
Supplementary Material for Risk-averse Zero Order
Trajectory Optimization

Anonymous Author(s)
Affiliation
Address
email

In this supplementary we provide additional details for our method. We also provide videos1

that showcase risk-averse behavior of RAZER at https://sites.google.com/view/2

razer-traj-opt.3

Our research suffered from pandemic impacts on lab access which is detailed in Sec. E.4

A Implementation Details5

A.1 Model Learning6

Parameters used for model learning in the BridgeMaze experiments.7

Table S1: Model parameters for the BridgeMaze Environment.

Ensemble parameters

Name Value

num_layers 6
size 400
activation silu
ensemble_size (n) 5
output_activation None
l1_reg 0
weight_initializer truncated_normal
bias_initializer 0
use_spectral_normalization False

Stochastic NN parameters

Name Value

var_clipping_low −10.0
var_clipping_high 4
state_dependent_var True
regularize_automatic_var_scaling False

Remaining parameters

Name Value

lr 0.002
grad_norm 2.0
batch_size 512
weight_decay 1e−5

use_input_normalization True
use_output_normalization False
epochs 25
predict_deltas True
train_epochs_only_with_latest_data False
iterations 0
optimizer Adam
propagation_method TS1
sampling_method sample

We bound the predicted log variance by applying (as in [1, A.1])8

logvar = max_logvar - softplus(max_logvar - logvar)9

10

logvar = min_logvar + softplus(logvar - min_logvar)11

to the output of the network that predicts the log variance, logvar. In principle, we could differ-12

entiate through this bound to automatically adjust the bounds max_logvar and min_logvar.13

However, we decided to not make these parameters learnable.14

Parameters used for model learning in the Noisy-HalfCheetah environment (only differences to15

BridgeMaze environment).16

Submitted to the 5th Conference on Robot Learning (CoRL 2021). Do not distribute.

https://sites.google.com/view/razer-traj-opt
https://sites.google.com/view/razer-traj-opt
https://sites.google.com/view/razer-traj-opt

Table S2: Model parameters (only differences wrt S1 are shown) for Noisy-HalfCheetah environment.

Ensemble parameters

Name Value

num_layers 4
size 200

Stochastic NN parameters

Name Value

var_clipping_low −6.0
state_dependent_var True

Remaining parameters

Name Value

lr 0.0002
grad_norm None
batch_size 256
weight_decay 3e−5

epochs 50

For training the predictive model, we alternate between two phases: data collection and model fitting.17

In the BridgeMaze environment, we collect 5 rollouts of length 80 steps and append them to the18

previous rollouts. Afterwards, we fit the model for 25 epochs. For Noisy-HalfCheetah, we collect 119

rollout and fit for 50 epochs. For Noisy-FetchPickAndPlace and Solo8-LeanOverObject we replace20

the f̂ in Fig. 2 with independent instances of noisy ground truth simulators.21

A.2 Controller Parameters22

Parameters used in the CEM controller. For an explanation of the different parameters, we refer the23

reader to[2].24

Table S3: Controller parameters, BridgeMaze environment.

Action sampler parameters

Name Value

alpha 0.1
colored_noise true
elite_size 10
execute_best_elite true
finetune_first_action false
fraction_elites_reused 0.3
init_std 0.5
keep_previous_elites true
noise_beta 2.0
opt_iterations 3
relative_init true
shift_elites_over_time true
use_mean_actions true

Remaining parameters

Name Value

cost_along_trajectory sum
delta 0.0
factor_decrease_num 1
horizon 30
num_simulated_trajectories 128

Table S4: Controller parameters, Noisy-HalfCheetah environment (only difference wrt S3 are shown).

Action sampler parameters

Name Value

noise_beta 0.25
opt_iterations 4

Remaining parameters

Name Value

num_simulated_trajectories 120

A.3 Timings25

While our code is not tuned for speed specifically, in table S6 we provide some timings for a single26

step in the environment (hyper-parameters are set as specified in Suppl. A.1 and Suppl. A.2, with27

num_simulated_trajectories = 128 and op_iterations = 3).28

2

Table S5: Controller parameters, Solo8-LeanOverObject environment (only difference wrt S3 are
shwon).

Action sampler parameters

Name Value

init_std 0.3
noise_beta 3.0

Table S6: Timings per one environment step in ms. We measured the timings on a system with 1
GeForce GTX 1050 Ti, an Intel Core i7-6800K and 31GB of memory.

Environment Timing [ms]

BridgeMaze 0.25
Noisy-HalfCheetah 0.14

A.4 Uncertainty Separation29

In our method, we separate the epistemic uncertainty, denoted as E and aleatoric uncertainty, denoted30

as A, the details of which are explained in Sec. 3 with the resulting costs that arise. Since we are31

using a variant of the CEM algorithm that needs to sort the sampled action sequences u according to32

their cost, the cost of an action sequence is a single floating point number.33

The stochastic NN ensemble that we are using samples trajectories from the predictive distribution ψτ34

for each action sequence u. In addition, our variant (PETSUS), also propagates the mean prediction35

x̄t for each ensemble member for an action sequence u. The auto-regressive prediction follows a36

recursive relation:37

[x̄t+1,Σt+1] = ϑ(x̄t, ut)

We make use of this in order to estimate the epistemic uncertainty E. At each time point of38

the predicted sequence of observations, we take the empirical variance of the outputted Gaussian39

parameters ϑ(x̄t, ut), predicted from the previous mean prediction x̄t and control ut, across the40

ensembles for that time slice in the predicted trajectories. This is then summed up across horizon H41

to obtain the epistemic bonus for action sequence u.42

Fig. S1 shows that scaling wE results in better state-coverage. This is of particular interest if we43

want to learn models that are able to generalize to different task settings, e.g. when changing the cost44

function. While the naive PETS algorithm overfits the model to the task at hand, RAZER learns a45

truly task-agnostic model and is able to reap the benefits of model-based approaches to control.46

For the aleatoric penalty we rely on the actual predictions of the covariance Σ(xt, ut) and average47

them across the time slice, following with the sum across horizon H . Alternatively to this, we also48

use the entropy of the Gaussian as the A uncertainty measurement. In Sec. A.5 we argue how these49

terms are interchangeable.50

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

St
at

e
Co

ve
ra

ge

0.0 (PETS) 0.005 0.01 0.05

Figure S1: Exploration over time.

3

Note that, for the safety term ideally we want to use the full distribution ψτ and separation in aleatoric51

and epistemic uncertainty is neither required nor desirable.52

A.5 Entropy vs. Variance as Uncertainty Measurement53

We use entropy of Gaussian and variance interchangebly as uncertainty estimates. Indeed, since the54

Gaussian distribution is the maximum entropy distribution for certain variance σ2, the entropy scales55

linearly with log σ2. We have found that utilizing the variance directly causes RAZER to be much56

more risk-averse, which can be explained by the variance not being suppressed by the log term in the57

entropy. Moreover, using the variance directly is much more interpretable and easier to tune because58

it’s of the same scale as the observation space.59

A.6 Observation Space vs. Cost Space Uncertainty60

A natural question to ask when attempting to make efficient use of uncertainties in MPC is where to61

measure these uncertainties. As an alternative to observation space uncertainties, one could measure62

uncertainty in cost space. Here we argue why this is not a reasonable thing to do for each of the63

individual cost terms.64

Epistemic Bonus Since we operate under the desiderata that the benefit of model-based methods is65

in task-agnosticism, we shouldn’t measure epistemic uncertainty in the cost space, since this would66

decouple the task definition through the cost from the observation space and would lead to learning67

models that are not task-agnostic.68

Aleatoric Penalty This is perhaps the most questionable case for using observation space uncer-69

tainty instead of cost space uncertainty. Nevertheless, we assume that high-aleatoric uncertainty70

translates to control difficulty, and we want to avoid parts of the observation space that are difficult to71

control. Moreover, the uncertainty measurements become completely invalidated in the case of a task72

switch, which plays against the task-agnosticism desiderata.73

Safety Penalty Safety is something that is enforced by infusing the algorithm with prior knowledge74

through a set of constraints which mostly manifest themselves as subsets of the observation space X75

or action space U .76

B Algorithm77

In Algo. 1 we provide an overview of the CEM algorithm that we utilize for implementing RAZER.78

Concretely, we use an improved sample efficient version of CEM as proposed by Pinneri et al. [2]79

that involves shift-initialization of the distribution mean, sampling time-correlated noise and further80

improvements.81

Algorithm 1: RAZER: Risk-aware and safe CEM-MPC
1 Parameters:
2 N : number of samples; B: Number of particles, H: planning horizon; wA, wE, wS

CEM-iterations
3 for t = 1 to T // loop over episode length
4 do
5 for i = 1 to CEM-iterations do
6 (samplesp)

P
p=1← N samples from CEM(µit,Σ

i
t), with P particles per sample

7 c, cA, cE, cS ← compute cost functions over particles
8 ctot = c+ cA + cE + cS // compute total cost
9 elite-sett← best K samples according to total cost

10 µi+1
t , Σi+1

t ← fit Gaussian distribution to elite-sett
11 execute first action of best elite sequence
12 shift-initialize µ1

t+1

4

C Environments82

All environments are based on the MuJoCo physics engine [3]. The Noisy-Halfcheetah and Noisy-83

FetchPickAndPlace environments are based on HalfCheetah-v3 and FetchPickAndPlace-v1, respec-84

tively.85

BridgeMaze We designed the BridgeMaze environment to show the different aspects of uncertainty,86

namely the epistemic and aleatoric uncertainty, in isolation. The agent is a simple cube with only a87

free joint attached to it. The state-space x = [x0, x1, x2, a, b, c, d, vx0 , vx1 , vx2] is 10-dimensional,88

consisting of 3 positional (x0 to x2), 4 rotational (a to d) and 3 velocity-based (vx0 to vx2), agent-89

centric coordinates. The action-space u = [τx0
, τx1

] is 2-dimensional. The torque τ applied to the90

agent in x0- and x1-direction.91

The task in the environment is to reach a goal platform at x?0 ≥ 12 by crossing one of three bridges92

that go over deadly lava.93

The domain reward is defined as94

rt(xt, ut, xt+1) =


|(x0)t − x?0| − |(x0)t+1 − x?0| , if (x1)t+1 ≥ −1.5

0 , if (x0)t+1 ≥ x?0 and (x1)t+1 ≥ −1.5

−1 , otherwise
(S1)

where x? is the goal state. We define the cost for planning as ct(xt, ut, xt+1) = −rt(st, ut, st+1).95

We designed the environments such that the agent is able to accelerate fast and also comes to a full96

stop relatively fast if no torque is applied. This makes the control problem and the task of learning97

the model relatively easy.98

Noise is added in form of an external force in x1-direction injected through the xfrc_applied99

attribute of the model. The sign of the force, as well as the force amplitude, sampled from fext ∈100

U(0, fmax
ext), are randomly changing every 5 simulation steps. The external force is added only if101

−8 ≤ x0 ≤ 8 and −3.6 ≤ x1 ≤ 3.6. Otherwise the external force is zero.102

Noisy-HalfCheetah We utilize a modified HalfCheetah environment where we apply a normally103

distributed noise term ξ ∼ N (µ,Σ) to the simulator state in the case when the velocity of the cheetah104

is greater than 6. More concretely, let st denote the simulator state at time step t, then the modified105

state is calculated as follows:106

s′t = st + ξt (S2)

In our case, Σ is a diagonal covariance matrix with the diagonal terms equal to 0.2. In addition, for107

the safety experiments with the Noisy-HalfCheetah we create a virtual ceiling at height h = 0.3.108

In the case that the body height crosses this threshold, the agent incurs a large penalty. When the109

safety-constraint is violated, we don’t end the episode.110

Noisy-FetchPickAndPlace We modified the FetchPickAndPlace-v1 environment to show the effect111

of the aleatoric penalty on the CEM action plan. Given the difficulty of the task, we performed the112

experiments without the learned model, using instead an ensemble of noisy ground truth dynamics.113

In this way, we could more easily understand the role of the aleatoric uncertainty during planning.114

The noise term ξ ∼ N (µ,Σ) is applied to the action controlling the gripper state: a positive additive115

noise forces the robot to open the grip with a force proportional to the noise magnitude. This noise is116

applied to all the ground truth models of the ensemble, and to the environment as well.117

In particular, the box position is centered at y-coordinate -1.5 while the target is at y = 2.0. The118

gripper state is noisy until y = 1.67, right before the target.119

The dropping rate is computed considering the height variation of the box (z-coordinate). If the120

downward velocity is greater than a fixed threshold, the box is considered dropped. The threshold121

velocity also includes cases in which the box is dropped and possibly re-grabbed, as this is still part122

of the risky behaviors we want to avoid. The plotted dropping is the minimum over different aleatoric123

penalties.124

5

Solo8-LeanOverObject The state space of the this environment is 47-dimensional. It contains the125

absolute position, rotation, velocity and angular velocity of the robot as well as the positions and126

velocities of all the joints. In addition, the state contains the positions of the end-effectors and of the127

sites at the front and back of the robot. The actions space is 8-dimensional and controls the relative128

position of the joints. We fixed the two front legs of the robot with a soft-constraint to the ground to129

prevent the robot from uncontrollable jumping. We apply Gaussian noise to the action with a mean of130

0 and a diagonal covariance matrix with the diagonal elements all being 0.3. The noise is uniformly131

applied over the entire state-action-space.132

The experiments for the Solo8-LeanOverObject environment use the ground truth model during133

planning. The same noise were applied in the ’mental’ as well as the ’real’ environment.134

C.1 Computing State-Space Coverage135

For computing the state coverage in Fig. 3a we divided the continues state-space in 50 equally spaced136

bins in the range −20 ≤ x0 ≤ 20 and −10 ≤ x1 ≤ 15. The state space-coverage is the fractions137

between states visited at least once and the total number of states.138

D Application to Transfer Learning139

In this work we have demonstrated that an approach such as PETS[1] to data-driven MPC that140

relies on zero-order trajectory optimization of the expected cost is not enough to manage uncertain141

environments and safety constraints. These problems need to be addressed when dealing with sim-to-142

real. The separation of uncertainties allows us to effectively manage epistemic uncertainty in the real143

system, which is important for improving the model once distribution shift to the real system happens.144

This can be done in a way of combining the epistemic bonus and probabilistic safety constraints,145

such that the policy explores parts of the state space where there is knowledge to be obtained while146

avoiding high-cost regions as a consequence of the incurred safety and aleatoric penalties.147

In comparison to standard approaches for sim-to-real which involve domain randomization at training148

time, this approach incurs lower computational overhead and relies on learning on the real system.149

E Pandemic Impact150

In our department the lab access during the last 1.5 years was heavily restricted, such that we could151

not perform the planned experiments with the real Solo8 quadruped. Instead, we decided to focus on152

simulations of the real robot and consider what is important for transfer to the real world: uncertainty153

estimation and safe model-based reinforcement learning.154

In Sec. D we provide motivation for why uncertainty separation is in particular important for the sim-155

to-real setting. In this work, we have provided fundamental methodology for separating uncertainties156

and using them for more robust control and exploration. Therefore, this work is a stepping stone157

towards application to the real robots which we plan on exploring once the lab restrictions due to the158

pandemic are lifted.159

References160

[1] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful161

of trials using probabilistic dynamics models. In Advances in Neural Information Processing162

Systems, volume 31 of NeurIPS. Curran Associates, Inc., 2018.163

[2] C. Pinneri, S. Sawant, S. Blaes, J. Achterhold, J. Stueckler, M. Rolinek, and G. Martius. Sample-164

efficient cross-entropy method for real-time planning. In Conference on Robot Learning 2020,165

2020. URL https://corlconf.github.io/corl2020/paper_217/.166

[3] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012167

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,168

2012.169

6

https://corlconf.github.io/corl2020/paper_217/

	Implementation Details
	Model Learning
	Controller Parameters
	Timings
	Uncertainty Separation
	Entropy vs. Variance as Uncertainty Measurement
	Observation Space vs. Cost Space Uncertainty

	Algorithm
	Environments
	Computing State-Space Coverage

	Application to Transfer Learning
	Pandemic Impact

