
6 Appendix

6.1 Hindsight Goal Auxiliary Training Algorithm

Algorithm 1 describes our training procedure with hindsight goals. The loss functions for the critic
and the actor with hindsight labels are

Lφ =
1

2
(Qφ(s, a)− y)2 + LAUX(ĝ, gφ) · rT (5)

Lθ = λLBC(a
∗, aθ) + (1− λ)LDDPG(s, aθ) + LAUX(ĝ, gφ) · rT ,

where rT ∈ {0, 1} is the binary reward for the last state in the episode. Therefore, we only have the
goal auxiliary losses for successful episodes during fine-tuning on unknown objects. We fine-tune
the pretrained actor-critic network on the datasetD = Dexpert∪Dhindsight. Note that we cannot collect
extra data for Ddagger and Dddpg with unknown objects, but we can potentially use the ones that are
already collected.

Compared with the common relabeling strategy for goal-conditioned policies [30, 31, 32], Algo-
rithm 1 does not modify the reward of an episode. While using every hindsight goal might allow the
robot to explore diverse goals, it hurts grasping performance if we use unsuccessful grasp poses as
goals. Although goal-conditioned policies are useful for explorations and long-horizon tasks, we do
not treat grasping an arbitrary object as a simple goal-reaching task since solving the grasp detection
problem is a challenge. The policy will ignore contacts during grasping and will also be affected by
the grasp quality at test time.

Algorithm 1: Hindsight Goal Auxiliary Training (policy πθ, dataset Dhindsight, critic Qφ)

for i = 0, ..., N do
Execute πθ in environment for an episode τ
Log trajectory τ = (s0, a0, r0..., sT , aT , rT )
Compute ĝt from τ and augment goals to the dataset Dhindsight
Optimize the Qφ, πθ with Eq. (5)

end

6.2 Task and Environment Details

To better utilize the 3D information and resolve ambiguities of the current view due to local geometry
for grasping static objects, we aggregate point clouds as the gripper moves in time for our state
representation. Fig. 6 illustrates our point aggregation procedure.

In order to aggregate 3D points from different time steps, we need to transform them into a com-
mon coordinate system. We choose the coordinate of the robot base to aggregate the 3D points.
Specifically, at time t, let XC

t ∈ Rnt×3 denote the 3D point cloud of the target object from the
wrist camera, where nt represents the number of points. Since the camera is attached to the robot
hand, we first transform XC

t to the end-effector frame denoted as Xt using the camera extrinsics.
Through forward kinematics, we can compute the transformation of the end-effector in the robot
base as Tt ∈ SE(3). Then we can transform the point cloud to the robot base by T −1t (Xt). Finally,
our state representation at time t is st = Tt

(
∪ti=0T

−1
i (Xi)

)
, i.e., aggregating the point clouds in the

robot base up to time t and then transforming the points to the end-effector frame at time t. Notably,
using 3D points suffers less from the sim-to-real gap and has a much better sample efficiency than
image-based methods, in Fig. ??.

At time step t, we sample mt points among the nt observed points uniformly to limit the number
of points. Note that a closer view of the object leads to a larger foreground mask. Therefore, nt
increases as t goes from 0 to T . In order to balance points sampled from different time steps, we
aggregate observed point clouds in an exponential decaying schedule. Specifically, mt = dαtnte,
where α = 0.95. The final network input contains 1024 sampled points from the state st.

The expert planner is tuned to achieve around 95% success rates on both YCB and ShapeNet objects.
Compared to the YCB dataset which composes of objects that are manipulated in daily life, some
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Figure 6: Illustration of our point aggregation procedure. We show the RGB, depth, foreground
mask and point cloud at time t, and the aggregated point cloud up to time t.

objects in the ShapeNet repository such as Shelves, Desks, and Beds do not resemble real-world
tabletop objects. Therefore we resize them to be graspable by the Panda gripper and use the same
object physics (friction and mass) for all the objects [7, 48]. We randomize initial states ρ0 from a
uniform pose distribution facing toward the target object, in a distance from 0.2 meter to 0.5 meter.
Compared to the restricted top-down grasping, the diversity of the initial arm configurations and
object shapes and poses forces the policy to learn grasping in the 6D space. When images are used,
we apply domain randomization during training by randomly changing the textures.

We have also tried using images from an overhead static camera as input and joint posi-
tions/velocities as the actions. For 6D grasping, we believe that using the ego motion from a wrist
camera generalizes better to unseen objects in different backgrounds and suffers less from occlu-
sions during grasping. Moreover, the point cloud representation is suitable for sim-to-real transfer
since it has no reliance on color information and camera parameters, and often shows robustness to
depth noises from sensors. The aggregated point cloud also allows action space to align with the
observation space and uses history observations when the current sensory feedback is limited.

6.3 Network Architecture

The feature extractor backbone for point clouds is PointNet++ [40] with a model size around 10M.
In our ablation studies, the backbone network for images is ResNet18 [45] with a much larger
model size of 45M. The remaining timestep (T − t) is concatenated with the state feature to provide
information about the horizon. The actor network and the critic network are both implemented by a
multi-layer perceptron with three fully-connected layers using the ReLU activation function. We use
Adam [49] as the optimizer for training and decrease the learning rate in a piece-wise step schedule.
We use separate feature extractors for the actor and the critic. For fine-tuning with hindsight goals,
we fix the weights of the feature extractor backbones, and only fine-tune the actor-critic.

6.4 Training Details

The dataset Dexpert contains 50,000 interaction steps in successful episodes from expert demonstra-
tions and extra 120,000 failure data points in the case of offline RL in our ablation studies. These
data contain a few rollouts for each object to resemble the real-world setting where the demonstra-
tion data has a fixed size. Our online setting has around 3 million interaction steps. The replay buffer
contains 2 · 106 transitions for points and 2 · 105 transitions for images due to the memory limit.

During each iteration of the DDPG training, we sample 14 parallel rollouts of the actor to collect
experiences. We then perform 20 optimization steps on a mini-batch of size 250 which has 70% of
the data from the on-policy buffer and the rest from expert buffer. We add decaying uniform noises
from 3 centimeters, 8 degrees to 0.5 centimeter, 1 degree for the exploration on translation and
rotation, respectively. During expert rollouts, we randomly apply motion perturbations to increase
the diverse state space explorations. The balancing ratio of the BC loss and the DDPG loss is
λ = 0.2 and the MDP discount factor is γ = 0.95. We adopt the TD3 algorithm [41], and the policy
network is updated once every two Q-function updates. The target network of the actor and the
first target network of the critic are updated every iteration with a Polyak averaging of 0.999. The
second target network used in Q-learning uses 3, 000 update step delay [4]. In the point matching
loss function for gripper poses LPOSE(T1, T2) in Eq. (2), Xg contains 6 keypoints on the finger tips,
finger bases, and the palm base of the gripper. Although action and grasp predictions use different
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Figure 7: Left) Learning curves of different BC models. Right) Learning curves of different RL
models. The mean and the 1 standard deviation range are plotted for each model.

Method
Grasp-Translation (m) Grasp-Rotation (◦) Grasp-Point-Distance (m)

ShapeNet YCB ShapeNet YCB ShapeNet YCB
Min Mean Min Mean Min Mean Min Mean Min Mean Min Mean

Goal-Auxiliary 0.015 0.045 0.020 0.047 6.621 17.989 7.610 19.465 0.023 0.065 0.028 0.069
Goal-Conditioned 0.016 0.039 0.025 0.045 6.987 17.638 7.821 19.864 0.025 0.056 0.033 0.071

Table 5: Evaluation on grasp prediction performance

rotation representations, the same loss function is used to compute LBC and LAUX. Fig. 7 shows the
learning curves of several BC models and RL models.

6.5 Grasp Prediction Performance

Since our method involves grasping goal prediction, we evaluate the grasp detection quantitatively
and qualitatively. In this experiment, we train a policy network using BC on the offline dataset and
use point clouds as our input.

Table 5 shows the grasp prediction results. We use the target goals from the expert planner as
the ground truth, and compute translation errors in meters, rotation errors in degrees and the point
distances in meters as used in the loss function in Eq. (2). We compute both the mean error and the
minimum error along the trajectories from the expert.

In Table 5, “Goal-Auxiliary” indicates our policy network with auxiliary goal prediction using the
aggregated point cloud representation. “Goal-Conditioned” indicates a separate network trained for
grasp prediction only, which is used for goal-conditioned models. We can see that the performance
of the two networks are quite similar, which demonstrates that our training is able to optimize the
auxiliary task well and the grasp prediction objective aligns well with the policy learning. Overall,
jointly training the policy and grasp prediction does not affect the grasp prediction performance.
We also observe that the grasp prediction error decreases as the camera gets closer to the object
in our closed-loop setting. Note that the regression errors are affected by the discrete nature of the
pre-defined grasp set and the multi-modality, especially for certain symmetric objects such as bowls.
Fig. 8 illustrates some grasp prediction examples on ShapeNet objects.

6.6 Closed-Loop 6D Grasping of Moving Objects in Simulation

In this experiment, we move the target in simulation by continually resetting its pose in the first
12 environment steps. We perturb the object pose on a table with uniform translation noises (3
centimeters maximum) and uniform z-axis rotation noises (15 degrees maximum) per step. Our
experiment shows that our fine-tuned policy can still achieve performance at 90.6% success rate in
these dynamic scenarios. The policy is robust even if we do not aggregate points for moving objects.

Figure 8: Grasp prediction examples on several ShapeNet objects. The red fork denotes the gripper
pose predicted from our policy network.
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Figure 9: Objects used in our real-world experiments.

Fixed initial joint Varying initial joint
Object Policy Planning Combined Policy Planning Combined

Cracker Box 3/5 3/5 5/5 3/5 3/5 3/5
Sugar Box 5/5 5/5 5/5 5/5 3/5 4/5

Tomato Soup Can 2/5 2/5 2/5 3/5 3/5 3/5
Mustard Bottle 4/5 5/5 5/5 3/5 2/5 4/5

Meat Can 5/5 5/5 3/5 3/5 5/5 3/5
Bleach Cleanser 4/5 4/5 4/5 5/5 3/5 4/5

Bowl 4/5 5/5 5/5 4/5 2/5 4/5
Mug 3/5 5/5 3/5 1/5 3/5 4/5

Foam Brick 5/5 4/5 5/5 4/5 2/5 5/5
Unseen 8/10 5/10 8/10 7/10 7/10 7/10

All 43/55 43/55 45/55 38/55 33/55 41/55
Success Rate (%) 78.2 78.2 81.8 69.1 60.0 74.5

Table 6: Detailed results of the real-world tabletop grasping for single objects on a table. The
numbers of successful grasps among trials and the overall success rates are presented.

6.7 Details on Real-world Experiments

Fig 9 shows the objects used in our tabletop grasping and handover experiments. Table 6 presents
the details of our tabletop experiments for 9 YCB objects and 10 unseen objects in the real world.
From the table, we can see that the policy cannot handle “Cracker Box”, “Tomato Coup Can” and
“Mug” very well due to the incorrect contact modeling in the PyBullet simulator.

Table 7 shows the detailed handover experiments for the 10 objects in our system evaluation, where
we handed each object five times for three different locations and two moving scenarios. Fig 10 lists
all the handovers of the 10 objects in our user study for six participants.

6.8 Design Limitations

The underlying assumption for hindsight goals in our method is that the object pose does not change
dramatically due to robot interaction, which we find quite applicable for precision grasping. It also
requires minimal camera drifts that often holds with industry-grade robot manipulators. We also
assume the target is specified with a separate image segmentation module that can lead to delays.
While using end-effector delta pose as action makes the policy learning easier by removing some of

Left Middle Right Left→Right Right→Left Success Rate (%)
Medicine Box 1 1 1 1 0 80
Newspaper 1 1 1 1 0 80
Plate 1 1 1 0 1 80
Mug 0 1 1 1 1 80
Remote 1 1 1 0 0 60
Toothpaste 1 1 1 1 0 80
Scissors 1 1 1 0 1 80
Towel 1 1 1 0 0 60
Pen 1 1 1 1 0 80
Spoon 1 1 1 1 1 1
Success Rate (%) 90 100 100 60 40 78

Table 7: Handover success rate with varied handover locations and moving objects.
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Figure 12: 10 Household objects used in the user study with 6 participants. Please zoom in for best
view.
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Figure 10: 10 Household objects used in the user study with 6 participants. Our approach is able to
adapt to various ways of holding objects. Please zoom in for the best view.

Figure 11: The policy needs to learn complex contacts between the robot gripper with different
objects in simulation. So it suffers from the domain transfer from simulation to the real world.

the complexity of the configuration space, it is less suitable for high-frequency control domains with
configuration-space constraints such as joint limits and hard collision instances. In the simulator,
our value function in the actor-critic can be used to improve the policy in situations where experts
rarely visit, for instance, contact-rich scenarios (Fig. 11) or environments with different physics
parameters. However, when deploying the learned policy to the real world, we still observe the
sim-to-real domain gap in contact modeling.
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