X,Y } is available consisting of the input data vector X = [xT1 . . . x

T
N ]T

and the output data vector Y = [yT1 . . . y
T
N ]T. The main objective of this work is, for a high-

dimensional robot arm, to propose a modeling framework that enables the data-efficient prediction
of µq̈

X? |D = E(q̈(x∗)|D) and K q̈
X?,X? |D = cov(q̈(x∗)|D) at a test input x∗ with a structured GP

model ˆ̈q ∼ GP(mq̈,Kq̈). We refer to ˆ̈q as structured as this model results from combining physical
prior knowledge underlying the system’s equations of motion (EOM) with a GP prior placed on the
system’s unknown forces Q̂U ∼ GP(0,KU).
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1.2 Forward Dynamics of Robot Arms

In what follows, we omit the arguments of functions to avoid cluttered notation if these are clear
from the context. In this work, we limit the discussion to Lagrangian FD of robot arms as described
by equations of motion (EOM) taking the form

q̈ = fA(x; θA) = M−1 (Q+Qz +QI) , (2)

with the analytical model parameters θA, symmetric and positive definite inertia matrix M(q; θA),
torques acting on the unconstrained system Q(x; θA), torques Qz(x; θA) caused by Cartesian end-
effector friction forces Fz , and torquesQI(x; θA) that are caused by Cartesian surface normal forces
FI also acting on the end-effector. That is, if Q presses the robot’s end-effector onto a surface, the
surface applies as a reaction the force FI that always remains normal to the surface. The transforma-
tion of FI into generalized coordinates yields the torques QI . The force FI often causes dissipative
forces between the end-effector and the surface. These dissipative forces Qz lie always tangential
to the surface. The torques acting in the unconstrained system Q(x; θA) = QD + Qu + QG + QC

consist of bias forces QC , gravitational forces QG, dissipative forces inside the joints QD, and ac-
tuation forces Qu. Often in literature Qu + QD is denoted by τ being referred to as joint torques
which are the torques that are measurable in a robot’s joints. The analytical model parameters θA
can be divided into kinematic parameters (e.g., the length between adjacent joints), and inertia pa-
rameters (e.g., CoG positions, masses, and inertias). The a priori estimated model parameters θA
often deviate from the real physical values of the system and need to be further identified using data.
For kinematic trees, such as most robot arms, the FD fA(x; θA) are straightforwardly obtained using
the articulated body algorithm. Alternatively, inverse dynamics (ID) seek a mapping from {q, q̇, q̈}
to u. However, unlike ID, FD allow the direct simulation of a system’s motion. In turn, one could
use an accurate structured FD model to train an RL policy in simulation. Moreover, the largest noise
usually lies on acceleration estimates denoting the output of FD models. In the case of GPs it is
simpler to model noise on the outputs than inputs [16].

In the absence of end-effector forces, the coordinates q uniquely define every admissible state of
the robot arm such that the robot’s acceleration is given as q̈ = M−1Q. However, the presence of
QI enforces that the end-effector’s motion during contact respects the holonomic surface constraints
c(q) = 0, with c(q) : Rnq → Rm, effectively reducing the set of admissible states the robot arm
may acquire. Instead of working directly with c(q) = 0, one can compute its second time-derivative
to obtain a constraint equation that is linear in q̈, writing

Aq̈ = b, (3)

with A(q, q̇; θA) : R2nq → Rm×nq , b(q, q̇; θA) : R2nq → Rm, and m < nq . As detailed in [17], the
part of all forces doing virtual work, Q′ ∈ Q, and the implicit constraint forces QI doing no virtual
work, must lie in Qz ∈ Q′ ∈ N(A) as well as QI ∈ R(AT), with the null space of A ∈ Rm×nq

being defined as N(A) = {q̈ ∈ Rnq : Aq̈ = 0} and its range space as R(A) = {b ∈ Rm : ∃q̈ ∈
Rnq such that b = Aq̈} [18]. The fact that QI ∈ R(AT) motivates its parametrization in terms of
Lagrange multipliers λ, writing QI = ATλ. As detailed in [19] one obtains an explicit formula for
the Lagrange multipliers as λ = (AM−1AT)+

(
b−AM−1Q

)
, where the A+ denotes the Moore-

Penrose (MP) pseudo inverse of A. Subsequently, the system’s EOM are obtained as

q̈ = M−1Qb +HQ̄, (4)

with H = M−1 −M−1AT(AM−1AT)+AM−1, Q̄ = Q+Qz , and Qb = AT(AM−1AT)+b. Fur-
ther details on implicitly constrained dynamics are given in Section 1 of the supplementary material.

1.3 Related Work

The identification of the errors in a robot’s analytical EOM often forms a metaphorical Gordian
knot consisting of errors that arise from the interplay of wrong analytical parameters (e.g., inertia
parameters), wrong analytical functions (e.g., friction forces), and in the worst case the analytical
model class itself being an inaccurate depiction of the real dynamics (e.g., describing flexible bodies
with rigid-body dynamics). In what follows, we discuss recent works that combine data-driven
models with rigid-body dynamics.
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Parameter estimation of rigid-body dynamics models Pioneering works on robot dynamics
identification focused on the estimation of analytical parameters. For example, the well-known
approach of Atkeson et al. [11] uses the linearity of a rigid robot arm’s ID with respect to its param-
eters to estimate these via linear regression. With the increased popularity of libraries for automatic
differentiation, recent works [12–15] use gradient-based optimization to estimate the physical pa-
rameters inside the analytical model from data. Such approaches work well if the robot arm is
rigid and the forces acting on it are sufficiently known. However, the parameter estimation of an
insufficient analytical representation of a robot’s dynamics leads to physically inconsistent parame-
ter estimates as well as unsatisfactory model accuracy. While we assume that the analytical model
differs from the real dynamics, we also implement a differentiable analytical model in PyTorch such
that we can estimate analytical parameters alongside the parameters of a data-driven model.

Building rigid-body dynamics into neural networks As an alternative approach to analytical
modeling, [20–23] model dynamics via the Euler-Lagrange equations in which a NN approximates
the system’s Lagrangian or the entries of the inertia matrix M . In turn, such a Lagrangian NN
increases the flexibility of the functional approximation of mass-related dynamic terms {M , QG,
QC} compared to analytical models while still respecting energy conservation. These works often
assume Qu=̂τ and thereby potentially neglect the joint friction QD. If forces are the major sources
of analytical errors and mass related quantities are not, then Lagrangian NNs add flexibility through
the NN in the functional representation of a robot’s dynamics where it might not be required. So far
this hypothesis has not been refuted, as the works on Lagrangian NNs test their algorithms solely on
pendulums or low-dimensional robot arms without end-effector contacts.

A recent branch in structured modeling combines analytical models of mass-related quantities and
presumably known forces with data-driven modeling. Lutter et al. [24] augments an analytical FD
model with a NN approximating τ . The parameters of the analytical model and NN are estimated
jointly via automatic differentiation. Recently, [10] and subsequently [25] combined an analytical
simulation with a pre-trained NN – predicting measured joint torques τ . Notably, QI and Qz are
modeled analytically as detailed in [9] while their physical parameters are varied to robustify the
trained control policy towards parameter uncertainties. Significantly, NN control policies that were
trained on such structured models achieved so far unseen robustness of a quadruped’s locomotion
policy. These seminal works indicate that the gap between modeled and real dynamics (aka sim2real
gap) can be closed by consciously combining analytical mechanics with data-driven modeling.

Building rigid-body dynamics into Gaussian Processes On real robotic system’s, noise and
uncertainty are often significantly impacting the robot’s dynamics. For example, a friction force
denotes a macroscopic abstraction of microscopic tribologic phenomena which aggravates deter-
ministic modeling. In addition, depending on the robot’s sensors, the changes in the joint torques
due to elasticities and backlash are often not observed accurately and subsequently also introduce
uncertainty into the dynamics. As shown in [6, 26], the synthesis of a robot’s control policy can
significantly benefit from the availability of an uncertainty measure for the planned motion. Popular
models for the identification of uncertain and noisy dynamics are either building on Bayesian linear
regression as e.g., [27], or often resort to GPs [8, 28–32]. GPs allow for the incorporation of var-
ious model assumptions through the covariance function (kernel) and are often more data-efficient
compared to NNs. Yet, vanilla GP regression requires the computation of the inverse covariance
matrix which demands a computational complexity of O((DN)3) and a memory requirement of
O((DN)2) where D denotes the number of the GP’s correlated outputs. In addition, the inversion
of the covariance matrix is prone to numerical problems while the computational efficient implemen-
tation of multi-output GPs forms a considerable obstacle. Despite these challenges, several models
have been proposed that combine GP regression with analytical dynamics.

Nguyen-Tuong and Peters [33] used [11] as a linear parametric mean of a GP model (cf. [16, Chap-
ter 2.7]). If Assumption 2 applies onto the robot arm, the GP in [33] effectively approximates the
joint torques τ (in the absence of end-effector forces). As outlined in Section 2, we also approximate
unknown forces through a GP. Albeit, as a robot arm’s FD are rarely linear with respect to analyti-
cal parameters, structured GP regression is more challenging for FD compared to ID. Conceptually
being similar to [33], Saveriano et al. [34] approximate the residuals of analytical transition dynam-
ics, being the mapping from {qk, q̇k, uk} to {qk+1, q̇k+1}, via one-dimensional GPs. Our approach
does not directly approximate dynamics residuals with GPs, but instead approximates the residual
function by placing a GP prior inside the analytical model.
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Cheng et al. [35] placed a GP on the Lagrangian inside a robot arm’s Euler-Lagrangian ID. Yet,
for GPs it is not clear how to formulate such a model for FD and to which extent the end-effector
forces can be incorporated. A Lagrangian GP leverages that the derivative of a GP if it exists, is
itself a GP [36]. Jidling et al. [37] emphasized that more generally GPs are closed under linear
functionals. In turn, the authors proposed a linearly transformed GP such that its predictions fulfil
a linear operator equation e.g., the mechanical stress field inside a linear elastic material. Our work
also transforms a GP by a linear operator, that is, the matrix-valued function H and in turn enforce
that predictions respect the linear-affine equation (3). Methodically, our work builds on Geist and
Trimpe [38]. In addition to [38], we suggest placing a GP on the unknown forces of the system
rather than its unconstrained acceleration. As we detail in Section 2.1, this alternative approach
potentially improves the model’s sample-efficiency as well as eases the inclusion of prior knowledge
on force properties into the GP. In addition, [38] only tested their model on low-dimensional systems
such as a point-mass sliding over a surface. In contrast, we propose a framework that allows for
learning high-dimensional dynamics. Our framework is significantly faster compared to [38] by
resorting to automatic differentiation with GPU accelerated computation of gradients, and shows
how to transform regression models via recursively computed rigid-body dynamics.

2 Semi-parametric Regression of Dynamics with Gaussian Processes

In this section, we extend the findings of Geist and Trimpe [38] and use knowledge on the parametric
functions {M,A, b} as stated in (2) and (3) to linearly transform a GP. Here, we leverage that
analytical mechanics defines the acceleration of a system in terms of affine transformations of force
functions which we approximate by a GP. An introduction to multi-output GP regression is provided
in Section 2 of the supplementary material.

2.1 Combining Data-driven with Analytical Modeling

In this section, we propose a framework that combines Gaussian process regression with parametric
analytical modeling. To develop a thorough understanding of the underlying assumptions we first
discuss the main building blocks of the analytical EOM (4) as also shown schematically in Figure 1.
As the dynamics (4) are expressed in generalized coordinates, the entries of M , QG, QC , A, and
b depend on kinematic functions. The kinematic functions themselves depend on the system’s state
{q, q̇} and kinematic parameters such as the length of the bodies. In practice, precise estimates for
the kinematic parameters are obtained from computer-aided design (CAD) or kinematic parameter
estimation techniques. In Cartesian space, an accurate model for (3) that is {A, b} can be straightfor-
wardly obtained by e.g., using a camera system. In turn, (3) is obtained in generalized coordinates
using kinematic coordinate transformations. Besides kinematic expressions, the inertia matrix M
contains inertia parameters, namely the CoG positions, inertias, and masses. We assume that a prior
for the inertia parameters can be obtained using also CAD. Yet, for FD it is critical that we mitigate
errors in the inertia parameters being part of θA as all forces in (4) are multiplied by M−1(x; θA).

As pointed out in Section 1, it is often difficult to analytically describe force functions that arise from
elasticities and friction phenomena. Therefore, we divide the analytical forces Q̄ into a known part
QK(x; θA) and an unknown partQU(x). The term known is defined in the following as the existence
of an optimal θA, θ?A, such that the error between a physical function and its analytical description
in terms of θA approaches zero. Knowledge on θ?A can be unavailable a-priori such that its entries
need to be estimated from data. Subsequently, we model the generalized forces as a GP, writing

ˆ̄Q ∼ GP(QK(x; θA), kQU(x, x′; θM)), (5)

in which kQU denotes an appropriately chosen kernel function and θM its hyper-parameters. By
inserting (5) into (4), we obtain a structured model for the system’s FD as

ˆ̈q ∼ GP(M−1Qb +HQK, HkQUH
T). (6)

The above model is itself a GP as q̈ follows from an affine transformation of Q̄. To make predictions
with (6), the GP conditional posterior formula is used. Note that in (6), we placed the GP prior on
the unknown forces instead on placing it on the unconstrained acceleration M−1QU as proposed by
[38]. Since M is known and its entries are usually nonlinear functions, learning a function after it
has been transformed by M is likely to require a more expressive data-driven model to achieve a
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comparable prediction accuracy [17]. In addition, as elaborated in Section 3 of the supplementary
material, a GP force prior can be designed as a sum of GPs which each model a specific force. In
turn, our framework (6) enables a straightforward inclusion of prior knowledge on the properties of
forces into the GP. Moreover, a trained GP force prior (5) can provide predictions on other analytical
processes such as the generalized normal forces QI .

2.2 Type-II MLE of Structured Gaussian Processes

While a merit of the model presented in (6) forms its simplicity, the optimization of both analytical
and kernel parameters poses a significant challenge. In this work, we resort to Type-II maximum
likelihood estimation (MLE). MLE forms a standard approach for estimating GP parameters. Given
p(Y |X; θ) ∼ N (µq̈

X ,Σ
q̈
X,X + ΣY ) resulting from (6), type-II MLE seeks a θ? = {θ?A, θ?M} mini-

mizing the negative log likelihood, writing

θ? = arg min
θ

1

2

[(
Y − µq̈

X

)T (
Σq̈

X,X + ΣY

)−1 (
Y − µq̈

X

)
+ log

∣∣∣Σq̈
X,X + ΣY

∣∣∣] +
N

2
log 2π.

(7)
The left term inside the bracket in (7) assigns a cost to the data-fit while the log-determinant term
penalises the function’s complexity [16, p. 113]. As (6) denotes a multi-output GP such that D > 1,
the computational cost increases significantly compared to standard GP regression. Moreover, as
pointed out in [16], the objective function in (7) is highly nonlinear such that if local optimization
techniques are considered we need to restart the optimization several times with random initial
parameter values. To solve (7) using restarts for high-dimensional dynamics in reasonable amounts
of time, we require a fast computation of analytical parameter gradients. However, such an approach
to (7) requires the computation of partial gradients of the analytical parametric function µq̈

X(x; θA) as
well as Σq̈

X,X being a transformation of kq̈(x, x′; θM) by H(x, θA). Fortunately, recent ML libraries
such as JAX [39] and PyTorch [40] allow the optimization of functions via automatic differentiation
(building on AutoGrad [41]) in combination with libraries for GPU accelerated computation such
as XLA. In turn, JAX and PyTorch provide a fast computation of analytical function gradients as
long as the function is expressed in terms of an underlying numerical linear algebra library such as
Numpy or PyTorch’s torch functions. Therefore, we implemented a multi-body library using native
PyTorch functions resulting in {A, b,M,QK} as well as {µq̈

X , H}. Then, while using the mean
and kernel function from GPyTorch [42], we designed a structured GP inference framework from
scratch using PyTorch to obtain and optimize the likelihood in (7). The optimization is done using
automatic differentiation [43] and GPU acceleration resulting in a significant speed-up compared to
numerical gradient approximation techniques.

3 Simulation Results

In this section, the proposed structured GP (6) is analyzed and compared to different baseline mod-
els. The chosen dynamical system is a KUKA arm with 7 rotational joints simulated in PyBullet
[44] as depicted in Figure 2a. A detailed description of the simulation setup is given in Section 5
of the supplementary material. Data is collected by controlling the robot’s end-effector along lin-
ear trajectories while pressing onto the surface. This task can be seen as an abstraction to a robot
arm performing welding, cutting, or marking maneuvers on surfaces. The contact between the end-
effector and the surface creates ideal-constraint forces, which avoids the end-effector penetrating the
surface, as well as friction forces which are challenging to be modeled beforehand. While running
the simulation, we measured the joint angles q and the control inputs u. The joint velocity q̇ and ac-
celeration q̈ are obtained by using a low-pass filter and appealing to numerical differentiation. After
data collection, we applied Farthest Point Sampling [45] to remove adjacent data points as well as
reduce the data set’s size. The post-processed data is split into a training and a test data set.

Figure 2b and 3 : Prediction accuracy and data efficiency As a baseline for comparison, we
trained the parameters of (4) with Qz = 0 as well as a feed-forward NN on ten thousand data
points. The trained analytical model and the NN achieved on the test data set a mean absolute
error (MAE) of 0.57 and 0.13, respectively. For all GP models, we choose a squared exponential
(SE) kernel. The 154 hyper-parameters of each GP were estimated according to (7) using Adam
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Figure 2: a) Robot arm in PyBullet (Top) and end-effector trajectory during collection of training
data (Bottom). b) The hyper-parameters of GP FD models are trained on an increasing number of
training points, then the mean absolute acceleration prediction error as well as acceleration-level
constraint error on the test data set are compared. c) Parameter optimization results of an analytical
model (black) and the proposed structured GP model (blue).
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Figure 3: Acceleration predictions q̈4,pred (Top) and corresponding prediction error (Bottom) of
different forward dynamics models. The black lines depicts the system’s noisy acceleration over
time, the purple line the predicted mean acceleration and light purple – if available – the ±2 std.
deviation confidence region. Note that the y-axis scaling of Figure 3a deviates from the other figures.

[46] without parameter constraints. Figure 2b illustrates the GPs’ test-data MAE of each joint-
dimension over an increasing size of the training data set. In this figure, the term “S-GP” refers to
the model in (6) withQK = 0 while the term “S-GP + analytical mean” assumes an analytical model
QK = QG + QC + Qu as the GP’s prior mean function. For both S-GP models, we assume that
accurate analytical parameters are given, that is θA = θ?A. We assume QG + QC as known as these
analytical functions are being derived solely in terms of known kinematics and inertia functions,
as well as the gravitational acceleration constant [17]. The structured GP models are compared to
standard GP regression in which each acceleration function is modelled by a single independent
SE GP. As shown in Figure 2b (Top), analytical prior knowledge improves the data efficiency of
the GP. The proposed S-GP models compares also favorably to placing a GP prior on the system’s
unconstrained acceleration as initially proposed by [38] being denoted as “S-GP [38]”. Moreover,
the incorporation of implicit constraint knowledge in (6) significantly reduces the constraint error
Aˆ̈q − b as illustrated in Figure 2b (Bottom). Figure 3 illustrates different acceleration predictions
made with these models using 1000 training points. The analytical baseline model does not contain
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Figure 4: Long-term trajectory prediction and corresponding error functions obtained by numeri-
cal integration with integration time step of (1/240)s using the different GP models’ acceleration
predictions of the fourth output dimension. The true trajectory is depicted by the black dotted line.

a function describing the surface friction which in turn causes the model to yield large prediction
errors in the robot arm’s joints that are close to the end-effector.

Figure 2c: Joint estimation of inertia and kernel parameters Another important aspect of the
proposed structured modeling framework forms the simultaneous estimation of θM and θA. To illus-
trate how θM and θA are estimated jointly, we train the same S-GP with QK = 0 as in the previous
simulation on thousand data points. Yet, instead of assuming that we obtained a good prior for θA,
we now estimate the end-effector’s inertia parameters alongside the GP’s 154 hyper-parameters. For
example, one could imagine that a tool such as a brush or milling machine is being fixed to the end-
effector changing its inertia parameters. Figure 2c illustrates the optimization results. Compared to
training the parameters of an analytical model without surface friction, the parameter estimates of
the proposed S-GP converge faster while the prediction’s MAE for all joint-dimensions improves.

Figure 4: Long-term trajectory prediction Figure 4 illustrates trajectory prediction for one of
the joint dimensions which is computed by resorting to symplectic Euler numerical integration using
the different GP models. The different GP models are the same as in Figure 2b using 1000 training
points. Due to measurement noise in the initial state as well as numerical integration and prediction
errors the GPs diverge from the true trajectory over time. As a consequence of Assumption 1 and 2,
one can guarantee that trajectory predictions computed with (6) converge onto the surface equation
c(q) = 0 by adjusting b inside the S-GP model through Baumgarte stabilization [47] as detailed in
Section 4 of the supplementary material. In turn, for the GP model’s using Baumgarte stabilization
the error in the position-level surface constraints converges to the zero.

4 Conclusion

In this paper, we introduce a modeling framework that combines differentiable Lagrangian dynam-
ics with data-driven modeling. This framework incorporates structural prior knowledge in form of
kinematic, inertia and implicit constraint equations to improve the data efficiency of a GP model.
Further, we illustrate that the hyper-parameters of the GP and parameters of an analytical model can
be estimated jointly using automatic differentiation. The framework requires that we have access to
an accurate kinematics description of the system as well as that its bodies are sufficiently rigid. No-
tably, we illustrate that the dynamics of high-dimensional robot arms whose end-effector is subject
to forces can be estimated using multi-output GPs.

Particularly in the combination with GP regression, the proposed framework opens up exciting re-
search directions in the field of robotics modeling. So far, by letting the data-driven model approx-
imate forces inside an analytical model, the data efficiency of the model is increased as we do not
need to learn inertia and constraint functions from scratch. Yet, as we emphasized in the intro-
duction, structured modeling can also improve a model’s data efficiency by decreasing the target
function’s dimensionality. In particular, one can use the robot’s differential kinematics to approxi-
mate with a GP the end-effector forces {Fz, FI} in the Cartesian space.

For the sake of illustration, we chose a SE kernel. In practice, such a kernel might not suffice as it
assumes that the process is stationary and smooth. Both of these assumptions will likely not be met
in practice. Instead, one can parameterize kernels using NNs [48, 49]. Further, rather than assigning
all states as inputs to the kernel force prior, one can use additional prior model knowledge and use
only physically relevant states as kernel inputs.
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[3] J. Nubert, J. Köhler, V. Berenz, F. Allgöwer, and S. Trimpe. Safe and fast tracking on a robot
manipulator: Robust mpc and neural network control. IEEE Robotics and Automation Letters,
5(2):3050–3057, 2020.

[4] S. Kleff, A. Meduri, R. Budhiraja, N. Mansard, and L. Righetti. High-Frequency Nonlin-
ear Model Predictive Control of a Manipulator. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), Xi’an, China, May 2021.

[5] R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning, volume 135. MIT
press Cambridge, 1998.

[6] M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to pol-
icy search. In Proceedings of the 28th International Conference on machine learning (ICML-
11), pages 465–472, 2011.

[7] P. Parmas, C. E. Rasmussen, J. Peters, and K. Doya. PIPPS: Flexible model-based policy
search robust to the curse of chaos. In J. Dy and A. Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learn-
ing Research, pages 4065–4074. PMLR, 10–15 Jul 2018.

[8] A. Doerr, C. Daniel, D. Nguyen-Tuong, A. Marco, S. Schaal, M. Toussaint, and S. Trimpe.
Optimizing long-term predictions for model-based policy search. In Conference on Robot
Learning, pages 227–238, 2017.

[9] J. Hwangbo, J. Lee, and M. Hutter. Per-contact iteration method for solving contact dynamics.
IEEE Robotics and Automation Letters, 3(2):895–902, 2018.

[10] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learn-
ing agile and dynamic motor skills for legged robots. Science Robotics, 4(26), 2019.

[11] C. G. Atkeson, C. H. An, and J. M. Hollerbach. Estimation of inertial parameters of manipu-
lator loads and links. The International Journal of Robotics Research, 5(3):101–119, 1986.

[12] F. D. Ledezma and S. Haddadin. First-order-principles-based constructive network topologies:
An application to robot inverse dynamics. In 2017 IEEE-RAS 17th International Conference
on Humanoid Robotics (Humanoids), pages 438–445. IEEE, 2017.

[13] F. D. Ledezma and S. Haddadin. Fop networks for learning humanoid body schema and dy-
namics. In 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids),
pages 1–9. IEEE, 2018.

[14] G. Sutanto, A. Wang, Y. Lin, M. Mukadam, G. Sukhatme, A. Rai, and F. Meier. Encod-
ing physical constraints in differentiable newton-euler algorithm. In Proceedings of the 2nd
Conference on Learning for Dynamics and Control, volume 120 of Proceedings of Machine
Learning Research, pages 804–813, The Cloud, 10–11 Jun 2020. PMLR.

[15] M. Lutter, J. Silberbauer, J. Watson, and J. Peters. Differentiable physics models for real-world
offline model-based reinforcement learning. arXiv preprint arXiv:2011.01734, 2020.

9



[16] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learning, volume 2.
MIT press Cambridge, MA, 2006.

[17] A. R. Geist and S. Trimpe. Structured learning of rigid-body dynamics: A survey and unified
view from a robotics perspective. GAMM Mitteilungen, 44(2):34, 2021.

[18] R. W. Beard. Linear operator equations with applications in control and signal processing.
IEEE Control Systems Magazine, 22(2):69–79, 2002.

[19] F. E. Udwadia and R. E. Kalaba. On the foundations of analytical dynamics. International
Journal of non-linear mechanics, 37(6):1079–1090, 2002.

[20] M. Lutter, C. Ritter, and J. Peters. Deep lagrangian networks: Using physics as model prior
for deep learning. May 2019.

[21] M. Lutter, K. Listmann, and J. Peters. Deep lagrangian networks for end-to-end learning of
energy-based control for under-actuated systems. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 7718–7725. IEEE, 2019.

[22] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho. Lagrangian neural
networks. In ICLR 2020 Workshop on Integration of Deep Neural Models and Differential
Equations, 2020.

[23] J. K. Gupta, K. Menda, Z. Manchester, and M. Kochenderfer. Structured mechanical models
for robot learning and control. In Proceedings of the 2nd Conference on Learning for Dynamics
and Control, volume 120 of Proceedings of Machine Learning Research, pages 328–337, The
Cloud, 10–11 Jun 2020. PMLR.

[24] M. Lutter, J. Silberbauer, J. Watson, and J. Peters. A differentiable newton euler algorithm for
multi-body model learning. arXiv preprint arXiv:2010.09802, 2020.

[25] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-
tion over challenging terrain. Science robotics, 5(47), 2020.

[26] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a hand-
ful of trials using probabilistic dynamics models. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates, Inc., 2018.

[27] J. Ting, M. Mistry, J. Nakanishi, J. Peters, and S. Schaal. A bayesian approach to nonlinear
parameter identification for rigid body dynamics. In Robotics: Science and Systems (RSS
2006). cambridge, ma: mit press, 2006.

[28] J. Kocijan, A. Girard, B. Banko, and R. Murray-Smith. Dynamic systems identification with
Gaussian processes. Mathematical and Computer Modelling of Dynamical Systems, 11(4):
411–424, 2005.

[29] R. Frigola, F. Lindsten, T. B. Schön, and C. E. Rasmussen. Bayesian inference and learning in
Gaussian process state-space models with particle MCMC. In Advances in Neural Information
Processing Systems, pages 3156–3164, 2013.

[30] C. L. C. Mattos, A. Damianou, G. A. Barreto, and N. D. Lawrence. Latent autoregressive
Gaussian processes models for robust system identification. IFAC-PapersOnLine, 49(7):1121–
1126, 2016.

[31] S. Eleftheriadis, T. Nicholson, M. Deisenroth, and J. Hensman. Identification of Gaussian
process state space models. In Advances in neural information processing systems, pages
5309–5319, 2017.

[32] A. Doerr, C. Daniel, M. Schiegg, N.-T. Duy, S. Schaal, M. Toussaint, and S. Trimpe. Prob-
abilistic recurrent state-space models. volume 80 of Proceedings of Machine Learning Re-
search, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[33] D. Nguyen-Tuong and J. Peters. Using model knowledge for learning inverse dynamics. In
2010 IEEE International Conference on Robotics and Automation, pages 2677–2682, 2010.

10



[34] M. Saveriano, Y. Yin, P. Falco, and D. Lee. Data-efficient control policy search using residual
dynamics learning. In 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4709–4715, 2017. doi:10.1109/IROS.2017.8206343.

[35] C.-A. Cheng, H.-P. Huang, H.-K. Hsu, W.-Z. Lai, and C.-C. Cheng. Learning the inverse
dynamics of robotic manipulators in structured reproducing kernel hilbert space. IEEE trans-
actions on cybernetics, 46(7):1691–1703, 2015.

[36] E. Solak, R. Murray-Smith, W. E. Leithead, D. J. Leith, and C. E. Rasmussen. Derivative
observations in gaussian process models of dynamic systems. 2003.

[37] C. Jidling, N. Wahlström, A. Wills, and T. B. Schön. Linearly constrained gaussian processes.
In Advances in Neural Information Processing Systems (NeurIPS), pages 1215–1224, 2017.

[38] A. Geist and S. Trimpe. Learning constrained dynamics with gauss’ principle adhering gaus-
sian processes. In Proceedings of the 2nd Conference on Learning for Dynamics and Control,
volume 120 of Proceedings of Machine Learning Research, pages 225–234. PMLR, 10–11 Jun
2020.

[39] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transfor-
mations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
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