
A Algorithm Details

A.1 Simulated Robot

Although our main experiments are conducted entirely in the real world, without any simulation,
we also constructed a simulated environment to systematically evaluate and compare various algo-
rithmic choices and ablations of our method. We construct a simulation of our training setup using
the PyBullet physics simulator. The workspace is a 3-by-3 meter room with flat walls and wooden
floors. The objects consist of 20 green spheres scattered randomly across the room without ob-
stacles, or 30 spheres in the room with obstacles. We evaluate our method both with and without
obstacles (shown in Figure 3 and 8 (right)). The simulated robot model is replicated to the real
world and simulates how the real robot operates. During training, the environment is not reset and
the same autonomous pseudo-resetting mechanism is used during training. During evaluation, the
agent uses a greedy argmax policy to choose actions.

A.2 Model Architectures

For the navigation policy, the observations are 100×100 RGB images from the front facing camera,
which goes into three convolutional layers of sizes 64, kernel sizes 3, and stride 1, with an average
pooling layer of size 2 in between each layer. The result is passed through two dense layers of
size 512. The grasping policy uses the same observations, but center cropped to 60× 60 to remove
unreachable regions from the image. Each of the N = 6 networks in the grasping ensemble is also
structured as three convolutional layers of size 64, kernel size 3, and stride 2, then two dense layers
of size 512. In all experiments, we discretize the grasp action space into a 15 × 15 grid and use
α = 10 and β = 10 for the grasping policy, Ngrasp = 2, and a learning rate of 3−4 for training the
networks.

A.3 Collision Avoidance

To ensure that we can continue training the robot for extended periods of time, the robot must be able
to safely navigate in environments with obstacles without breaking. To support safe navigation, we
use the depth channel of the robot’s camera to detect obstacles and walls in front of the robot. When
an obstacle is detected as being inside the graspable area of the robot’s arm, the robot’s base rotates
in a random direction until the obstacle is no longer obstructing the grasp space. We also simulate
this setup for more exhaustive comparisons, with details of the simulation provided in Appendix A.1.

A.4 Real Evaluation Details Env no obst obst diverse obst+rugs
ReLMM-StatCurr 25.1 36.2 35.7 50.9
ReLMM-AutoCurr 63.5 – 99.5 –

Table 2: Number of hours ReLMM was trained to
achieve the real robot performance noted in Table 1.

Here we include additional details on the evalua-
tions, control policies and implementation for the
comparison methods.

ReLMM Due to the real world training contraints, we cannot run the evaluation protocol regularly
during real-world training. We did run evaluation for several checkpoints for the ReLMM-StatCurr
agent in the obst+rugs room, as shown in Figure 4. The total number of hours trained in each
environment is given in Table 2. Frames from the evaluations are shown in Figure 6.

Rand all The navigation policy generates actions from πn ∼ U [−1, 1]2, and similarly the grasping
policy chooses uniformly random from the space of discrete actions.

Rand nav [43] The navigation policy is πn ∼ U [−1, 1]2, but the grasping policy is loaded from
a run of stationary curriculum right after the initial stationary phase (i.e. with stationary pretraining
only).

Scripted The scripted controller takes the camera observation, convert it to grayscale, then detects
contours using OpenCV and uses the contour centroids as object locations. Then it projects the
pixel locations onto the flat ground plane. For grasping, it simply grasps at the closest position. For
navigation, it outputs the forward and turn amount proportional to how much it needs to reach the

13

Figure 6: Frames from videos of the real robot evaluation in each room. The rooms starting from
top down are no obst, obst, diverse.

closest object position, clipped by the action range, or random movement if there are no object in
the observation.

B Grasping Curriculum

In Algorithm 3 and 4 we show the psuedocode of our Autonomous Curriculum algorithm. For our
training, we also use hyperparameter values Nstart = 10, Nstop = 50, and Nmax = 2000. In
addition to what was written in section 4.4, we include an additional hyperparameters for more
stable training, Nbt = 300, which determines how many grasp there needs to be in the buffer Dg
before grasp training begins.

C Additional Tasks

Our main experiments use the room cleanup task, but the basic design of the ReLMM system can
also be extended to other tasks, as we discuss in this section. Using the simulation environment,
we evaluate ReLMM on a picking and placing task, which requires picking up objects and placing
them on a red rectangle (see Figure 7). The policy is trained in a similar fashion as the grasping
policy, with a sparse reward, and uses the same action space. It is given reward of 1 if the object is
successfully placed on one of the designated areas marked red, shown in Figure 7, and 0 otherwise.
During training, we strictly follow the Algorithm 2 and sample the actions according to the distribu-
tion defined in Equation 2. In step 9 of the algorithm the decision of whether to use the grasping or
placing policy depends on whether or not an object is already held by the end effector. In contrast to
the grasping task, the placing task does not use the ReLMM pseudo-reset mechanism, and instead
simply learns to place objects down at random positions in the environment. Analogously to the pre-
training procedure we use for the grasping task, we pretrain the grasping and placing policies with
Ngrasp,st,Nplace,st = 2000 samples, which matches the number used for pretraining the original grasp-
ing task. Nobj is the number of objects available for grasping (20 and 40), and we use Ntargets = 3
random targets for placing. Since the placing portion of the task is easier compared to the more de-
manding grasping task, we achieve 71% success rate during placing pretraining compared to 60%
for the grasping. During the combined training process, the navigation policy is given a reward -1
when not holding an object, -0.5 if the robot is holding the successfully grasped object, and a reward

14

Algorithm 3 TrainGraspAutoCurr(G1, ..., GN , Dg , N)

1: if |Dg| ≥ Nmax then
2: return TrainGrasp(G1, ..., GN , Dg , N , 0)
3: end if
4: Nsince = 0
5: rmax = 0
6: for n = 1, . . . do
7: Get grasp observation õ.
8: Sample ag ∼ πg(·|õ). // see Equation 2
9: Perform grasp ag , receiving rg = 0 or 1.

10: Store (õ, ag, rg) in Dg .
11: if |Dg| ≥ Nbt then
12: Update G1, ..., GN on Dg
13: end if
14: if rg = 1 then
15: Nsince = 0
16: rmax = 1
17: else
18: Nsince = Nsince + 1
19: end if
20: if |Dg| ≥ Nmax then
21: break
22: end if
23: if rmax = 1 then
24: if Nsince ≥ Nstop then
25: break
26: end if
27: else
28: if Nsince ≥ Nstart then:
29: break
30: end if
31: end if
32: if rg = 1 then:
33: Drop object randomly in grasping area.
34: end if
35: end for
36: return rmax

of 0 when the object is successfully placed on a red target, which also terminates the episode. The
positions of the target areas are randomized after each successful place. This experiment illustrates
that the ReLMM system is general enough to be adapted to other tasks with more complex reward
structures.

D Additional Results

Here we include additional results for the paper that include images from the real robot experiments
and add to the ablation analysis.

D.1 Additional Simulation Results

In simulation we study three additional conditions for ReLMM. Starting with a comparison of using
a discrete vs continuous action representation. In this experiment the action space uses the same
underlying control structure of finding the best X - Y position to grasp on the ground, only the
output policy distribution changes. The results in Figure 8 show that training with a discrete policy
trains more than twice as fast. Next, we study the affect of using the learned grasping model to

15

Algorithm 4 ReLMM with AutoCurr

1: Init: function estimators πn, G1, . . . , GM .
2: Replay buffers Dn = {}, Dg = {}
3: Deleted TrainGrasp(G1, .., GN , Dg , Npt, 1)
4: for t = 0, . . . , T steps do
5: Get navigation observation ot
6: Sample an ∼ πn(·|ot) and perform an
7: if uniform() ≤ P[grasp|ot] then
8: rg=TrainGraspAutoCurr(G1,.., GM ,Dg ,Ngrasp)
9: else rg = 0

10: Compute reward rn = rg − 1
11: Get next navigation observation ot+1

12: Store (ot, an, rn, ot+1) in Dn.
13: Update πn with Dn using SAC.
14: Pseudo-reset
15: end for

relabel rewards for the navigation policy, as described in subsection 4.2. We find that using this
relabeling method can increase learning speed and final policy quality, as shown in Figure 9 (left).
Last, we compare the different curriculum methods, stationary and autonomous, in a simulated room
with obstacles. The stationary curriculum method appears to results in faster learning but requires
human intervention to train. The autonomous curriculum may find this environment difficult do to
the obstacles which make exploratory navigation less successful.

Ablation. We compare our pseudo-reset method to a prior algorithm for reset-free learning [2],
which learns how to perturb the environment between episodes of running the actual task policy by
maximizing a novelty based reward. In Figure 5 (right) we see our simpler pseudo-reset is equally
or more effective than the learned perturbation method, without requiring any additional learning
machinery.

D.2 Comparison to HRL4IN

For HRL4IN [21], we followed the method laid out in the HRL4IN paper. To make the setup match
the one in our experiments, the observation space contains the RGB camera image (instead of the
depth image HRL4IN uses), global XYZ position of the robot (which is not available on the real
robot and not used by our method), and the local position of the gripper. The action spaces for the
high-level and low-level are the velocity of the wheels and the change in gripper XYZ position. In the
same manner as ReLMM, when the gripper’s height above ground goes below some threshold, the
gripper closes and picks from the ground. We use the same high-level policy reward that we employ
in ReLMM, where the low-level policy uses the same as the HRL4IN paper. After around 30 days of
training in simulation, HRL4IN has collected a total of 30M environment steps, but the performance
is still at around 1% objects collected on average during eval. This level of performance is expected,
since the HRL4IN paper also took around 30M environment steps to achieve good performance on

Figure 7: Left: Results for pick and place training, with either 40 or 20 objects available in the
environment. We allow a maximum of 250 simulation steps for each evaluation rollout. Right: A
snapshot from the proposed pick and place task with the red pace target behind the robot.

16

Figure 8: Left: Discrete grasping policies train significantly faster than continuous policies in our
simulation ablation study. Right: Images from the simulated environment with diverse objects.

Figure 9: Further curriculum and relabeling comparison in simulation. We plot the performance for
the simulated room with diverse objects (left) and with obstacles (right). We find that the relabeling
reward helps significantly with the diverse objects because it encourages the navigation to go towards
areas of high grasp uncertainty. However, the automatic curriculum in the obstacle room is still
slower than the stationary curriculum, even with the best hyperparameters.

their task, but our environment is a sparse reward setting, whereas the HRL4IN paper uses a dense
reward environment. On the other hand, our method only required around 30K environment steps to
learn a strong policy with 90% objects collected on average during eval. Our method is focused on
real-world training, and significantly more efficient.

17

