
stack the
blue block
on the red

block

…[SEP] stack the blue block on the red block

Shared Transformer
Grasp Transformer Place Transformer

Figure 4: Our Transformer-based Visual Goal Prediction model, as run on real robot data. It takes
an image and an instruction as input, then produces separate masks for grasping and placing.

A Model520

A.1 Transformer521

Figure 4 shows a schematic of our Transformer-based VGP model, run on real robot data. The522

inputs are a bird’s eye color image (and depth image) and a language command. The image is tiled523

into an array of non-overlapping square patches, which are flattened into a one-dimensional list by524

concatenating each row of tiles. The tokens of the language command are then concatenated to525

the end of that list. This concatenated input is passed through a shared set of Transformer encoder526

layers, which encodes the dependencies between words and the image. The output of the shared527

Transformer is then passed to two identical Transformer encoders with separate parameters, one528

for predicting a grasp mask, and one for predicting a place mask. This bifurcation is based on the529

observation that there are commonalities between producing the two types of masks (e.g. localizing530

colors, delineating blocks) but that the final tasks of producing grasp and place masks are distinct.531

A.2 Hyperparameters532

The number of shared and combined layers is treated as a hyperparameter n 2 [0, 2, 4, 6], as533

well as the number of warmup steps w 2 [100, 400, 1000, 4000], the dropout probability p 2534

[0.25, 0.33, 0.40], and the loss weight ratio � 2 [0.01, 0.1, 0.2]. Due to the larger number of hy-535

perparameters, we sample 70 random parameter configurations.536

A.3 Q-Learning537

Our model relies on a learned function from states and actions to expected rewards, Q(st, a). This538

function is learned in the context of a Markov Decision Process (S,A, P,R, �) composed of a set539

of states S, a set of actions A, a transition function P : S ⇥ S ⇥ A ! R, a reward function540

R : S⇥A ! R, and a discount factor �, where 0 � 1. At time t, an agent observes state St and541

chooses action at = ⇡(st), where ⇡ is a policy. The function Q, approximating the expected reward542

for each state-action pair, can be used to extract a deterministic policy ⇡ that maximizes the expected543

reward: ⇡(st) = argmaxQ(st, a), 8a 2 A. We learn Q to maximize the reward R over time by544

minimizing |Q(st, at)� yt|, where yt = R(st+1, at)+ �Q(st+1,⇡(st+1)). In a multi-step task, the545

definition of R has a major impact on the learning efficiency of the agent. Specifically, relying on a546

single reward at the end of a task yields a very sparse reward signal and results in inefficient learning.547

In the multi-step tasks considered here (stacking and row-making) there are intermediate subtasks548

that naturally lend themselves to reward shaping, i.e. providing smaller intermediate rewards to549

the agent when the chosen action reflects an incremental progression towards the goal state. The550

SPOT-Q algorithm, introduced by Hundt et al. [9], uses intermediate rewards to shape the learning551

of Q(st, a) for row-making and stacking. We use SPOT-Q to learn the function Q(st, a). Given a552

pixel-wise n ⇥ n state space of an image and two actions (grasp and place), this function can be553

expressed as a tensor Q 2 Rn⇥n⇥2.554

12

B Experiment 1555

B.1 Combination Heuristics556

In the case of stacking, following Hundt et al. [9], we intersect each mask with a common-sense557

mask that assigns a value of 0 where there are no blocks (i.e. an empty space cannot be the location558

of a grasp or a place). For row-making, we allow placing in empty locations, but intersect the grasp559

mask with a common-sense mask. For place and grasp actions in stacking, and grasp actions in560

row-making, we then find the maximum location s
⇤ in mask M : s

⇤ = argmaxM . Because the561

reconstruction function copies a patch value across all of its pixels, for a patch size of p there will562

be p
2 pixels with the value of s⇤. We intersect this patch with the common-sense mask to find the563

single block with the highest value in M . For place actions in row-making, we simply threshold M564

to obtain a set of valid patches to intersect with the Q values. Both processes produce binary masks.565

B.2 Simulation566

We use the CopelliaSim simulator [49] for experiments involving a simulated robot. The simulated567

agent collects observations via a fixed RGB-D camera, whose images are projected to a birds-eye568

view, as shown in Hundt et al. [9]. The agent operates over a discretized spatial and angular action569

space, and movement to a particular location and angle is performed by an inverse kinematics solver570

built into the simulator.571

Figure 5: Simulation Environment

Images All real images were collected via a UR-572

5 robot, Robotiq 2f-85 2-finger gripper, and Prime-573

sense Carmine RGB-D camera. All of these con-574

ditions are different from the simulator, except the575

UR5. The images were collected under varied576

lighting conditions. The data is saved in the same577

file format as the experiments in Tables 1 and 2.578

with a birds-eye view, 224⇥ 224 RBG and depth-579

map images, etc.580

Early Termination The step-by-step nature of581

the instructions means that the agent is sometimes582

unable to reverse course: for example, if the first583

instruction were “stack the green block on the blue584

block” but the agent mistakenly grasped the red585

block and placed it on the green block, the green586

block would become unreachable. Since neither the Q-value model nor the language understand-587

ing model were trained on unstacking tasks, there would be no way to reverse course here without588

adding an external observer. Thus, in these cases, we terminate the trial. Similarly, if the stack is589

toppled, we terminate the trial, as without an external observer we cannot determine which step of590

the process we have regressed to, since the toppling of partial stacks is not unusual. Since blocks are591

typically not occluded in row-making, we do not need these heuristics, and the only way for a trial592

to fail is by timing out after 30 actions.593

Simulator For experiments involving a simulated robot, the CopelliaSim simulator [49] was used.594

The simulated agent collects observations via a fixed RGB-D camera, whose images are project595

to a birds-eye view. The agent operates over a discretized spatial and angular action space, and596

movement to a particular location and angle is performed by an inverse kinematics solver built into597

the simulator.598

B.3 Error analysis599

As mentioned in §5.1, stacking tasks may terminate early for a number of reasons, including irre-600

versible actions that make a successful stack impossible. We conduct an error analysis to determine601

what percentage of the failures are due to errors in the perception/reasoning component (i.e. the602

masking) and what percentage are due to physical failures of the grasping arm. We find that 61.97%603

of the failures could be attributed to timing out after 30 actions. Qualitatively, we found that this604

13

Dataset Configs Types Tokens Utterances Mean Length
Bisk et al. [10] 100 1,820 233,544 12,975 18.0

Physically Feasible 100 1,434 133,083 7,398 18.0
Table 6: Dataset Statistics for feasible subset of the Bisk et al. [10] data

“There is a disconnected “square” at the bottom.
Place Shell on top of the lower left corner.”

Figure 6: A particularly challenging example for
the model. Not only does this involve a higher-
order concept (disconnected square) but it also
incorporates noun-phrase ellipsis.

“Add Shell as the second block in the four-block row.”

Figure 7: Ambiguous command makes reference
to future steps: a row of 4 is later constructed,
but at the time of construction, the agent has no
access to this information.

often happens when a block tumbles outside of the work area, rendering it impossible to grasp. An-605

other 7.04% can be attributed to toppled stacks, where a stack height of 2 or 3 was reached before a606

place action destroyed the whole stack, ending the trial. Finally, 30.99% were due to incorrect block607

orderings which occluded crucial blocks; this is due to the 21.42% of grasp actions that picked up608

the incorrect block.609

B.4 Proof-of-Concept610

Due to restrictions induced by the ongoing COVID-19 crisis, we were unable to run sufficient tri-611

als to include quantitative real results. Nevertheless, we include a proof-of-concept demonstration612

video in which we run the Transformer-based masking model with a real robot arm to successfully613

complete a real stack in the bottom to top order green, yellow, blue, red.614

C Experiment 2615

C.1 Data Translation and Preprocessing616

Note that in the original dataset, 4.82% of the examples have multiple blocks moving in a single617

frame. As this breaks the assumptions made in § 1, we ignore these examples both while training618

and evaluating.619

For training, we convert the 64⇥64 state image grids into binary masks, where all elements are zero620

except the pixels corresponding to the block which is moved.621

C.2 Data Filtering622

We filter out physically infeasible examples, which are typically due to unstable structures toppling623

or blocks being placed in overlapping areas. Because the images captured from the simulated envi-624

ronment are of a lower resolution than the originals, many of these logos are difficult to read in the625

simulated images; to aid with block discrimination, we assign a color to each block in addition to its626

logo. Table 6 reports the same statistics given in Bisk et al. [10] on the filtered subset of the data.627

C.3 Dataset Ambiguity628

A remaining limitation of the dataset is that some descriptions are ambiguous and not reliably ac-629

tionable, since annotators did not attempt to execute the described actions. Some of the natural630

language descriptions are ambiguous, as depicted in Fig. 7.631

14

C.4 Qualitative Error Analysis632

Based on our results in Tables 4, we qualitatively examine some of the errors made by the633

Transformer-based model, where we observe several patterns. Looking at the validation examples634

with the highest IES, we observe that they often correspond to instances where the source block was635

mis-identified, leading the wrong block to be moved, and yielding a large IES. More interestingly,636

in the cases where the correct block was moved, the instruction often contains higher-order concepts637

as well as linguistic complexities such as ellipsis. For example, in Figure 6 there is a reference to a638

“disconnected square”, which is a rare, higher-order geometric concept. In addition, the subsequent639

clause lacks an explicit reference back to the square; the annotator chose to leave this reference640

as implicit, given that the square is raised to a salient position by the previous clause. This type of641

noun-phrase ellipsis is common in natural language [50], and reflects the type of advanced pragmatic642

reasoning required to handle natural language.643

Other examples of a higher-order concept instruction that the model performs poorly on are: “Take644

the Mercedes Benz block on the Burger King block without hiding the right top edge” (hiding),645

“targt [sic] goes 1/2 under Adidas with the right side hanging off” (hanging), and “take the Stella646

Artois block and place it on top of the Nvidia block, lined up perfectly” (perfectly). The model also647

struggles with long coreference chains, even when the anaphora are explicit, e.g. “Place the block648

that is to the right of the Starbucks block and make it the highest block on the board by placing it on649

the Mercedes block. It should be in line with the bottom block.”650

15

C.5 Full results for Experiment 2651

Table 7: Full VGP results for the blocks dataset

Model Embedding Recon. Loss Input k Block Acc. IES
UNet GloVe Yes State 1 55.3 3.3
UNet GloVe No State 1 56.5 3.2
UNet GloVe Yes Image 1 53.6 3.1
UNet GloVe No Image 1 63.4 3.1
Transformer GloVe Yes State 4 90.7 2.2
Transformer GloVe No State 4 92.8 2.3
Transformer GloVe Yes State 2 90.8 2.3
Transformer GloVe No State 2 88.4 2.1
Transformer BERT Yes State 4 88.9 2.6
Transformer BERT No State 4 90.5 2.1
Transformer BERT Yes State 2 89.0 2.4
Transformer BERT No State 2 78.7 2.8
Transformer GloVe Yes Image 4 88.9 3.4
Transformer GloVe No Image 4 85.5 3.6
Transformer GloVe Yes Image 2 79.3 3.2
Transformer GloVe No Image 2 88.7 2.8
Transformer BERT Yes Image 4 89.5 3.5
Transformer BERT No Image 4 72.1 3.8
Transformer BERT Yes Image 2 90.1 3.3
Transformer BERT No Image 2 83.7 3.1

Table 8: Full VGP results for the blocks dataset on the physically feasible subset.

Model Embedding Recon. Loss Input k Block Acc. IES
UNet GloVe Yes State 1 47.8 3.1
UNet GloVe No State 1 49.1 3.1
UNet GloVe Yes Image 1 45.5 3.0
UNet GloVe No Image 1 56.4 3.0
Transformer GloVe Yes State 4 88.2 2.4
Transformer GloVe No State 4 90.3 2.4
Transformer GloVe Yes State 2 89.1 2.6
Transformer GloVe No State 2 85.1 2.4
Transformer BERT Yes State 4 86.8 2.7
Transformer BERT No State 4 88.3 2.2
Transformer BERT Yes State 2 88.4 2.6
Transformer BERT No State 2 72.0 3.0
Transformer GloVe Yes Image 4 86.3 3.4
Transformer GloVe No Image 4 83.0 3.7
Transformer GloVe Yes Image 2 75.7 3.2
Transformer GloVe No Image 2 84.4 3.0
Transformer BERT Yes Image 4 88.3 3.7
Transformer BERT No Image 4 66.2 3.7
Transformer BERT Yes Image 2 88.5 3.4
Transformer BERT No Image 2 86.3 3.5

16

	1 Introduction
	2 Related Work
	3 Models
	4 Datasets and Resources
	4.1 Simulation Experiments with Synthetic Commands
	4.2 Transfer to Real Images
	4.3 Compositionality
	4.4 Naturalistic Language Commands with Complex Scenes

	5 Experiments
	5.1 Simulation Experiments with Synthetic Commands
	5.2 Naturalistic Language Commands with Complex Scenes

	6 Conclusion
	A Model
	A.1 Transformer
	A.2 Hyperparameters
	A.3 Q-Learning

	B Experiment 1
	B.1 Combination Heuristics
	B.2 Simulation
	B.3 Error analysis
	B.4 Proof-of-Concept

	C Experiment 2
	C.1 Data Translation and Preprocessing
	C.2 Data Filtering
	C.3 Dataset Ambiguity
	C.4 Qualitative Error Analysis
	C.5 Full results for Experiment 2

