
Figure 8: Probability functions of the diverse distribution types considered here. Left to right:
Gaussian, Kumaraswamy, Categorical, and discrete Gaussian. We visualize a 5-bin Categorical and
a 7-bin discrete Gaussian with their pseudo-probabilities. Our HMPs can combine diverse low-level
controllers with different distribution types to yield compositional synergies as in Sections 5.1& 5.2.

Figure 9: Our approach yields robust performance when tasked to solve continuous control with dis-
crete actions. For instance, the coarse Categorical (C, nbin = 2) performs competitively to the wide
Gaussian (N, σini = 3.0) on the torque controlled DeepMind Control Suite tasks, while improving
on the narrow Gaussian (N, σini = 0.3). This trend is reversed for generating stable PD-targets on
ANYmal, underlining the promise of deferring task-specific controller choice to the agent.

A Distributions

The probability functions of each distribution type considered here are provided in Figure 8. The
discrete distributions leverage the pseudo-densities as defined in (9) for improved backpropagation.
Applications of RL to continuous control typically employ continuous distributions and the Gaus-
sian distribution is a standard choice. Additionally, we consider the Kumaraswamy distribution
as an alternative to the Beta distribution, as it is also capable of exhibiting skewness while being
significantly easier to reparameterize than the Beta distribution [58].

We further investigate synergies with discrete distributions and consider the Categorical distribution
as well as a discrete Gaussian. The support of both discrete distributions is a regular 1d grid with
a predefined number of elements n. For the categorical, we learn the probability weights wi for
each element in its support individually. The discrete Gaussian allows for enforcing unimodality
in a discrete setting. Thus, for the discrete Gaussian, we define the probability wi for each of its
support’s elements xi by

wi :=
f(xi)∑n
j=1 f(xj)

,

where f(·) is the density of a Gaussian distributionN (µ, σ2) with the mean µ and standard deviation
σ being predicted by the neural network.

B Discrete Actions in Continuous Control

HMPs work well with distribution heads that differ from the standard Gaussian assumption. Inter-
estingly, we find that our approach performs robustly even when forced to solve continuous control
tasks with discrete policy distributions. Figure 9 compares a coarse Categorical (nbin = 2) to two
Gaussian policies (σini ∈ {0.3, 3.0}). We observe that the Categorical yields peak performance on
the Walker and Quadruped tasks, while achieving high performance on the Humanoid task signif-
icantly faster than the Gaussian distributions. As expected, coarse discrete control is ill-suited for
generating position targets on ANYmal. This provides another perspective on the importance of
hyperparameter choices, diversity, and enabling the robot to self-select suitable controllers.

13



Disturbance Control Freq. Obs. Stuck Obs. Drop Obs. Delay Obs. Noise
Parameters Scale Prob. ; Steps Prob. ; Steps Steps Std. Dev.
Value ×0.25,×0.5 (0.05; 5), (0.01; 1) (0.05; 5), (0.01; 1) 6, 3 0.3, 0.1

Table 1: Disturbances used to evaluate transfer robustness, provided as Quadruped, Humanoid.

C Disturbance Parameters

The experiments on transfer robustness of a converged policy use the disturbance parameters in
Table 1. The control frequency disturbance down-samples the control by the value indicated for
the Quadruped and Humanoid domains. For the observation disturbances, we selected the medium
and easy disturbances from the Real-World RL Challenge framework [59] for the Quadruped and
Humanoid, respectively. The Stuck sensor disturbance does not update a sensor reading for several
timesteps, while the Dropped sensor disturbance zeros a sensor reading for several timesteps. Both
disturbances are probabilistic, taking effect with a fixed probability and lasting for a fixed number
of timesteps. The observation delay shifts all observation by a fixed number of timesteps, while the
observation noise applies additive white Gaussian noise with the specified standard deviation.

D Policy Evaluation via Retrace

In order to stabilize off-policy learning of the state-action value functionQφ we leverage the Retrace
algorithm [51]. The optimization objective is therefore

min
φ
L(φ) = Eτ∼D

[(
Qrett −Qφ(st, at)

)2]
. (10)

The Retrace targets are computed as

Qrett = Qφ′(st, at) +

∞∑
j=t

γj−t

(
j∏

k=t+1

ck

)
[r(sj , aj)+

Eπ(a|sj+1)[Qφ′(sj+1, a)]−Qφ′(sj , aj)
]
,

(11)

where Qφ′ refers to a target network for the state action value function, ck = min
(

1, π(ak|sk)b(ak|sk)

)
to the trace coefficients, and b(a|s) denotes the probabilities under the behavior policy. The infinite
sequence is truncated after 10 steps and we bootstrap from the target network. To increase efficiency,
we consider two-step transitions by squashing consecutive timesteps before adding them to memory.

E Implementation Details

Our implementation builds on MPO as provided by the Acme library [60] and extends it to the
hierarchical setting, enables application with diverse sub-policy heads (distribution type, parameter-
ization) and implements Retrace [51] for data-efficient off-policy learning. Throughout, we follow
the MPO parameters described in [47] and introduce the decoupled KL bounds for non-Gaussian
distributions as εK = [10−1, 10−1], εC = [10−1], εD = [10−1, 10−1]. Furthermore, the high-level
selector shares its torso with the low-level controllers and employs a Categorical head with logits
predicted from a single fully-connected layer of width 100. Our experimental results are reported
with mean and one standard deviation over 8 random seeds for the NKCD HMP comparison to
RHPO and 4 random seeds for the remaining experiments. Experiments were run on 4 CPU cores
in combination with a single GPU (Nvidia V100).

F Robustness of the High-level Controller

We evaluate robustness of the high-level module to loss of state information and adversarial compo-
nents. First, we remove conditioning of the high-level policy on the state and evaluate HMP perfor-
mance when forced to select a single component for the entirety of an episode. Then, we consider
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Figure 10: Robustness of HMPs. Left - loss of state-information for a mixture of diverse distribu-
tions. Right - pairing a standard Gaussian (σini = 1.0) with 9 adversarial Gaussians (σini = 10−3)
with learnable or fixed means. The agent still performs well when forced to select a single com-
ponent for the entirety of an episode, and is able to phase out the poorly-performing adversarial
distributions.

adversarial low-level components by pairing an MPO-type Gaussian head with 9 extremely narrow
Gaussian heads that either have variable or fixed means. The narrow Gaussians limit exploration and
a constant mean disables active component placement. Figure 10 indicates that the high-level con-
troller is able to adapt its component selection accordingly to yield robust converged performance.
This underlines HMP’s ability to efficiently select and focus on low-level controllers that are well-
suited for a given task, while guarding against potential failure modes of individual components.

G Realworld disturbances

Figure 11: HMP under real-world disturbances.
Our diverse mixtures can improve robustness over
homogeneous baselines and aid in generalization.

We also evaluate robustness to disturbances in
the Real-World RL Challenge framework [59].
We consider down-sampling of the controls
and sensor degradation as specified in Ap-
pendix C. Figure 11 indicates that diversity can
improve robustness in these real-world inspired
domains.
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