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Abstract: Producing dense and accurate traversability maps is crucial for au-
tonomous off-road navigation. In this paper, we focus on the problem of clas-
sifying terrains into 4 cost classes (free, low-cost, medium-cost, obstacle) for
traversability assessment. This requires a robot to reason about both semantics
(what objects are present?) and geometric properties (where are the objects lo-
cated?) of the environment. To achieve this goal, we develop a novel Bird’s Eye
View Network (BEVNet), a deep neural network that directly predicts a local map
encoding terrain classes from sparse LiDAR inputs. BEVNet processes both geo-
metric and semantic information in a temporally consistent fashion. More impor-
tantly, it uses learned prior and history to predict terrain classes in unseen space
and into the future, allowing a robot to better appraise its situation. We quantita-
tively evaluate BEVNet on both on-road and off-road scenarios and show that it
outperforms a variety of strong baselines.
Website: https://sites.google.com/view/terrain-traversability/home.
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1 Introduction

Robot

Figure 1: Example target scenario. BEVNet
can be run on the Clearpath Warthog to generate
semantic map of offroad envrionments.

While there has been great recent interest in the de-
velopment of autonomous vehicles, the vast major-
ity of this work has focused on on-road and urban
driving. However, a wide range of application ar-
eas including defense, agriculture, conservation, and
search and rescue could benefit from autonomous
off-road vehicles that can operate in complex, nat-
ural terrain. In such environments, understanding the
traversability of the terrain surrounding the vehicle
is crucial for successful planning and control. Per-
ceiving whether the terrain is traversable from sparse LiDAR data can be a challenging problem
as off-road terrain is often characterized by rapid changes to the ground plane, heavy vegetation,
overhanging branches, and negative obstacles. In other words, a successful off-road robot must rea-
son about both the geometric and semantic content of its surroundings to determine what terrain is
traversable and what is non-traversable.

In this work, we formulate traversability estimation as a semantic terrain classification problem [1,
2]. The motivation is to unify the semantics (what objects are present?) and geometry (where are the
objects located?) of the terrain into a single cost ontology. From the semantic perspective, objects
such as large rocks and tree trunks are non-traversable, whereas gravel, grasses, and bushes are all
traversable by an off-road vehicle [3] but with increasing difficulty. From the geometric perspective,
overhanging obstacles can be ignored, and objects of the same semantic class may vary in their
traversability depending on their heights (e.g., tall bushes vs. short bushes). To this end, we use a
discrete set of traversability levels for the ease of grouping the semantic classes by their traversability
while allowing us to adjust the traversability levels of specific instances based on their geometry.
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Figure 2: The network architecture of BEVNet. The incoming LiDAR scan is first discretized into a sparse
voxel grid, which is then fed into a sequence of sparse convolution layers to compress the z dimension. The
compressed sparse feature tensor is aggregated over time via the ConvGRU unit. We use differentiable affine
warping to align the latent feature map with the current odometry frame. Finally, the inpainting network
“inpaints” the latent map to output a dense traversability map.

An effective terrain classification system should efficiently 1) aggregate observations over time [1,
4] with noisy odometry [5, 6], 2) reason about the partially seen or even yet to be seen parts of
the environment [7, 8, 9], and 3) detect overhanging structures such as tree branches, tunnels, and
power-lines [10, 11]. While previous work has addressed each of these issues individually, the
aforementioned challenges are related, and solving each one should benefit the others.

In this paper, we propose a Bird’s Eye View Network (BEVNet), a recurrent neural network that
directly predicts terrain classes in the form of a 2D grid around the robot from LiDAR scans. As
shown in Figure 2, our model has three main parts: 1) a 3D sparse convolution sub-network to
process the voxelized point cloud, 2) a Convolutional Gated Recurrent Unit (ConvGRU) which uses
convolutional layers in a gated recurrent unit [12] to aggregate the 3D information, 3) an efficient
2D convolutional encoder-decoder based on [13] that simultaneously inpaints the empty spaces and
projects the 3D data into the 2D Bird’s Eye View (BEV) map. To train the model, we use both
past and future labeled LiDAR scans to build a complete 3D semantic point cloud and build the
ground-truth 2D traversability map. Previous work [10] utilizes a collection of collapsible cube
structures with ground/overhang classification to remove irrelevant overhangs based on their gaps,
but such rule-based filtering lacks generalization when it is difficult to estimate accurate ground
levels from sparse LiDAR scans. In comparison, our model is trained with a ground-truth BEV map
built from fully observed and labeled environments, which allows accurate ground-level estimation
for learning. The network then learns to detect and remove overhanging obstacles from sparse
LiDAR scans without an explicit filtering mechanism.

We make several contributions and empirical observations. We proposed a novel framework to build
the BEV costmap by simultaneously 1) aggregating observations over time, 2) predicting the unseen
areas of the map, and 3) filtering out irrelevant obstacles like overhanging tree branches that do not
affect traversability. Experimental results on SemanticKITTI [14] and RELLIS-3D [15] show that
BEVNet outperforms strong baselines in both on-road and off-road settings.

2 Related Work

Since most prior literature on perception for autonomous driving [16, 17, 18, 19, 20, 21, 22, 23]
focus on urban environments and structure inherent in cities and road networks, we compare our
system to works that share the mutual components to ours, namely traversability analysis [24, 25,
26, 27], semantic mapping [1, 17, 18, 19, 23, 21], recurrency handling [1, 17, 19], and semantic
scene completion [7, 8, 9].

Traversability Analysis and Semantic Mapping. Traversability analysis and semantic mapping
are crucial for off-road autonomy [25, 28, 29]. Traversability may be analyzed based on various
criteria, including surface roughness [24], negative obstacles [25], and terrain classification [26, 27].
The traversability information is usually projected into a Bird’s Eye View (BEV) map, which stores
local traversability and semantic information in a topdown 2D grid [30]. While prior works such
as [16, 17, 18] utilize a high definition map assumed a priori, such a map is expensive to produce,
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and therefore our system instead constructs one online. Similarly, Casas et al. [19], Wu et al. [23]
produces online semantic maps for urban autonomous driving but prioritize mapping of lanes and
road objects. In comparison, our system focuses on a broader categorization of semantics based
on terrain traversability. Additional works generate semantic maps from images, where Philion and
Fidler [21] produce BEV maps from RGB images end-to-end, while Maturana et al. [1] apply a
bayesian filter. Our system instead learns to produce semantic maps from LiDAR scans. We also
compare our approach to LiDAR segmentation where the segmented point cloud from networks
such as [31, 32] can be projected onto a BEV map. We evaluate this in detail in Sec. 5.

Temporal Aggregation Temporally consistent semantics is crucial for stably mapping the envi-
ronment. Recent work [17, 19] directly concatenates the past 10 scans as its input for memory
efficiency. In comparison to our system, the author’s recurrent neural network (RNN) is specifically
designed for semantic occupancy forecasting, whereas our recurrent architecture accumulates fea-
tures sequentially to better estimate the traversability of the current surrounding terrain. Maturana et
al. [1] accumulate information via Bayes filtering, which in our system is also replaced by the RNN.
There are various available architectures for handling recurrency[4, 33, 34, 35, 36, 37, 38], of which
our system utilizes ConvGRU to accumulate 2D BEV maps.

Semantic Scene Completion (SSC) The goal of SSC is to generate a complete 3D scene given a
single LiDAR scan. [7, 8, 9] utilize information from semantic segmentation to complete the scene,
whereas our system learns to directly predict the completed scene and therefore does not require
segmentation from a secondary network or ground truth labels. In addition, our system performs
point cloud projection and scene completion in 2D simultaneously, as the main task in our work is
to produce a 2D BEV map. We evaluate our system’s ability to complete scenes by comparing our
model against [7], the details can be found in Sec. 5.

3 Method

3.1 Overview

We consider a mobile robot with a 360◦ LiDAR mounted at its top. In order for the robot to navigate
efficiently and safely in a new environment (either on-road or off-road), the robot builds an online
traversability map around itself. The traversability map resembles a conventional occupancy map as
well as the semantic map from [1], where each cell stores a probability distribution of traversability
labels. In this work, we use four levels of traversability: free, low-cost, medium-cost, and lethal.
The number of traversability levels can be trivially extended if so desired. The traversability map is
inside the robot’s odometry frame, so that the robot is always at the center, with its heading pointing
to the east. The traversability map is converted to a costmap by mapping each traversability level
to the corresponding cost value via a lookup table. The converted costmap can be easily interfaced
with a local planner [39] or a global planner (e.g., A*) for finding the least-cost path to a goal.

We adopt a supervised-learning approach to predict this traversability map. We start with building
a traversability dataset from LiDAR segmentation datasets [14, 15] via a traversability-aware pro-
jection procedure. Then, we introduce BEVNet, a recurrent neural network that takes the current
LiDAR scan and utilizes its history to build a dense traversability map. In the following sections,
we will describe each component in detail.

3.2 Building a Traversability Dataset

Recent work [17, 1] focuses on on-road driving where reasoning about a large number of fine-
grained semantic classes is necessary. Here we consider a more general driving paradigm where we
simply care about the traversability of the surrounding terrain. This makes our model applicable
to both on-road and off-road driving. Given a dataset with semantically labeled LiDAR scans, we
convert it to a traversability dataset via the following procedure (illustrated in Figure 3).

Scan Aggregation. For each scan, we aggregate it with the past t and the future t scans with stride
s to construct a larger point set. We set t to a large enough number (e.g., 71) to obtain dense
traversability information for a large area around the robot. These parameters may be tuned depend-
ing on the vehicle speed and density of the LiDAR points.
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Figure 3: Process for generating the traversability dataset on SemanticKITTI. Single scan labels are aggre-
gated to form complete scenes (scan aggregation), and their semantics are remapped to our 4 class ontology
(traversability mapping), legend defined in the figure. The remapped scans are then filtered with ground esti-
mation to remove overhanging points (points binning and ground plane estimation). Finally, the filtered points
are projected to a traversability map (traversability projection).

Traversability Mapping. We map the semantic classes into our 4-level ontology. The general prin-
ciple is to map semantic classes with similar costs to the same traversability label. For example,
cars and buildings are mapped to lethal, whereas mud and grass are mapped to low-cost. Detailed
mapping can be found in the supplementary.
Points Binning and Ground Height Estimation. For each point in the aggregated scan, we do a
down projection to find its location x, y on the traversability map. Hence each x, y location of the
map contains a pillar of points. We estimate the ground height map by running a mean filter kernel
over the lowest z coordinates of the points labeled as free and low-cost at each x, y location in the
map. This height map is used as a reference for final traversability projection.
Traversability Projection. For each pillar of points, we filter out overhanging obstacles by remov-
ing points that are above the local ground level by a certain threshold because they will not collide
with the robot. Additionally, we adjust the traversability level of certain points based on their height
above the ground level and the mobile capabilities of the robot. i.e. points labeled as medium-cost
but very close to the local ground level can be deemed negligible for a large off-road vehicle and
hence remapped to low-cost as other nearby points. Finally, we take the class of the least traversable
point (i.e., most difficult) at each x, y location as the final traversability label.

3.3 Feature Extraction via Sparse Convolution with Z Compression

The architecture of BEVNet is shown in Figure 2. An input LiDAR scan is first discretized into a
512×512×31 grid with a resolution of 0.2m. We perform sparse discretization so that only occupied
voxels are preserved. Each voxel contains a 4-dimensional feature f = 1

n

∑n
i=1[xi, yi, zi, ri], which

is the average of the coordinates and remission values of the points inside the voxel. This sparse
voxel grid is fed into a sequence of sparse convolution layers, which compress the z dimension via
strided convolutions. We keep x and y dimensions unchanged. The output of the sparse convolution
layers is a sparse feature tensor S of size 512× 512× C, where C is the feature dimension.

3.4 Temporal Aggregation of Sparse Feature Maps

A single LiDAR scan becomes increasingly sparse as the distance increases, making it difficult to
classify the traversability level for areas far away from the robot. Contrary to classical SLAM that
aggregates LiDAR measurements over time via a hand-engineered Bayesian update rule [40], we let
the network learn to aggregate the sparse feature maps from past LiDAR scans via a Convolutional
Gated Recurrent Unit (ConvGRU). The ConvGRU maintains a 2D latent feature map M that shares
the same coordinate system and dimensions as the final traversability map. The latent feature map
M is updated as

Mt+1 = ConvGRU(WarpAffine(Mt,∆Tt+1), St+1),

where ∆Tt+1 is the relative transform of the robot’s odometry frame from t to t+1. The WarpAffine
operation transforms the latent feature map Mt from the previous odometry frame to the cur-
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rent odometry frame so that the features from Mt and St+1 are spatially aligned. Note that the
WarpAffine operation is differentiable to allow the gradients to backpropagate through time.

3.5 Traversability Inpainting

Since the ConvGRU only aggregates sparse feature tensors, M contains little information for areas
where there is no LiDAR point. Instead of treating the no-hit area as unknown, we let the network
fill in the empty space by leveraging the local and global contextual cues via the Inpainting Net-
work. The inpainting network is a fully convolutional network inspired by FCHardNet [13] which is
originally designed for fast image segmentation. It consists of a sequence of downsampling and up-
sampling layers with skip connections, making it effective for capturing local and global contextual
information for predicting what is missing.

4 Implementation Details

We build the traversability datasets from SemanticKITTI [14] and RELLIS-3D [15] to evaluate
BEVNet in both on-road and off-road scenarios. For SemanticKITTI we aggregate 71 frames with
stride 2 to generate a single traversability map. For RELLIS-3D we aggregate 141 frames with
stride 5. Both datasets provide per-frame odometry, which we use for the differential warping layer
in the ConvGRU. The traversability maps have a size of 102.4m × 102.4m with a resolution of
0.2m. Note that the traversability maps contain additional “unknown” class marking regions that
have never been observed. For additional details on network training and data augmentation please
refer to section 4 in the supplementary material.

5 Experiments

We conduct both quantitative and qualitative studies on SemanticKITTI (on-road) and RELLIS-3D
(off-road) datasets. We trained a separate model for each dataset. We compare with a variety of
baselines, ranging from LiDAR segmentation to scene completion on the validation sequences. We
also perform an ablation study to better understand the contribution of recurrence, and how our
model behaves on the two datasets that have very different characteristics.

5.1 Evaluation Metrics

We use the mean Intersection of Union (mIoU) [13], a widely used metric for image segmentation,
as the quantitative measure of the prediction accuracy. Note that our model predicts an additional
“unknown” class to improve the visual consistency, and we exclude the “unknown” class in the
evaluation. To better understand our model’s capability of predicting the future, we report mIoUs
in three modes: seen, unseen, and all. In the “seen” mode, we do not include ground truth labels
obtained from future frames, effectively excluding any future predictions. For the “unseen” model
we only include the future predictions. In the “all” scenario, we evaluate both.

5.2 Comparison with LiDAR Segmentation with Temporal Aggregation

A strong baseline for building a traversability map is to perform semantic segmentation of the in-
coming LiDAR scan, project it down to obtain a 2D sparse traversability map, and aggregate the
traversability maps over time. To compare with this approach, we choose Cylinder3D [31] (fine-
tuned on our 4-class ontology) as the LiDAR segmentation network for its strong performance and
use the same projection procedure in Sec 3 on the input LiDAR scan to obtain the single-frame
traversability map. We perform the temporal aggregation by tracking the categorical distribution of
traversability via a uniform Dirichlet prior. To do so, we keep a counter map MC of size H×W ×4
(initialized to zeros). It is of the same size as the traversability map except that the last dimension
counts the traversability labels observed so far. We update MC incrementally. For each incoming
single-frame traversability map, we warp MC to the current odometry frame via bilinear interpo-
lation, and increment the counts by adding the one-hot version of the incoming single-frame map.
The actual traversability label can be obtained by taking the argmax of the last dimension of MC .

5



SemanticKITTI RELLIS-3D
All Seen Unseen All Seen Unseen

BEVNet-S 0.416 0.465 0.308 0.559 0.518 0.545
Clean Odometry
BEVNet-TA 0.468 0.534 0.335 0.615 0.605 0.586
BEVNet-R 0.535 0.625 0.354 0.644 0.621 0.621
Cylinder3D-TA 0.465 0.655 N/A 0.411 0.568 N/A
Cylinder3D-TA-3D w/o ray tracing 0.482 0.660 N/A 0.408 0.649 N/A
Cylinder3D-TA-3D w/ ray tracing 0.471 0.646 N/A 0.384 0.609 N/A
Noisy Odometry
BEVNet-TA 0.379 0.415 0.310 0.452 0.372 0.560
BEVNet-R 0.468 0.529 0.343 0.614 0.572 0.616
Cylinder3D-TA 0.342 0.455 N/A 0.318 0.435 N/A
Cylinder3D-TA-3D w/o ray tracing 0.373 0.479 N/A 0.347 0.517 N/A
Cylinder3D-TA-3D w/ ray tracing 0.369 0.478 N/A 0.331 0.495 N/A

Table 1: Mean IoU of different methods on SemanticKITTI and RELLIS-3D.

Results on SemanticKITTI. In the left half of Table 1 we compare the performance of BEVNet-
Recurrent (BEVNet-R) with Cylinder3D+Temporal Aggregation (C3D-TA) on the SemanticKITTI
validation set. When only considering what has been observed so far (“seen”) and clean odometry,
C3D-TA is better than BEVNet-R. This shows that LiDAR segmentation with accurate temporal
aggregation can work very well in structured environments such as urban driving. When evaluated
on the full groundtruth (“full”), BEVNet-R outperforms C3D-TA because C3D-TA cannot predict
the future traversability. When evaluating on noisy odometry, BEVNet-R surpasses C3D-TA for
both “seen” and “full” test scenarios. BEVNet-R uses learned recurrency to “fix” small errors in
odometry and to adaptively forget history in case the error is too large. In comparison, C3D-TA
solely uses the provided odometry to aggregate information, which may result in large misalignment
as errors compound over time.

Results on RELLIS-3D. The results on RELLIS-3D (right half of Table 1) share a similar trend
as those in SemanticKITTI, except that BEVNet-R consistently outperforms C3D-TA with a larger
gap. This suggests that off-road environment is more challenging, where accurate LiDAR segmen-
tation is hard to obtain due to the lack of environmental structure. Indeed, Cylinder3D only achieves
a 64.1 mIoU on RELLIS-3D for LiDAR segmentation, which is lower than the 87.9 mIoU on Se-
manticKITTI. Interestingly, noisy odometry has a smaller impact on BEVNet-R. We hypothesize
that it is because the RELLIS-3D dataset contains less clutter and occlusion so BEVNet-R does not
rely heavily on the history for traversability prediction.

Comparison with 3D Semantic Temporal Aggregation. We additionally provide a baseline that
aggregates the points in 3D before projection (Cylinder3D-TA-3D) using Octomap [41]. The results
are included in Table 1. C3D-TA-3D in general works better than C3D-TA and can even outperform
BEVNet-R in the seen area. However, since it is not able to predict the future, its mIoU on the
full scene is poor. It is significantly slower (less than 1 fps), and is susceptible to odometry noise
like C3D-TA. We optionally enable ray tracing in Octomap to remove dynamic obstacles. While
quantitatively this does not make a large difference, there is a clear distinction in the qualitative
comparison described next.

5.2.1 Qualitative Results

In left half of Figure 4, we highlight that BEVNet-R can preserve small dynamic objects such as
bicyclists better than C3D-TA. Hand-engineered temporal aggregation is prone to treating small
dynamics objects as noise and ignoring them. In comparison, BEVNet can learn to keep small dy-
namic objects, while preserving smoothness in static regions. The right half shows the impact of
noisy odometry. We can see large misalignment and smear artefacts for C3D-TA, whereas BEVNet-
R produces significantly cleaner output. In Figure 5 we provide a comparison between BEVNet-R,
C3D-TA, and C3D-TA-3D. C3D-TA-3D can preserve more details in the map, but without ray trac-
ing, it fails to clear the residues left by dynamic obstacles such as cars and humans. While turning
on ray tracing [41] improves the results, it also erroneously clears some of the ground points due
to shallow LiDAR incident angles. In comparison, BEVNet-R does not suffer from these short-
comings and predicts a more complete area. Finally, in Figure 6 we visualize examples on both
SemanticKITTI and RELLIS-3D. In general, BEVNet-R shows strong performance in predicting
future traversability. It learns to predict whole cars, alley entrances, and trail paths with extremely
sparse LiDAR points.
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BEVNet-R Ground TruthCylinder3D-TA BEVNet-RCylinder3D-TA Ground Truth

Figure 4: Qualitative comparison of Cylinder3D-TA and BEVNet-R. Left: BEVNet is better at preserving
small fast-moving objects such as bicyclists (highlighted by the blue circles), which the hand-engineered update
rule tends to ignore. (Maps are 50% zoomed in). Right: When noise is injected into the odometry, BEVNet-R
still predicts a clean map albeit with fewer details, while Cylinder3D+TA fails to do this, resulting in a blurry,
inaccurate map.

BEVNet-R Ground TruthCylinder3D-TA Cylinder3D-TA-3D
w/o ray tracing

Cylinder3D-TA-3D
with ray tracing

Figure 5: Comparing BEVNet-R, Cylinder3D-TA and Cylinder3D-TA-3D. While Cylinder3D-TA-3D produces
more detailed maps, it introduces additional artefacts due to dynamic obstacles. See text for more details.

5.2.2 Ablation Study

We conduct our ablation study on three variants of BEVNet: BEVNet-Single (BEVNet-S), BEVNet-
Single+Temporal Aggregation (BEVNet-TA), and BEVNet-Recurrent (BEVNet-R). We aim to an-
swer three questions: 1) is learned recurrence better than temporal aggregation? 2) does history help
predict the future? and 3) where should the information be aggregated in the network? We answer
these questions through a set of experiments on both SemanticKITTI and RELLIS-3D datasets.

Is learned recurrence better than temporal aggregation? When evaluated on the full ground
truth, we observe that BEVNet-R consistently outperforms BEVNet and BEVNet-TA on both
on-road and off-road scenarios (Table 1). Notably, BEVNet-TA also outperforms BEVNet, which
shows that any form of recurrence is beneficial. In particular, we observe that the learned recurrence
makes the best use of the temporal information in comparison to the hand-engineered TA. When
noisy odometry is introduced we observe the same trend as discussed in Sec. 5.2, where BEVNet-R
shows robustness to noise and outperforms BEVNet-TA.
Does history help predict the future? In Table 1, we can see that any form of recurrence that
accumulates history helps with predicting the unseen area. In particular, BEVNet-R outperforms
both BEVNet-S and BEVNet-TA, showing that the learned recurrence can better predict the unseen
area than a single-frame model or a hand-engineered temporal aggregation approach.

mIoU
Early Aggregation 0.535
Late Aggregation 0.479

Table 2: Effect of GRU location in
the network.

Where to put ConvGRU? Recurrence may be applied right after
the sparse convolutions (early aggregation) or may be applied af-
ter the 2D inpainting network (late aggregation). We compare the
two options on the SemanticKITTI dataset with clean odometry
in Table 2. Note that our model is trained with clean odometry.
Early aggregation yields better results than late aggregation. This
is because when early aggregation is applied the inpainting network has access to temporally fused
information and therefore is given more information to complete the scene and maintain temporal
consistency across scans. Furthermore, we may infer that if late aggregation is applied, it is more
difficult for the recurrent network to learn to correct the odometry as it is given completed scenes
with potentially noisy information instead of the sparse feature maps.

5.3 Comparison and Discussion with other Related Work

Several recent works have focused on semantic understanding of scenes from sparse LiDAR scans
[7, 9]. They solve related, but slightly different problems. They produce smaller maps, and do not
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Input scan Cylinder3D BEVNet-S Ground truthBEVNet-RCylinder3D-TA
Figure 6: Qualitative results of our method on SemanticKITTI [14] (top) and RELLIS-3D [15] (bottom).
Learned recurrency in our end-to-end network can preserve previously observed information while predicting
future observations for the occluded areas.

Input scan BEVNet-R Camera View

Canal Road Weeds

Input scan BEVNet-R Camera View

Figure 7: Qualitative results of BEVNet on data collected on a Clearpath Warthog. Each item shows LiDAR
scan input, BEVNet-R’s output, and frontal camera view (for reference), respectively.

perform temporal aggregation. Due to space limits we refer the reader to Sec.4 of the supplementary
for a detailed discussion.

5.4 Real Robot Experiments

In Figure 7, we show that BEVNet-R trained on SemanticKITTI and RELLIS-3D can generalize to
novel environments on a ClearPath Warthog robot. The robot is equipped with an OS1-64 LiDAR
which is fed into BEVNet-R to classify the terrains. The first environment Canal Road, is a dirt
trail with light vegetation, whereas the second environment Weeds, is scattered with grass and tree
branches and is uneven. In both scenarios, BEVNet-R is able to predict a complete traversability
map with sparse lidar inputs, and reason about the traversability of surroundings using the semantic
and geometric features. More details can be found on the website.

6 Conclusion

We propose BEVNet, a framework that classifies terrain traversability in a local region around a
mobile robot with the aim of helping the robot navigate in a novel on-road or off-road environment.
BEVNet addresses a number of challenges in a unified architecture, namely: 1) it learns to aggregate
sparse LiDAR information over time, 2) it learns to reason about traversability that involves both ge-
ometric and semantic understanding of the environment, and 3) it learns to fill in the unknown space
where there are no LiDAR hits, and thus provides the robot with a more complete understanding of
its surroundings. Most notably, BEVNet can leverage past information to better predict the future.
We believe BEVNet provides an important step towards robot autonomy on complex terrains where
a prior map is unavailable.

Limitations and Future Work. Since BEVNet is data-driven, it may overfit to certain types of
environments if the training data is not diverse enough. Moreover, due to the fact that the publicly
available datasets do not contain rough terrains, we do not take the roughness of terrains into ac-
count at the moment. However, BEVNet can be extended to predict additional quantities such as an
elevation map to be fused with the current semantic costmap for more accurate traversability estima-
tion. In the future, we would like to extend the capability of BEVNet and test it in more challenging
off-road scenarios.
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