
A Extension to Other Tasks354

In this paper, we focused on the task of rough terrain navigation of wheeled robots. As such, some355

of our implementation details are based on task specific assumptions. However, we believe the356

proposed approach is also applicable to other tasks. In this section, we describe how task specific357

assumptions could be removed to extend the algorithm to any POMDP problem.358

One limitation of our algorithm is the availability of trajectory tracking controllers. In our exper-359

iments, we used the well known PD trajectory tracking controller for Ackermann steered robots360

described in Sec. B. However, this controller may not be applicable other types of systems. We361

note though that trajectory trackers can be formed for any system using LQR (Linear Quadratic362

Regulator) as long as there exists a differentiable state transition model [35, 36, 37]. The neural363

network state transition models learned in our approach can be differentiated numerically or using364

backpropagation.365

Another limitation is that we assume full state knowledge. Although the dynamics models in our366

implementation made state transition predictions using observations, we assumed the robot knew its367

initial full state and used a task specific observation model to calculate observations given predicted368

states. This assumption restricts the algorithm to MDP problems. However, recent methods [38, 39]369

have formed predictive dynamics models for partially observable systems using latent-space models.370

These approaches learn encoders to map observations to latent vectors. These latent vectors encode371

the underlying state of the system. A latent dynamics model is also learned to predict state transitions372

in the latent space. Using such approaches could extend our proposed method to POMDP problems.373

B PD Trajectory Tracker374

In this section, we define the function ftrack that corresponds to the PD trajectory tracking controller375

used in our experiments. In Sec. 5, we defined trajectory tracker as a controller that provided376

corrective actions given a reference trajectory d̄ = (s̄0, ..., s̄T , ā0, ..., āT−1), and the robot’s actual377

states s0, ..., st, where t < T . So the actual action applied to the robot is378

at = āt + ftrack(s0, ..., st, d̄), (8)

. The PD tracker operates by calculating the error from the robot’s true state st and the corresponding379

reference state from the reference trajectory s̄t. The calculated error and the change in its value is380

then used to calculate a corrective action.381

In our implementation, we define the error vector et ∈ R2 as the vector from the actual state st to382

the reference state s̄t relative to the robot’s frame and projected to the ground plane, as shown in383

Fig 5. The corrective action can then be calculated with384

ftrack(s0, ..., st, d̄) = Kpet +Kd(et − et−1), (9)

where Kp ∈ R2×2 and Kd ∈ R2×2 are positive diagonal gain matrices. In this formulation, an385

action of a = [1, 0]T will drive the robot forward in the +x direction, and an action of a = [0, 1]T386

will steer the robot counterclockwise in the +θz direction as depicted in Fig 5.387

Figure 5: Definition of PD tracker’s error vector. The actual state st is shown in red. The reference
state s̄t is shown in green. The error vector is shown in black and defined relative to frame st.

11



C Predicted Distribution & Negative Log-Likelihood Estimates388

In our implementation, the dynamics model predicts the state transition, denoted as ṡt ∈ Rṅ, given389

the robot’s observation, denoted as ot, and action, denoted as at. We define the state transition390

function, which maps the robot’s current state st ∈ Rn and state transition ṡ to the robot’s next state391

st+1, as392

st+1 = F(st, ṡt). (10)

We also define its inverse, which maps the robot’s current and next state to the state transition, as393

ṡt = F−1(st, st+1). (11)

Robot observations are directly generated from the state using the observation function394

ot = O(st). (12)

The prediction from the dynamics model takes the form of an uncorrelated Gaussian distribution.395

The output of the neural network’s last layer is the predicted distribution’s mean µ ∈ Rṅ and log396

variance log-σ ∈ Rṅ. We denote the dynamics model’s mapping of the observation and the action397

to the predicted mean and log variance as398

µt, log-σt = p̂θ(ot, at) (13)

Given the robot’s predicted current state ŝt and action at, the negative log-likelihood of the robot’s399

true next state st+1 can be found as follows: 1) A robot observation ôt is generated using ŝt and400

equation 12. 2) The state transition distribution’s mean µt and log variance log-σt is predicted using401

ôt, at and equation 13. 3) The target state transition ṡt is found using ŝt, st+1 and equation 11. 4)402

The negative log-likelihood is found with403

L =
1

2
log(2πṅ) +

1

2

ṅ∑
i=1

[
([µt]i − [ṡt]i)

2

exp([log-σt]i)
+ [log-σt]i

]
, (14)

where [.]i represents the ith element of a vector.404

When using a multistep loss LNms with N > 1, the negative log-likelihood of next state st+1 is405

found by averaging the likelihood of st+1 over N particles ŝ1
t , ..., ŝ

N
t , then taking the negative406

log. For numerical stability, we avoid calculating this directly. Instead, we calculate the negative407

log-likelihood of st+1 given each particle using equation 14, denoted as L1, ...,LN . Then, with408

Lmin = mini Li,409

LNms = Lmin − log

(
1

N

N∑
i=1

exp(Lmin − Li)

)
(15)

D Neural Network Architecture & Training Considerations410

For the simulated environment, the input to the dynamics model included a R1x64,64 terrain map,411

and a R9 robot state vector. The output was a R26 state transition distribution mean and log-variance412

vector. Table 5 shows the neural network architecture used for simulation experiments. For the413

real world environment, the input to the dynamics model included a R1x16,16 terrain map, and a414

R3 previous state transition vector. The output was a R6 state transition distribution mean and log-415

variance vector. Table 6 shows the neural network architecture used for real world experiments.416

Using a multistep loss for dynamics model training is important for proper uncertainty propagation.417

However, training with a multistep loss can be computationally intensive and may lead to instability418

when single step predictions are inaccurate. In our implementation, we initialized training using a419

single step loss. We then change to a multistep loss using multistep trajectories that were progres-420

sively increased in length. The longest trajectory used during multistep training had a length of 5421

steps. These trajectories were cropped from much longer trajectories. Earlier portions of the longer422

uncropped trajectories were used to initialize the hidden state of the LSTM layer.423

12



Table 5: The network architecture for simulation

Layer Input Input Dim Activation Output Output Dim
CNN1,8 Heightmap 1× 64× 64 ReLU Hmap feat1 8× 32× 32
CNN8,4 Hmap feat1 8× 32× 32 ReLU Hmap feat2 4× 16× 16
Reshape Hmap feat2 4× 16× 16 None Hmap feat3 1024
FC1037,2048 Hmap feat3 + 1037 ReLU feat1 2048

robot state
LSTM2048,256 feat1 2048 feat2 256
FC256,256 feat2 256 ReLU feat3 256
FC256,13 feat3 256 None pred. µ, log-σ 13

Table 6: The network architecture for real world

Layer Input Input Dim Activation Output Output Dim
CNN1,8 Heightmap 1× 16× 16 ReLU Hmap feat1 8× 8× 8
Reshape Hmap feat1 8× 8× 8 None Hmap feat2 512
FC515,2048 Hmap feat2 + 515 ReLU feat1 2048

prev. transition
LSTM2048,256 feat1 2048 feat2 256
FC256,256 feat2 256 ReLU feat3 256
FC256,13 feat3 256 None pred. µ, log-σ 3

E Additional Simulation Results424

Figure 6 shows a trial in an illustrative simple ramp environment. When divergence is not consid-425

ered, the optimizer find a short, but highly divergent trajectory up the steep sides of the ramp. The426

robot fails to execute the trajectory and slides off the ramp due to insufficient friction. When penal-427

izing divergence, the optimizer finds an overly conservative trajectory that does not attempt to go428

up the ramp. Our divergence constrained method allows the robot to consistently climb up the ramp429

and reach the goal.430

More trials in randomly simulated environments are shown in Figure 7.431

13



(a) No uncertainty (b) Penalty (c) Constraint (d) AL Optimization

Figure 6: Ramp climbing trial. The optimized, predicted closed-loop, and actual trajectories are
shown in red, yellow, and green respectively. The optimization process for (c) is shown in (d),
where the divergence constraint is progressively satisfied, with red indicating higher divergence.

No Uncertainty Penalty Constraint

Figure 7: Additional results on random terrain

14


