
A Initializing a Pool of Trajectories

Our approach suggests beginning with a pool of trajectories, however obtaining this pool can pose
a bootstrapping problem. It’s unlikely that a diverse corpus of trajectories—one that would span
the feasible attribution space and enable a data-driven extraction approach—would already exist. In
order to create such a corpus, one would need to be confident that they have included trajectories
that adequately cover the range of attributions that are perceivable in a domain, but the lack of such
information is why we want the corpus of trajectories to begin with.

We broke this cycle by referencing existing literature on the perceptions of robot vacuum cleaners
and selecting six adjectives as candidate attributions: curious, broken, energetic, lazy, lost, scared.
We then manually demonstrated six trajectories that we judged to maximally express these candi-
dates. We collected responses to these trajectories and conducted an initial analysis of what aspects
of the motion users said contributed to their ratings. This informed the creation of an initial subset
of the features we would use. Additional trajectories were then generated using a hill-descending
search in the space of trajectories optimizing for incrementally altering individual features (±0.1-
0.3) selected at random while holding other features constant. We found that alternative optimization
criteria, like diversity, would lead to degenerate or trivial trajectories which happened to have ex-
treme feature values. These new trajectories were posed to users for their ratings. Simultaneously,
we asked them to demonstrate how they would “clean the bedroom in a way that makes the robot
look ” for random items from our questionnaire. Responses fed back into analysis and the
process was cycled through two more times with a subset of the generated and demonstrated trajec-
tories, resulting in the final exploratory dataset and trajectory featurization.

B Loadings

The factor loadings of our final model, derived via exploratory factor analysis of the exploratory
dataset, are shown in Table 4.

Variable Factor 1 Factor 2 Factor 3 Communality

Responsible 1.00 .06 �.07 1.01
Competent .94 .03 .00 .89
Efficient .93 .05 �.03 .87
Reliable .85 �.05 .07 .73
Intelligent .85 �.05 .06 .73
Focused .84 �.07 .02 .71
Lost �.03 .90 .01 .80
Clumsy .13 .76 .06 .59
Confused �.21 .76 .03 .63
Broken �.17 .62 �.11 .43
Curious �.04 .06 .91 .83
Investigative .12 �.02 .78 .62

Table 4: Factor loading matrix

C Data Sensitivity

We investigated the sensitivity of our candidate models’ performance on unseen trajectories to in-
creased amounts of training data. We divided our final dataset, holding out 20% of the trajectories,
then trained and tested models using varying percentages of the training data, repeating the evalua-
tion with 8 randomized folds of the training data. The results, shown in Fig. 6, indicate diminishing
returns beginning around the use of 50% of the training data.

D Trajectory Optimization

We would like to generate trajectories that elicit a particular attribution according to the optimiza-
tion (1). We have the forward model fB|⌅|�(⇠) which predicts a distribution over attributions given
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Figure 6: Average test negative log likelihood as a function of the amount of labeled human data used in
training. Each datapoint represents the mean of the average test NLL over 10 random folds. Error bars denote
standard deviation.

the featurization of a particular trajectory. This model affords two routes towards realizing the opti-
mization. In the first, we directly optimize the features to maximize the objective. However, in that
case, a further optimization would be needed to find a trajectory that has the desired feature vector,
and it is possible (and common in practice) that there does not exist a trajectory that produces the
target features. The second route, which we adopt, is to search in the space of trajectories. This
space is large, and in general there is no clear best way to structure the search. Fortunately the
features we use have a clear relationship with patterns of motion, so we can easily sample trajecto-
ries that increase the activation of individual features. Given a trajectory, we sample a large set of
neighboring trajectories using the following modifications:

Action modification : The trajectory is scanned and new trajectories are initialized by individually
witholding each state si. The single removed state is replaced by selecting every valid
alternative action from si�1 and reconnecting the trajectory with a shortest path to si+1.

Shortcutting : Sections of the trajectory are deleted uniformly at random and the trajectory is
reconnected with a shortest path. We sample twice as many cuts as there are states in
the trajectory. Shortcutting is a well established post-processing step in motion planning,
helping to uncover shorter or cheaper trajectories that still satisfy the objective.

Template Insertion : A sequence of states is patched into the trajectory beginning at each si. We
used a “straight” template, formed by taking the action used in si�1 and repeating it twice,
and a “U” template, formed by taking three actions in proceeding clockwise or counter-
clockwise directions. The trajectory is reconnected with a shortest path to si+1. Both
templates were directly motivated by participant feedback highlighting these patterns as
contributing to the appearance of an organized principle to the robot’s motion.

Collision Seeking : The trajectory is scanned and collision-avoiding actions are individually re-
placed with collision-causing actions if they are available from a state si. The trajectory
is then reconnected with a shortest path to si+1. This sampler was motivated by partic-
ipant responses highlighting collisions as contributing to their ratings of components of
the brokenness score. These same modifications are generated by the “Action modifica-
tion” sampler. We double-sample these to reduce the chance that they are dropped in a
subsequent subsampling step.

Overcoverage : A random section of the trajectory si..sj between 3 and 6 states long is selected
uniformly at random and the trajectory is modified to backtrack this portion by inserting
reverse(si..sj) followed by si..sj in place of sj . This modification is motivated by partici-
pant feedback that highlighted redundant coverage as evidence of attentiveness, exploration
or attention to detail.

These samplers, and a good initialization produced by solving the original task using a planner, make
sampling-based greedy hill-descending search in the space of trajectories effective. As practical
considerations, we discard sampled trajectories longer than 250 states to prevent the search from
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exploding, then we randomly subsample 250 of the modified trajectories, and we terminate the
search once 750 steps have been taken.

As illustrated in Fig. 7, this search process is generally effective at making use of additional allow-
able suboptimality to produce trajectories that the model predicts to better elicit a desired attribution.
Some non-monotonicity can be observed in one of the brokenness and one of the curiosity plots. As
trajectories get longer, the pool of neighbors sampled is diluted with many more small changes and
our subsampling step can lead the search to randomly discard more fruitful paths.
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(a) Training environment (as used in Experiment I)
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(b) Modified environment (as used in Experiment II)

Figure 7: The predicted distribution of factor scores for trajectories optimized under varying settings of w,
represented as a ratio of the task-optimal cost. The optimization goals are configured as they are in our ex-
periments, a Gaussian centered at 1.5 with standard deviation 0.3, and the plots show the marginal density for
the factor under consideration. The companion plots show the KL divergence for each of the plotted distribu-
tions, providing a measure of closeness to the goal distribution for each generated trajectory. The bound line
represents the distribution and KL divergence that are predicted for a feature vector obtained by optimizing the
features directly, as opposed to optimizing in the space of trajectories. In general, these features may not be
realizable with a trajectory that obeys the domain constraints, so the predicted distribution represents an upper
bound.

E Statistical Results

We conducted one-sample Kolomogorov-Smirnov tests comparing the empirical distribution of fac-
tor scores elicited from participants against the distribution predicted by our model. To account for
the increased likelihood of Type-I errors due to multiple testing, the Holm-Sidak adjustment was
applied to the resulting p values. The results of the tests are provided in Table 5.

15



Experiment I Experiment II
Competence Brokenness Curiosity Competence Brokenness Curiosity

D(24) p D(24) p D(24) p D(24) p D(24) p D(24) p

1x .381 .014 .292 .255 .233 .659 .343 .059 .247 .464 .319 .143
2x .190 .789 .185 .789 .120 .879 .309 .145 .151 .836 .299 .206
4x .275 .334 .232 .659 .144 .879 .182 .738 .256 .446 .254 .464
12x .277 .334 .217 .695 .198 .789 .246 .464 .211 .601 .143 .836

Table 5: Results of Kolmogorov-Smirnov tests comparing predicted and observed distributions for each condi-
tion

Experiment I Experiment II
Competence Brokenness Curiosity Competence Brokenness Curiosity
⌧b p ⌧b p ⌧b p ⌧b p ⌧b p ⌧b p

-.261 .001 .402 <.001 -.069 .370 -.175 .045 .351 <.001 -.033 .675

Table 6: Results of Kendall’s tau-b correlation between optimization parameter w and factor score

For Experiment I, the tests failed to indicate a significant difference between the distributions for all
but the Competence-1x condition, suggesting that there is insufficient evidence to support inequiva-
lence between predicted and observed distributions. For Experiment II, the tests failed to indicate a
significant difference between the distributions for all conditions, suggesting that there is insufficient
evidence to support inequivalence between predicted and observed distributions.

We conducted Kendall’s tau-b correlations to determine the relationship between the allowable sub-
optimality of a generated trajectory (1, 2, 4 or 12) and the observed factor scores for the attribution
under study. The correlation coefficients and p values are reported in Table 6. The results indicate
strong positive correlations between the allowable suboptimality and brokenness factor scores, sug-
gesting that the trajectory generation method was effective at eliciting progressively higher factor
scores. However, tests for the competence conditions indicated a moderate negative correlation, and
tests for curiosity conditions were not significant.
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