
A Parameters and implementation

We use as single set of parameters throughout all experimental evaluations. The general model
architecture follows Hafner et al. [7], where the variational autoencoder from Ha and Schmidhuber
[4] is combined with the RSSM from Hafner et al. [29]. We extend their default parameters by the
ensemble size M = 5, the initial UCB trade-off parameter βini = 0.0, and the per-episode linear
UCB growth rate δ = 0.001. The learning rates for the model, the value function and the policy are
6 × 10−4, 8 × 10−5, 2 × 10−4, respectively, and updates are computed with the Adam optimizer
[55]. Throughout all experiments, the online phase consists of 1000 environment interactions with an
action repeat of 2, while the offline phase consists of 200 learning updates.

An overview of the range of hyper-parameter values that were investigated is provided in Table 2.
Not all possible pairings were considered and suitable combinations were determined by inspection,
while the best pairing was selected empirically. Our implementation builds on Dreamer (https:
//github.com/danijar/dreamer) and the remaining parameters are set to their default values.
Experiments were conducted on 4 CPU cores in combination with 1 GPU (NVIDIA V100). We will
make the underlying codebase publicly available.

Param. Values

LRπ
[
8× 10−5, 2× 10−4

]
Steps [100, 200]

βini [−0.1, 0.0, 0.1, 0.3, 0.5]

δ
[
+{−10−3, 0.0, 10−3, 2 · 10−3},×{1.01, 1.015}

]
Table 2: Hyper-parameters considered during training.

B Network Architectures

The base network architectures employed throughout this paper are provided in Table 3. Each particle
is assigned a distinct instance of its associated models. In the following, we briefly comment on how
the two parts of the transition model interact and provide further insights into the remaining models.

Transition model The transition model follows the recurrent state space model (RSSM) architec-
ture presented in Hafner et al. [7, 29]. The RSSM propagates model states consisting of a deterministic
and a stochastic component, respectively denoted by st,d and st,s at time t. The stochastic component
st,s is represented as a diagonal Gaussian distribution. The transition model then leverages the imag-
ine 1-step method to predict priors for the associated mean and standard deviation, (µpriort,s , σpriort,s ),
based on the previous model state and applied action. In the presence of observations, the observe
1-step method can be leveraged to convert prior estimates into posterior estimates, (µpostt,s , σpostt,s ). The
transition model may then propagate posteriors based on a context sequence using both the imagine
1-step and observe 1-step methods, from which interactions can be imagined by propagating prior
estimates based on the imagine 1-step method. Each particle uses a transition model that follows the
presented network architecture, but possesses distinct parameters.

Encoder model The encoder parameterization follows the architectural choices presented in Ha
and Schmidhuber [4]. The encoder generates embeddings based on 64×64 RGB image observations.

Observation model The observation model follows the decoder architecture presented in Ha and
Schmidhuber [4]. The image observations are reconstructed from the associated model states sτ .

Reward and value model Rewards and values are both predicted as scalar values from fully-
connected networks that operate on the associated model states sτ , similar to Hafner et al. [7]. Each
particle uses a pairing of a reward model and a value model with distinct sets of parameters.

Action model The action model follows Hafner et al. [7], where the mean µa is rescaled and passed
through a tanh to allow action saturation. It is combined with a softplus standard deviation based on
σa and the resulting Normal distribution is squashed via a tanh (see Haarnoja et al. [18]).
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Layer Type Input (dimensions) Output (dimensions) Additional Parameters

Transition model (imagine 1-step)

Dense sτ−1,s (30), aτ−1 (na) fc1t,i (200) a=ELU

GRU fc1t,i (200), sτ−1,d (200) rsτ (200), sτ,d (200) a=tanh

Dense rsτ (200) fc2t,i (200) a=ELU

Dense fc2t,i (200) µpriorτ,s (30), σpriorτ,s (30) a=None

Transition model (observe 1-step)

Dense sτ,d (200), zτ (1024) fc1t,o (200) a=ELU

Dense fc1t,o (200) µpostτ,s (30), σpostτ,s (30) a=None

Encoder model

Conv2D obs (64, 64, 3) cv1 (31, 31, 32) a=ReLU, s=2, k=(4,4)

Conv2D cv1 (31, 31, 32) cv2 (14, 14, 64) a=ReLU, s=2, k=(4,4)

Conv2D cv2 (14, 14, 64) cv3 (6, 6, 128) a=ReLU, s=2, k=(4,4)

Conv2D cv3 (6, 6, 128) cv4 (2, 2, 256) a=ReLU, s=2, k=(4,4)

Reshape cv4 (2, 2, 256) zτ (1, 1, 1024)

Observation model

Dense sτ,d (200), sτ,s (30) fc1o (1, 1, 1024) a=None

Deconv2D fc1o (1, 1, 1024) dc1 (5, 5, 128) a=ReLU, s=2, k=(5,5)

Deconv2D dc1 (5, 5, 128) dc2 (13, 13, 64) a=ReLU, s=2, k=(5,5)

Deconv2D dc2 (13, 13, 64) dc3 (30, 30, 32) a=ReLU, s=2, k=(6,6)

Deconv2D dc3 (30, 30, 32) dc4 (64, 64, 3) a=ReLU, s=2, k=(6,6)

Reward model

Dense sτ,d (200), sτ,s (30) fc1r (400) a=ELU

Dense × 1 fc{1}r (400) fc{2}r (400) a=ELU

Dense fc2r (400) fc3r (1) a=ELU

Value model

Dense sτ,d (200), sτ,s (30) fc1v (400) a=ELU

Dense × 2 fc{1,2}v (400) fc{2,3}v (400) a=ELU

Dense fc3v (400) fc4v (1) a=ELU

Action model

Dense sτ,d (200), sτ,s (30) fc1a (400) a=ELU

Dense × 3 fc{1,2,3}a (400) fc{2,3,4}a (400) a=ELU

Dense fc4a (400) µa (na), σa (na) a=ELU

Table 3: General network architectures of the underlying models. We note that repeated layers have
been condensed with Dense × i referring to application of the same dense layer architecture i times.
Parameter abbreviations: a=activation, k=kernel, and s=stride. Adapted from Hafner et al. [7].

14



Context
-4       -3       -2       -1       0         1        3        5        7        9      11      13      15 

Prediction

Ground Truth

Episode 10

Episode 150

Episode 300

Ground Truth

Figure 4: Motion pattern of the Walker with low predictive uncertainty. The agent is provided with 5
contextual images and predicts forward for 15 steps (preview horizon), at different stages of training.
The regular walking pattern is well-explored and only induces little deviation in the ensemble. This
motion is desirable and the agent should focus on reducing its uncertainty over environment behavior.
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Figure 5: Motion pattern of the Walker with high predictive uncertainty. The agent is provided with 5
contextual images and predicts forward for 15 steps (preview horizon), at different stages of training.
The irregular falling pattern has not been extensively explored and high uncertainty remains in the
ensemble. This motion is undesirable and the agent should not focus on reducing its uncertainty.

C Prediction uncertainty

We provide an illustrative visualization of how the prediction uncertainty in the ensemble evolves
during model training. The ensemble is provided with context from a sequence of 5 consecutive
images and then predicts forward in an open loop fashion for 15 steps (preview horizon). The ground
truth sequence is compared to ensemble predictions after 10, 150, and 300 episodes of agent training.

Figures 4 and 5 show two different motion patterns for the Walker Walk task. The motion in Figure 4
can be described as a regular walking pattern. At the beginning of model training, the agent will have
mostly observed itself falling to the ground and, in combination with a poorly trained policy, the
ensemble predictions place the agent on the ground in a variety of configurations. After 150 episodes,
short-term uncertainty has been significantly reduced, while considerable uncertainty remains at the
end of the preview window. After 300 episodes, the ensemble predictions align with the ground
truth sequence. The agent therefore focused on reducing uncertainty over this desirable motion
pattern. This can be contrasted with the results of Figure 5, where uncertainty over an irregular
falling pattern remains even after 300 episodes. The falling motion is undesirable, and while the
ensemble predictions agree on a fall being imminent, no significant amount of effort was spent on
identifying exactly how the agent would fall. We can observe similar results on the Cheetah Run task
for a running motion pattern in Figure 6 and a falling motion pattern in Figure 7. However, the lower
complexity Cheetah dynamics seem to allow for more precise predictions than on the Walker task.
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Figure 6: Motion pattern of the Cheetah with low predictive uncertainty. The agent is provided with 5
contextual images and predicts forward for 15 steps (preview horizon), at different stages of training.
The regular running pattern is well-explored and only induces little deviation in the ensemble. This
motion is desirable and the agent should focus on reducing its uncertainty over environment behavior.
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Figure 7: Motion pattern of the Cheetah with high predictive uncertainty. The agent is provided
with 5 contextual images and predicts forward for 15 steps (preview horizon), at different stages of
training. The irregular falling pattern has not been extensively explored and uncertainty remains in
the ensemble. This motion is undesirable and the agent should not focus on reducing its uncertainty.

D Baselines

The baseline performance data for DrQ was taken from Kostrikov et al. [15], the ones for D4PG
and A3C from Tassa et al. [13], while the data for Dreamer was generated by running the official
TensorFlow 2 implementation of Hafner et al. [7]. It should be noted that both DrQ and D4PG use
84× 84 image observations, whereas LOVE and Dreamer use 64× 64 image observations. Larger
resolution provides more fine-grained information, which potentially translates to improved planning.
Furthermore, DrQ continuously refines its policy online, while the other algorithms only do so offline.

E Bugtrap extended

We provide additional occupancy maps for the bug trap environment in Figure 8. The environment
provides no reward feedback and assesses the agent’s ability to actively search for informative
feedback through intrinsic motivation. Furthermore, the environment geometry makes exploration
of the outside area difficult. In the absence of useful mean performance estimates, LOVE leverages
uncertainty-guided exploration to query interactions. This allows for escaping in 5 out of 6 trials and
achieving the largest area coverage (column 2). LVE does not leverage uncertainty estimates and only
escapes during 3 trials (column 3), while displaying a highly reduced area coverage (rows 1 and 3).
Similarly, random exploration allows the Dreamer agent to only escape in 2 instances (column 4).
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Figure 8: Occupancy maps of the bug trap environment for two scenarios and three random seeds. In
the absence of reward feedback, the uncertainty-guided exploration allows LOVE to escape during
5 out of 6 runs while achieving the highest area coverage in search of non-zero reward feedback.
LVE removes optimistic exploration and as a result only escapes during 3 runs, while significantly
reducing area coverage. A similar pattern can be observed for the randomly exploring Dreamer agent.
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Figure 9: DeepMind Control Suite. We evaluate performance over 300 episodes on 9 seeds. Solid
lines indicate mean performance and shaded areas indicate one standard deviation. LOVE per-
forms competitively and improves sample efficiency particularly under sparse reward feedback.
Temporally-extended optimism helps LOVE in actively exploring uncertain returns, providing an
advantage over LVE. Formulating intrinsic motivation in reward-space enables LOVE to identify un-
certain interactions conducive to solving the task, providing an advantage over the curiosity baseline
∆Dreamer+Curious. *D4PG, A3C: converged results at 108 environment steps as reference.

F Benchmarking on DeepMind Control Suite

Figure 9 provides results for benchmarking performance over 300 episodes. Performance is evaluated
on 9 seeds, where solid lines indicate the mean and shaded areas correspond to one standard deviation.
LOVE’s ability to explore uncertain long-term returns is particularly well-suited to reward structures
that include sparsity. In particular, LOVE outperforms the curiosity baseline ∆Dreamer+Curious as
LOVE does not get distracted by uncertain but irrelevant unexpected environment behavior. Overall,
LOVE yields the best performance across all tasks.

G Ablation study: Dreamer

We compare performance to ∆Dreamer, a variation that uses our changes to the default parameters.
Figure 10 indicates that performance improves on several tasks, while deteriorating on Finger Spin.
LOVE outperforms ∆Dreamer on the majority of tasks. It can thus be concluded that increased
information propagation generally affects performance favourably. However, relying on a single
model can propagate simulation bias into the policy and in turn impede efficient learning. This could
serve as an explanation for the unchanged performance on the not fully observable Cartpole Swingup
tasks, as well as the deteriorating performance on the high-frequency Finger Spin task.

H Ablation study: planning horizon

We investigate increasing the planning horizon used during latent imagination. Longer horizons shift
performance estimation from values towards rewards, which can be advantageous when the value
function has not been sufficiently learned. Prediction quality over long horizons relies on accurate
dynamics rollouts. Figure 11 indicates that an intermediate horizon is a good trade-off. We note that
the two Walker tasks had not completed at the time of submission, but provide a visible trend.
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Figure 10: Comparison to Dreamer with adapted policy learning rate and training steps (∆Dreamer).
The changes improve performance of Dreamer on some environments, while significantly decreasing
performance on the Finger Spin task. LOVE still outperforms ∆Dreamer on the majority of tasks.
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Figure 11: LOVE under variation of the planning horizon.

I Ablation study: β schedule

We investigate variations of the beta schedule, initializing either with a negative (initially pessimistic)
or a positive value (initially optimistic). The former variation penalizes uncertainty in the beginning
and then transitions to become optimistic, while the latter seeks out uncertainty from the start.
Based on Figure 12, we notice that terminal performance is mostly similar. The initially pessimistic
agent exhibits reduced performance on the sparse pendulum, where it only explores well after it
transitions to optimism (Episode 100), and improved performance on the challenging Hopper task,
where initial pessimism potentially guards against local optima. Our choice of parameters tries to
mitigate unfounded optimism during initialization (initial value 0), while encouraging exploration
throughout the course of training (linear increase). Particularly at initialization, a strong positive UCB
parameter may amplify random parameter noise as the agent will not have recovered meaningful
representations or sufficiently propagated learned values, yet. Here, we chose the same values for
all tasks, but one could imagine task-specific choices (negative beta for safe-RL, positive beta for
optimistic exploration).
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Figure 12: LOVE under variation of the beta schedule.
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Figure 13: LOVE under variation of the ensemble size.

J Ablation study: ensemble size

We investigate variation of the ensemble size. A smaller ensemble generates uncertainty estimates that
are more susceptible to bias in the ensemble members and may even generate misleading estimates.
Figure 14 demonstrates that a smaller ensemble (M=2) impacts performance unfavorably. We also
provide data for a larger ensemble (M=10) on Cartpole Sparse, Cheetah, Pendulum and Walker Walk
due to computation constraints. Generally, increasing the number of ensemble members increases the
computational burden and we find the common literature choice of M=5 to perform sufficiently well.

K λ-returns

The value functions are trained with λ-return targets, which are computed according to

Vλ(sτ )
.
= (1− λ)

H−1∑
n=1

λn−1V nN (sτ ) + λH−1V HN (sτ ),

V kN (sτ )
.
= Eqθ,qφ

(
h−1∑
n=τ

γn−τrn + γh−τvψ(sh)

)
,

(8)

with h = min(τ + k, t+H).
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Figure 14: Evaluation of asymptotic performance based 450k environment steps. We observe that
LOVE approaches or exceeds D4PG performance at 108 environment steps on most environments.

L Asymptotic performance

We provide episode returns over 450k environment steps to better assess asymptotic performance.
We consider a subset of the environments across 4 seeds. We observe that LOVE converges to or
beyond converged D4PG performance with the exception on Finger Spin. LOVE further significantly
outperform the Dreamer baselines. Generally, the comparatively low performance of the model-based
agents on Finger Spin could indicate that the required high frequency behavior can be difficult to
learn based on an explicit model. Throughout, we employed the same UCB trade-off parameter
schedule as described in Section A underlining that the agent does not get distracted by tangential
uncertainty.

M Interleaved Exploitation

Figure 15: Interleaving action samples from the
acquisition policy and the evaluation policy for
generating environment interactions.

We briefly evaluate explicitly interleaving the
exploration and exploitation policy during learn-
ing, sampling from either policy with a prob-
ability of p(πφ·) = 0.5 with φ· ∈ {φaq, φev}.
Due to computation constraints we limit our-
selves to 4 seeds on the Cheetah Run and Walker
Walk tasks. From Figure 15, we observe that
LOVE’s implicit exploration-exploitation trade-
off (red) and interleaving explicit exploitation
(green) perform similarly, with a slight edge for
LOVE’s implicit trade-off on the Walker task
and for explicit exploitation on the Cheetah task.
Generally, the effect of interleaving explicit ex-
ploitation to generate samples may depend on
the nature of the task and the reward density.
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N Network Initialization
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Figure 16: Variation of the ker-
nel and bias initialization.

We briefly evaluate changes to the kernel and bias initializers of
the reward and value networks. The default initializers are Glorot-
Uniform (GU) for the kernels and Zero (ZR) for the biases. For
either, we consider the Variance-Scaling initializer (VS) as an al-
ternative, where we use the scaling factor σ = 0.333. We consider
4 seeds each on the Walker Walk task. Based on Figure 16, we
observe that changes to either the kernel or bias initializers slightly
lower convergence speed while still reaching comparable asymptotic
performance. More sophisticated initialization schemes may include
explicit regularization of the network parameters towards random
anchors as in [56] and could harbor potential for further improving
performance.

O Maze exploration

We provide a qualitative comparison to the Explore, Discover and Learn (EDL) algorithm [57] on
the reward-free maze task. EDL differs from LOVE in its input-output modalities as EDL considers
position control based on state input, whereas LOVE considers acceleration control based on image
input. Modifying the EDL agent would be non-trivial and in order to provide fair qualitative insights
we integrate our maze domain into their framework with position control from state observations.
Particularly, we consider EDL with State Marginal Matching and Sibling Rivalry with the default
hyperparameters. Based on Figure 17 (right), we see that the skills discovered by EDL mostly align
with the occupancy trances of the LOVE agent, while both achieve greater coverage than LVE.

Figure 17: Maze exploration in comparison to the EDL [57] agent.
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