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Figure 1: Detailed illustration of our BEVNet-R architecture. BEVNet-S has the same architure with Con-
vGRU excluded.

We provide a detailed description of our network here, illustrated in Figure 1. The 3D projection3

is composed of a set of 3D convolution blocks, where the 3D SubM Conv block is a sequence of4

Submanifold 3D convolution, Bachnorm, and ReLU activation. The 3D Conv block maintains the5

XY resolution but compresses in the z dimension, and is made up of 3D convolution, Bathnorm,6

and ReLU activation. The Temporal Feature Aggregation module has a single ConvGRU layer for7

efficiency. The BEV Inpainting network is a modified variant of FC-HardNet with skip connections8

based on Harmonic DenseNet [1]. Each encoder block is a Harmonic Dense (HarD) block with9

Average Pooling, with no pooling for the middle layer. Each decoder block upsamples the features10

with Transposed convolution with bilinear upsampling, and features from the corresponding encoder11

block is concatenated. Each decoder block has a HarD block following the skip connection. The12

final BEV map is predicted with a Fully convolutional layer as the classification layer.13

Network training. We train our network using the Adam optimizer [2] with an initial learning14

rate of 3e − 4 and a decay of 0.7 per epoch. We use a weighted Cross-Entropy loss. We start15

with training a single-frame model without ConvGRU until the model converges. Then we freeze16

the sparse convolution layers and insert the ConvGRU layer, and then train the ConvGRU and the17

inpainting network together. While technically we can train the whole network end-to-end , this18

two-stage training procedure is faster and is more memory-efficient. When training the ConvGRU,19

we use a sequence length of 5 with a frame stride randomly chosen from [1, 10, 20]. Training takes20

about 12 hours on a single RTX 3090. The inference time of our network is 6 fps on a RTX 3090.21
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Dataset free low-cost medium-cost lethal
SemanticKITTI road

parking
sidewalk
other-ground

terrain vegetation car
bicycle
bus
motorcycle
on-rails
truck
other-vehicle
person
bicyclist
motorcyclist
building
fence
trunk
pole
traffic-sign
moving-car
moving-bicyclist
moving-person
moving-motorcyclist
moving-on-rails
moving-bus
moving-truck
moving-other-vehicle

RELLIS-3D dirt
asphalt
concrete

grass
puddle
mud
rubble

bush tree
pole
vehicle
object
building
log
person
fence
barrier

Table 1: Mapping of the original class labels to the 4-level traversabilities for the SemanticKITTI and RELLIS-
3D datasets.

Data augmentation. During training, we randomly rotate every pair of LiDAR scans and the22

ground truth traversability map in U [−45◦, 45◦], and randomly drop 20% of the points. Furthermore,23

we perturb the groundtruth odometry with rotation drawn from N (0, 0.012) and translation drawn24

from N (0, 0.12). Note that the error in odometry will accumulate over time.25

2 Dataset26

2.1 Traversability Mapping27

Table 1 shows how we map the raw class labels to the 4-level traversabilities.28

2.2 Class distribution29

Figure 2 shows the class distribution of SemanticKITTI and RELLIS-3D using our BEV labels based30

on the 4-level traversability ontology.31

2.3 Train/Validation Split32

SemanticKITTI We choose sequence 08 as our validation sequence, which is typically done by33

other works including but not limited to which [3] we compare to.34
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Figure 2: Individual class distribution across our 4-class ontology on SemanticKITTI (left) and RELLIS-3D
(right). Distribution is recorded from the total dataset as the proportion of total pixels each class has in the
generated BEV labels.

RELLIS-3D We choose sequence 04 as our validation sequence. While the authors of the35

dataset [4] provide a split, it follows random selection of samples and therefore does not fit our36

training of recurrent model. Instead, we select a whole sequence as a holdout dataset.37

3 More Quantitative Results38

We present additional quantitative results here including classwise Intersection over Unions. More-39

over, we add an additional model “BEVNet-R (C)” which is trained on clean odometry. The model40

in the main paper “BEVNet-R” is renamed to “BEVNet-R (N)” (trained on noisy odometry). Specif-41

ically:42

• Table 2,3,4 show the results on the SemanticKITTI dataset for the “all”, “seen”, and “un-43

seen” modes, respectively.44

• Table 5,6,7 show the results on the RELLIS-3D dataset for the “all”, “seen”, and “unseen”45

modes, respectively.46

free low-cost medium-cost lethal mIoU
BEVNet-S 0.666 0.484 0.113 0.456 0.430
Clean Odometry
BEVNet-S + TA 0.672 0.516 0.271 0.500 0.490
BEVNet-R (N) 0.719 0.551 0.171 0.480 0.480
BEVNet-R (C) 0.768 0.620 0.215 0.538 0.535
Cylinder3D + TA 0.612 0.510 0.264 0.476 0.465
Noisy Odometry
BEVNet-S + TA 0.578 0.449 0.232 0.328 0.397
BEVNet-R (N) 0.705 0.532 0.171 0.464 0.468
BEVNet-R (C) 0.669 0.523 0.192 0.451 0.459
Cylinder3D + TA 0.466 0.390 0.193 0.318 0.342

Table 2: SemanticKITTI. Including both the seen and unseen area.

4 Additional Comparison with Various Baselines47

Several recent papers have focused on semantic understanding of scenes from sparse LiDAR scans,48

which we discuss below. These papers solve related, but slightly different problems. They produce49

smaller maps, and do not perform temporal aggregation.50

• Semantic Scene Completion. The scene completion task aims to predict a dense semantic51

voxel grid from a single LiDAR scan. To compare to our work, we build a traversability52

map by converting predicted dense voxel grids to 2D traversability maps using the same53

method described in Sec 3.2.54
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free low-cost medium-cost lethal mIoU
BEVNet-S 0.713 0.529 0.148 0.538 0.482
Clean Odometry
BEVNet-S + TA 0.723 0.571 0.363 0.590 0.562
BEVNet-R (N) 0.776 0.613 0.227 0.572 0.547
BEVNet-R (C) 0.844 0.703 0.298 0.654 0.625
Cylinder3D + TA 0.864 0.745 0.378 0.635 0.655
Noisy Odometry
BEVNet-S + TA 0.600 0.480 0.308 0.362 0.438
BEVNet-R (N) 0.756 0.588 0.224 0.549 0.529
BEVNet-R (C) 0.723 0.575 0.247 0.532 0.519
Cylinder3D + TA 0.617 0.532 0.272 0.399 0.455

Table 3: SemanticKITTI. Only the seen area.

free low-cost medium-cost lethal mIoU
BEVNet-S 0.560 0.398 0.069 0.247 0.319
Clean Odometry
BEVNet-S + TA 0.558 0.409 0.147 0.278 0.347
BEVNet-R (N) 0.597 0.430 0.094 0.255 0.344
BEVNet-R (C) 0.608 0.461 0.096 0.249 0.354
Cylinder3D + TA - - - - -
Noisy Odometry
BEVNet-S + TA 0.522 0.388 0.129 0.249 0.322
BEVNet-R (N) 0.593 0.424 0.098 0.254 0.343
BEVNet-R (C) 0.553 0.420 0.113 0.244 0.332
Cylinder3D + TA - - - - -

Table 4: SemanticKITTI. Only the unseen area.

free low-cost medium-cost lethal mIoU
BEVNet-S 0.493 0.550 0.597 0.596 0.559
Clean Odometry
BEVNet-S + TA 0.737 0.613 0.544 0.565 0.615
BEVNet-R (N) 0.557 0.602 0.632 0.682 0.618
BEVNet-R (C) 0.675 0.593 0.633 0.676 0.644
Cylinder3D + TA 0.250 0.413 0.398 0.584 0.411
Noisy Odometry
BEVNet-S + TA 0.621 0.522 0.293 0.370 0.452
BEVNet-R (N) 0.553 0.598 0.628 0.675 0.614
BEVNet-R (C) 0.266 0.361 0.473 0.450 0.387
Cylinder3D + TA 0.229 0.348 0.289 0.407 0.318

Table 5: RELLIS-3D. Including both the seen and unseen area.

free low-cost medium-cost lethal mIoU
BEVNet-S 0.230 0.578 0.617 0.649 0.518
Clean Odometry
BEVNet-S + TA 0.611 0.638 0.560 0.609 0.605
BEVNet-R (N) 0.323 0.622 0.650 0.711 0.577
BEVNet-R (C) 0.489 0.621 0.655 0.716 0.621
Cylinder3D + TA 0.478 0.660 0.509 0.727 0.568
Noisy Odometry
BEVNet-S + TA 0.398 0.514 0.225 0.350 0.372
BEVNet-R (N) 0.322 0.617 0.646 0.705 0.572
BEVNet-R (C) 0.07 0.327 0.462 0.457 0.329
Cylinder3D + TA 0.460 0.438 0.357 0.485 0.435

Table 6: RELLIS-3D. Only the seen area
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free low-cost medium-cost lethal mIoU
BEVNet-S 0.713 0.488 0.546 0.433 0.545
Clean Odometry
BEVNet-S + TA 0.843 0.555 0.502 0.446 0.586
BEVNet-R (N) 0.754 0.559 0.583 0.584 0.620
BEVNet-R (C) 0.830 0.530 0.574 0.547 0.621
Cylinder3D + TA - - - - -
Noisy Odometry
BEVNet-S + TA 0.811 0.546 0.460 0.421 0.560
BEVNet-R (N) 0.748 0.557 0.579 0.579 0.616
BEVNet-R (C) 0.435 0.432 0.509 0.420 0.449
Cylinder3D + TA - - - - -

Table 7: RELLIS-3D. Only the unseen area.

• Inpainting Network. Han et al. [5] recently proposed an approach that uses GANs to55

inpaint a sparsely segmented BEV image. We trained our model using the same Se-56

manticKITTI dataset with the groundtruth 19-class BEV images as supervision. Note that57

this task is different from traversability estimation because it does a simple topdown pro-58

jection.59

Implementation Details. For a fair comparison, we re-train our models using the settings where the60

baselines were trained on: the map size is 51.2m × 51.2m, and the vehicle is located at the center61

left. To have a fair comparison, for each frame we aggregate Cylinder 3D predictions over the past62

70 frames using the calibrated poses provided by SemanticKITTI and do a top-down projection by63

picking the highest z point at each location. JS3C-Net is a 3D scene completion algorithm. We use64

the model and the code provided by the authors. We take the 3D voxel prediction of JS3C-Net and65

project it to 2D using top-down projection. The result of Han et al. [7] is reported from the original66

paper since the output is already in 2D.67

Results: The results are shown in Table 8. When testing on full categories and using top-down68

projection, JS3C-Net is slightly better than our method, specifically for classes within the lethal69

obstacles group. Note that in our approach, the projection is learned from the data and not hand-70

engineered as in top-down projection. We hypothesize for simple top-down projection, it is more71

data-efficient to code the projection method instead of learning it from the data. However, in com-72

plex projection, our learning-based approach in the 4 category ontology significantly outperforms73

JS3C-Net.74

Speedwise, JS3C-Net is significantly slower than ours since it predicts a dense voxel grid. On a75

51.2m x 51.2m map, JS3C-Net runs less than 2 fps whereas BEVNet-S runs at 12 fps on a 1080 Ti.76

It will be hard to scale JS3C-Net to larger maps with recurrency (note that in our main results we77

use 102.4m x 102.4m maps). In comparison, BEVNet maintains a latent 2D feature map for cost78

reasoning, which is more memory-efficient.79

Cylinder 3D’s predictions are limited to the seen area of the map. It is surprising that our method80

performs as well as the Cylinder 3D on the seen area while being able to inpaint the entire map.81

Finally, we emphasize that our network is designed to perform multiple tasks simultaneously (se-82

mantic segmentation, inpainting, complex projection, time aggregation). It is not surprising that its83

performance does not exceed Cylinder-3D or JS3C-Net which perform a subset of these tasks using84

a network with a similar capacity.85

5 Ablation on Odometry Noise86

We vary the odometry noise level by introducing a scalar λ such that the rotation noise is drawn87

from N (0, (0.01λ)2) and translation noise drawn from N (0, (0.1λ)2). The results are presented88

in Table 9. BEVNet-R degrades gracefully as noise level increases. Please check out the project89

website for qualitative videos on this.90
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Method (#classes) Segmentation Inpainting Projection Temporal Aggregation seen unseen
Cylinder3D-TA (19) Yes No Top Down Yes 0.316 0.181
Han et al. (19) No Yes Top Down No - 0.131
JS3C-Net (19) Yes Yes Top Down No - 0.258
BEVNet-S (19) Yes Yes Top Down No 0.313 0.253
JS3C-Net (4) Yes Yes Complex No - 0.549
BEVNet-R (4) Yes Yes Complex Yes - 0.608

Table 8: Comparing with various semantic segmentation and completion baselines on the SemanticKITTI
dataset. Note that the map here is smaller than our main results to accommodate the baselines. We evaluate on
two kinds of projection: top-down projection (only looking at the highest point at each location), and complex
projection (taking both the traversability of each class and their heights into account).

λ
0% 50% 100% 200% 500%

SemanticKITTI 0.480 0.474 0.468 0.458 0.431
RELLIS-3D 0.618 0.616 0.614 0.611 0.600

Table 9: Effect of odometry noise level on the mIoU. Note that BEVNet-R is trained at 100% noise level.

6 Robot-dependent Traversability91

We show that BEVNet can predict traversability by reasoning both semantic and geometric proper-92

ties of terrains. We generate two groundtruth BEV costmap datasets from the RELLIS dataset for93

this experiment.94

• The first dataset maps bush to the medium-cost class regardless of the height of the bush.95

This applies to a large offroad vehicle like the ClearPath Warthog.96

• The second dataset maps bush to the lethal class if the bush is 0.5 m above the ground. This97

applies to a small offroad vehicle like the ClearPath Husky.98

We train BEVNet on each dataset separately. Figure 3 shows the prediction results on the RELLIS-99

3D validation set. BEVNet is able to predict robot-dependent traversability maps. In Figure 3b,100

some bushes are labeled as lethal since they are too high and are thus dangerous for a small offroad101

vehicle.102

(a) Predicted traversability map for a large robot. (b) Predicted traversability map for a small robot.
Figure 3: BEVNet can reason both the semantic and geometric properties of the terrain.
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7 Variations of Cylinder3D with temporal aggregation103

For a more comprehensive comparison, we additionally compare our method against a more tra-104

ditional 3D SLAM-fusion based fusion implementation (denoted as Cylinder3D-TA-3D). The 3D105

baseline performs the following:106

1. We first perform semantic segmentation on the LiDAR scans with Cylinder3D to generate107

segmented point clouds.108

2. We aggregate the segmented point clouds in 3D using a voxel grid similar to how Octomap109

[6] works using the poses that are calibrated by a standard SLAM algorithm.110

3. When aggregating the point clouds, we optionally apply ray tracing to remove the trace of111

moving objects as much as possible.112

4. For the points falling into a voxel, we normalize the counts of their predicted labels into113

a categorical distribution. This is how Bayesian statistics estimates the parameter of a114

categorical distribution via a uniform Dirichlet prior. This produces a labeled voxel grid.115

5. We project this labeled voxel grid down to 2D using the same rule as how we generate the116

groundtruth BEV costmaps.117

7.1 Nuances on comparing the methods on the seen areas.118

Depending on how aggregation is performed, the seen areas vary slightly between Cylinder3D-119

TA, Cylinder3D-TA-3D (w/o ray tracing) and Cylinder3D-TA-3D (with ray tracing) (Figure 4). In120

particular, when turning on ray tracing for Cylinder3D-TA-3D, some of the moving objects will121

get cleared, but some ground voxels may also get cleared due to discretization errors (this happens122

when a LiDAR ray hits the ground with a shallow incident angle). To make a fair comparison, in123

Table 10 and 11 we report mIoUs of the methods on the three seen areas generated by Cylinder3D-124

TA, Cylinder3D-TA-3D (w/o ray tracing) and Cylinder3D-TA-3D (with ray tracing).125

(a) (b) (c)
Figure 4: Comparing the seen areas of (a) Cylinder3D-TA, (b) Cylinder3D-TA-3D w/o raytracing and (c)
Cylinder3D-TA-3D with raytracing. The seen areas are slightly different depending on how aggregation is
performed. For a fair comparison, we evaluate the performance of the baselines on the three different kinds of
seen areas.

Mask used for the seen area
Method Full Cy3d+TA TA-3D w/o ray tracing TA-3D w/ ray tracing
Cy3D + TA 0.465 0.655 0.613 0.618
Cy3D + TA-3D w/o ray tracing 0.482 0.636 0.660 0.660
Cy3D + TA-3D w/ ray tracing 0.471 0.629 0.646 0.677
BEVNet-R 0.535 0.625 0.613 0.615

Table 10: Comparison of different baseline variants across different masks on the SemanticKITTI dataset. Full
refers to the whole map (seen + unseen).
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Mask used for the seen area
Method Full Cy3d+TA TA-3D w/o ray tracing TA-3D w/ ray tracing
Cy3D + TA 0.411 0.568 0.573 0.567
Cy3D + TA-3D w/o ray tracing 0.408 0.576 0.649 0.643
Cy3D + TA-3D w/ ray tracing 0.384 0.539 0.609 0.645
BEVNet-R 0.644 0.621 0.618 0.615

Table 11: Comparison of different baseline variants across different masks on the RELLIS-3D dataset. Full
refers to the whole map (seen + unseen).

7.2 Analysis126

From the comparisons we observe the following:127

• Compared to Cylinder3D+TA baseline that aggregates in the 2D BEV space, 3D aggre-128

gation with raytracing exhibits considerable improvement in the seen area: +8 points in129

RELLIS (+5.9 points in SemanticKITTI) (see the last column of Table 10 and 11), respec-130

tively. However, while 2D aggregation time in TA is negligible, 3D aggregation is the131

computational bottleneck in the pipeline as it takes approx. 1 second to aggregate a single132

scan into octomap and perform raytracing.133

• When evaluating on the whole map, BEVNet outperforms Cylinder3D-TA-3D by more134

than 20 points in RELLIS (5 points in SemanticKITTI) because Cylinder3D-TA-3D does135

not predict the future(see the first column of Table 10 and 11).136

• When limiting the comparison to the seen area, Cylinder3D-TA-3D outperforms BEVNet-137

R up to 3 points in RELLIS (6 points in SemanticKITTI) (see the last column of Table 10138

and 11).139

In conclusion, there is a trade-off between prediction area and accuracy. While combining state-of-140

the-art semantic segmentation with SLAM-based fusion produces better results on the seen area, it141

falls short of predicting a more complete map, is prone to odometry noise, and is computationally142

expensive. Our network is optimized to perform multiple tasks simultaneously (semantic segmenta-143

tion, inpainting, complex projection, time aggregation) efficiently in a single forward pass.144

8 More Qualitative Results145

We provide full visualizations of our experiment and ablation study as a set of videos on146

https://sites.google.com/view/terrain-traversability/home.147
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