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Appendix

A Applying LEO to Differentiable Optimizers

We discuss here how LEO can be applied to differentiable optimization libraries. It requires two
simple changes, (a) disable gradients from the inner loop optimizer block, and (b) replace the direct
final tracking loss (Loss 1) with an energy-based loss (Loss 3). To illustrate how LEO performs
compared to alternate solutions such as unrolling, we choose the uni-dimensional regression task
from [1]. This enables us to visualize the learned 2D energy surfaces.

Setup In the regression task, the goal is to learn a network that maps points (x, y) to an energy value,
given samples from a ground truth function. The ground truth data is generated from the function
g(x) = x sin(x) for x ∈ [0, 2π]. We model P (y|x) ∝ exp{−E(θ, y;x)} where E(θ, y;x) =
||f(θ, y;x)||22. E(.) is the energy function expressed as a sum-of-squares of f(θ, y;x), similar to
Section 3.1, to apply Gauss-Newton solvers. f(θ, y;x) is modeled as a neural network with θ as the
learnable network parameters.

LEO minimizes an energy-based loss (Loss 3), i.e. L(E(θ, ·); yigt), resulting in a similar update rule
of the form,

θ+ ← θ − 1

|D|

|D|∑
i=1

∇θE(θ; yigt)−
1

S

∑
ŷ

∇θE(θ; ŷi)

 (1)

We solve for this update using the Adam optimizer in Pytorch. We use a batch Gauss-Newton solver
as our underlying inner loop optimizer (LEO GN).

The unrolling baselines minimize a final tracking loss (Loss 1), i.e.L(θ; ygt) = 1/|D|
∑
i ||ŷi	yigt||22,

where ŷ := argmin
y

||f(θ, y;x)||22. We use both unrolled gradient descent (Unrolled GD) and

unrolled Gauss-Newton (Unrolled GN) [2].

For all methods, we use two initialization schemes for the underlying optimizer. The first scheme
initializes from y = 0 for all x, as followed in [1]. The second scheme initializes from the ground
truth g(x) = x sin(x) as suggested in [2].

Results Fig. 1 shows the learned energy surfaces for all 3 methods using initialization scheme 1, i.e.,
initializing the optimizer from zero. At iteration 0, all 3 approaches are initialized with a random
energy function. While all 3 approaches end up with a low final loss, only LEO converges to an
energy function with a single basin about the ground truth samples. The unrolled baselines converge
to energy functions with multiple minima, not all of them on the ground truth samples. This is
because the energy function need only be good enough for the optimizer, when initialized from
y = 0 to reach the ground truth for a fixed number of unrolling steps. It does not guarantee a similar
convergence when executed with different number of unrolling steps or initialization from different
y values.

Fig. 2 shows the learned energy surfaces for initialization scheme 2, i.e., initializing the optimizer
from ground truth. Similar to the previous figure, all 3 methods initialize from random energy
functions and converge to a low final loss. But only LEO converges to a similar energy function as
before, i.e., one with a single basin around the ground truth. The unrolling baselines converge to
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a different energy function than in scheme 1. In this case, the energy function need only be good
enough for the optimizer, when initialized from ground-truth, to stay on the ground truth.

For both schemes, LEO alone converges to the same energy function, as it is less sensitive to the
underlying optimization process. In future work, we aim to apply LEO on differentiable optimizers
for robot estimation tasks. This would require a factor graph optimization library similar to GTSAM
but implemented in a differentiable manner. There are recent efforts on this front [2, 3, 4], but
there isn’t a single, stable open-source library yet. We hope our analysis on this regression task
would encourage others in the community to try out LEO in their respective differentiable optimizer
libraries.

B Comparison to other samplers

Figure 3: Runtime comparison against an HMC sampler

We compare run times against an HMC sampler imple-
mented in the hamiltorch library [5]. The sampler sim-
ulates a set of Hamiltonian differential equations which
upon simulating generates a sequence of samples.

We run this on the 2D navigation dataset which have a
900-dimensional state space (3-DOF * 300 steps). The
HMC sampler is sampling from the true posterior distri-
bution while the incremental Gauss-Newton, iSAM2 [6],
sampler that we use samples from a Gaussian approxima-
tion that it maintains online. However, we found similar
convergence at train time using both samplers which sug-
gests that the Gaussian approximation was reasonable for
our applications.

In terms of run time, we found the HMC sampler run time
to be two orders of magnitude greater than the iSAM2 sampler as shown in Fig. 3. This is expected
since the HMC sampler evaluates the cost as well the gradients of the cost every time a sample is gen-
erated which requires looping through all the factors and can be expensive. In contrast, the iSAM2
sampler allows for directly sampling from the Gaussian that is significantly faster. When used in an
online setting, as new factors get added to the graph, the HMC sampler would have to recompute the
posterior distribution. On the other hand, the iSAM2 sampler efficiently and incrementally updates
the Gaussian approximation by leveraging sparsity.
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Figure 1: Evolution of learned 2D energy surfaces using initialization scheme 1. Contour surfaces show the normalized energy surfaces.
Ground truth function x sin(x) in green, LEO samples in orange. Lighter colors correspond to lower energy.
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Figure 2: Evolution of learned 2D energy surfaces using initialization scheme 2. Contour surfaces show the normalized energy surfaces.
Ground truth function x sin(x) in green, LEO samples in orange. Lighter colors correspond to lower energy.

C Normalized Negative Log-Likelihood Loss: Additional Details

In Section 4.1, we defined the energy-based loss as the normalized negative log-likelihood loss. The
motivation for such a loss comes from probabilistic modeling, notably the principle of maximum
entropy moment matching.

Pgt(x |z )Pgt(z ) P (x |z )Pgt(z )⋮

z1
z2

zT

measurements
ground truth
distribution

estimator
distribution

Figure 4: Ground truth distribution is unknown and only observable
via measurements z1:t. The goal is to estimate a distribution P (x|z)
that matches observed moments.

Principle of Maximum Entropy Assume a
ground truth distribution Pgt(x, z) that gener-
ates x and z. We would like to estimate a dis-
tribution Pθ(x|z) that matches this. The true
ground truth distribution is unknown, but we
can sample from it. This allows us to estimate
Pθ(x|z) by matching empirical moments com-
puted from these samples (Fig. 4).

However, there is a continuous space of prob-
ability distributions that match these empirical
moments. Which of these distributions do we
pick? The maximum entropy (MaxEnt) princi-
ple suggests we pick the distribution which is least committal, i.e. the one with maximum entropy
[7]. We can write out this objective of maximizing entropy of the distribution Pθ(x|z) subject to
matching moment constraints against the unknown ground truth distribution as,

max −
∑
x

Pθ(x|z) logPθ(x|z)

s.t. E
z∼Pgt(z)

E
x∼Pθ(x|z)

Φ(x, z) = E
(x,z)∼Pgt(x,z)

Φ(x, z)
(2)

where, Φ(·) are the moment functions. Applying KKT conditions for Eq. 2 and expanding the dual
results in an unconstrained objective of the form [7, 8],

max
θ

E
x,z∼

Pgt(x,z)

logPθ(x|z)

Pθ(x|z) ∝ exp(−θTΦ(x, z))

(3)

where, θ are the Lagrange multipliers. The term θTΦ(x, z) = E(θ, x; z) can be interpreted as a
linear “energy function” such that Pθ(x) ∝ exp(−E(θ, x; z)) puts a high energy on low probability
solutions. This linear class of cost functions can be lifted to a richer class of parametric nonlinear
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functions E(θ, x; z). Note that this may induce a duality gap in optimizing Eq. 2, but is commonly
used in practice when parameterizing energy functions as neural networks [9, 10, 11]. The maximum
entropy solution can then be written out as,

max
θ

E
x,z∼

Pgt(x,z)

logPθ(x|z)

Pθ(x|z) ∝ exp(−E(θ, x; z))

(4)

Eq. 4 asks us to maximize the likelihood of ground truth trajectories where the likelihood takes
the form of a Boltzmann distribution, where lower energy implies higher probability mass. In other
words, we want to find energy function E(θ, x; z) that places maximal probability mass on the
ground truth trajectory. Writing out this objective over a training dataset (xgt, z) ∈ D results in the
NLL loss that we saw earlier in Section 4.1,

L(θ) =
1

|D|
∑

(xigt,z
i)∈D

− logPθ(x
i
gt|zi) (5)

Let’s expand out the steps in Section 4.1 in more detail. Substituting the expression for Boltzmann
distribution Pθ(x|z) results in,

L(θ) =
1

|D|
∑

(xigt,z
i)∈D

− log(exp(−E(θ;xigt, z
i))) + logZ(θ; zi)

L(θ) =
1

|D|
∑

(xigt,z
i)∈D

E(θ;xigt, z
i) + log

∫
x

exp(−E(θ;x, zi))dx

(6)

Take the gradient of this loss,

∇θL(θ) =
1

|D|
∑

(xigt,z
i)∈D

[
∇θE(θ;xigt, z

i)) +
1

Z(θ; zi)

∫
x

∇θE(θ;x, zi) exp(−E(θ;x, zi))

]
(7)

Substituting in Pθ(x|zi) from Section 3.1 we have the resulting gradient expression that we finally
obtained in Section 4.1,

∇θL(θ) =
1

|D|
∑

(xigt,z
i)∈D

∇θE(θ;xigt, z
i))︸ ︷︷ ︸

ground truth samples

− E
x∼

Pθ(x|z)
∇θE(θ;x, zi))︸ ︷︷ ︸

learned distribution samples

 (8)

Negative log likelihood approximation Since directly sampling from the true posterior Pθ(x|z) =
1
Z(θ)e

−E(θ,x;z) is intractable, in LEO, we instead sample from a Gaussian approximation of this

distribution, P̂θ(x|z) = N (µ,Σ) where µ, Σ are obtained as shown in Section ??. Hence, we
effectively minimize an approximation of the true NLL loss,

L̂(θ) =
1

|D|
∑

(xigt,z
i)∈D

− log P̂θ(x
i
gt|zi) (9)

The difference between the approximated loss and the true loss is,

L̂(θ)− L(θ) =
1

|D|
∑

(xigt,z
i)∈D

− log P̂θ(x
i
gt|zi)−

1

|D|
∑

(xigt,z
i)∈D

− logPθ(x
i
gt|zi)

=
1

|D|
∑

(xigt,z
i)∈D

Pθ(x
i
gt|zi)

P̂θ(xigt|zi)

= E
(xgt,z)∼D

Pθ(xgt|z)
P̂θ(xgt|z)

≤ max
(xgt,z)∈D

log
Pθ(xgt|z)
P̂θ(xgt|z)

(10)

The difference in losses is bounded by the maximum log density ratio between the true and ap-
proximated distributions. The ratio is bounded as long as the denominator is not zero, i.e. the
approximation has full support over the dataset.
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D Results and Evaluation: Additional Details

D.1 Setup and Factor Graph Models

Fig. 5 shows the two factor graphs modeling the (a) synthetic navigation and (b) real-world planar
pushing tasks. For both graphs, poses are modeled as variable nodes and measurements as factor
nodes. The graph inference objective is to solve for the latent poses (variables) given measurements
(factors).
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Figure 5: Factor graphs for (a) synthetic navigation (b) real-world planar pushing.

Synthetic Navigation To replicate a
typical robot navigation setup, we
generate odometry measurements by
adding Gaussian noise to relative
ground truth state estimates and GPS
measurements by adding Gaussian
noise to absolute ground truth esti-
mates. We generate 4 datasets N1–
N4, each with a different covari-
ance setting. N1, N2 has measure-
ments generated from fixed covari-
ances Σ := {Σodom,Σgps}. N3,
N4 has measurements generated from

covariances varying between two sets of values, i.e. Σ := {Σodom(z),Σgps(z)}, where z are binary
measurements simulating an ambient light detector that determines whether the robot is in an indoor
or outdoor environment.

To solve for the sequence of states x := {x1 . . . xT } from measurements z, we provide the following
objective for the graph optimizer to minimize,

x̂ =argmin
x

∑
k

{ ||fodom(xk−1, xk)− zodomk−1,k||2Σodom(z) + ||fgps(xk)− zgpsk ||
2
Σgps(z)

} (11)

The observation model parameters that we learn for this task are the fixed and varying covariances,
i.e. θ := {Σodom,Σgps}, {Σodom(z),Σgps(z)}.
Real-world planar pushing For the planar pushing setup, states x := {x1 . . . xT } in the graph
are the planar object and end-effector poses at every time step, with xt = [ot et]

T , where ot, et ∈
SE(2). Factors in the graph incorporate tactile observations ftac(·), quasi-static pushing dynamics
fqs(·), geometric constraints fgeo(·), and priors on end-effector poses feff (·).

To solve for the sequence of state x := {x1 . . . xT } from measurements z, we pass in the following
objective for the graph optimizer to minimize,

x̂ = argmin
x

∑
k

{ ||fφtac(ok−w, ok, ek−w, ek)||2Σtac + ||fqs(ok−1, ok, ek−1, ek)||2Σqs+

||fgeo(ok, ek)||2Σgeo + ||feff (ek)||2Σeff }
(12)

The observation model parameters that we learn for this task are the tactile factor network weights
and the tactile and quasi-static factor covariances, i.e. θ := {φ,Σtac,Σqs}. As also seen in Fig. 5,
quasi-static motion factors are added between consecutive poses {k − 1, k} and tactile factors are
added between non-consecutive poses {k − w, k}, where w is some window length. The tactile
observation factors effectively act as loop closure factors typically used in SLAM graph optimizers
for global drift correction. More details on the factor graph models can be found in prior work [12].

D.2 Baselines

For the hyper-parameter search baselines we use off-the-shelf solvers like CMA-ES [13], and scipy
optimizers such as Nelder-Mead. For the learned sequence model baseline, we use an LSTM.

LSTM architecture For the synthetic navigation task, we directly regresses to absolute poses. At
each time step, the absolute pose and odometry measurements are concatenated as inputs, and the
network predicts the 2D position and the sin and cos of the rotation angle. We use a 2-layer LSTM
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with 64 hidden units, followed by a 2 dense layers of 32 hidden units before decoding into the
4D output. The loss is a weighted sum of translation and rotation errors. In the real-world planar
pushing datasets, we do not have direct measurements of the object pose. Therefore, we transform
all end-effector trajectories to start at the origin, which improves the generalization. Each input
consists of the end-effector pose observation and the 2d object contact observation, and the same
architecture as the navigation dataset is used. In addition, we found that increasing the sequence
length with each epoch improved performance.

Fig. 6 shows qualitative results for the LSTM on the (a) synthetic navigation and (b) real-world
planar pushing datasets. The performance on the planar pushing object trajectories is not as good
since, unlike navigation where we had noisy GPS measurements, tactile measurements only give
partially observable information about the object state.
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